

Issues with RGJ

- usually no unique choice of physical scale
 - competing effects/multiscale physics not captured well
 - if there are dimensional classical quantities, then different identifications are possible

e.g. $k \sim 1/r$ only need $k \uparrow \leftrightarrow r \downarrow$
or
 $k \sim \frac{1}{r} \left(\frac{\epsilon_N}{r}\right)^n$ $k \downarrow \leftrightarrow r \uparrow$

- where do implement RG I?

→ action?

→ equations of motion?

→ solution to eqs. of motion?

↑ more difficult

- in gravity:
 - backreaction can become important interplay of classical singular metric and quantum fluctuations that are supposed to regularise many attempts in the literature to fix these problems
 - coordinate invariance scale identification incompatible with diffeomorphism invariance

→ we discuss some ideas

① constraints from Bianchi identity

it's a consistency condition
↑

recall Bianchi identity: $D^M G_{\mu\nu} = 0$

↑
Einstein tensor

$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu}$

geometric

identity, has
nothing to do
with dynamics

→ perform RGI at the level of $\begin{cases} \text{action} & \alpha \neq 1 \\ \text{EoM} & \alpha = 0 \end{cases}$

$$G_{\mu\nu} = 8\pi G_N(h) T_{\mu\nu} - \Lambda(h) g_{\mu\nu} + \alpha \Delta t_{\mu\nu}$$

$$\Delta t_{\mu\nu} = G_N(h) \left[D_\mu D_\nu - g_{\mu\nu} D^2 \right] G_N(h)^{-1}$$

assume $D^M T_{\mu\nu} = 0$ and impose Bianchi identity:

a) $\alpha=1$: compute $D^\alpha g_{\mu\nu} = 0$ and insert EoM (solve for $T_{\mu\nu}$)

$$G_N'(k) R = 2 \left(G_N'(k) \lambda(k) - \lambda'(k) G_N(k) \right)$$

→ specific RG trajectory fixes $k = k(R)$

near FP: $G_N(k) \sim g_* k^2, \lambda(k) \sim \lambda_* k^2$
 $\Rightarrow k^2 \propto R/4\lambda_*$

b) $\alpha=0$: compute $D^M g_{\mu\nu} = 0$ and insert EoM (solve for $R_{\mu\nu}$)

$$[8\pi G_N'(k) T_{\mu\nu} - \lambda'(k) g_{\mu\nu}] D^{\nu} k(x) = 0$$

perfect fluid: $\rho = w g, T_{\mu}^{\nu} = \text{diag}(-g, p, p, p)$

near FP, $k^4 \sim \frac{8\pi g_*}{\lambda_*} g$

② Self-consistency and iterative RGI

Platania 1903.10411

- observation: we use $g_{\mu\nu}^{\text{cl}}$ to identify $k(x)$ and obtain $g_{\mu\nu}^q$
 \rightarrow should use $g_{\mu\nu}^q$ to identify scale self-consistently

↳ iterative RGI:

$$g_{\mu\nu}^{\text{cl}} \xrightarrow{\text{RGI}} g_{\mu\nu}^{q,1} \xrightarrow{\text{RGI}} g_{\mu\nu}^{q,2} \rightarrow \dots \rightarrow g_{\mu\nu}^q$$

- for Schwarzschild as starting point, this leads to the
Dymnikova BH

$$G_N(r) = G_N \left[1 - e^{-r^3/r_s^3} e^2 \right]$$

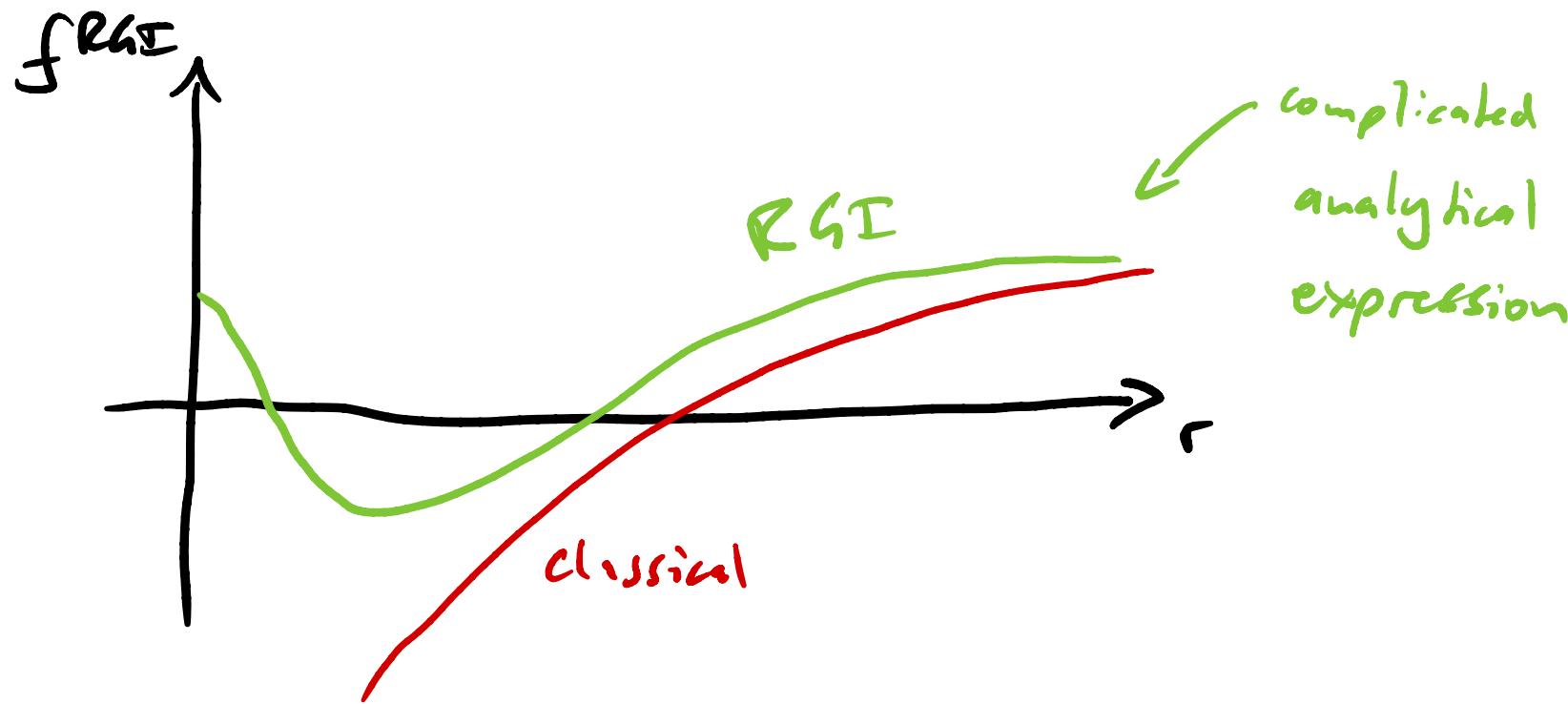
$$r_s = 2G_N M$$

$$l^2 = \frac{3\pi}{8\pi G_N} l_p^2$$

③ Invariant RGI

Held 21.05.11 458

- observation: RGI at the level of EoM (solution) is not coordinate-invariant
 $\rightarrow g_{\mu\nu}$ transforms as a tensor
- idea: take curvature invariant and RG-improve there
- for Schwarzschild: $R_{\mu\nu\sigma} R^{\mu\nu\sigma} = 48 \frac{G_N^2 M^2}{r^6}$
 - ↑
 - ↑ RGI: $G_N \rightarrow G_N(k(r))$
 - compute in terms of
 - $f^{RGI} = 1 - \frac{2 G_N(k(r)) M}{r}$
 - \Rightarrow differential equation for $k(r)$



Obvious problem: what if there are several independent curvature invariants?

→ not obvious that consistent RGI procedure exists

Conceptual issues of RGI

Amber, Donoghue 1111.2875

- all of the above ideas hint towards that RGI has conceptual problems in gravity
- Q: Can RGI work at all in QG?
in the sense of: there is a regime where RGI does provide the correct qualitative answer, similar to the velocity potential

for this, we go back to perturbative QG and consider different $2 \rightarrow 2$ scattering processes involving gravity

$$\Lambda = 0$$

quick reminder : $2 \rightarrow 2$ scattering

\rightarrow 4 momenta $p_{1r}, p_{2r}, p_{3r}, p_{4r}$

Convention : all ingoing $p_1 + p_2 + p_3 + p_4 = 0$

\rightarrow external lines are on-shell $\Rightarrow p_i^2 = m_i^2 = 0$
for gravitons

\rightarrow Mandelstam variables

$$s = (p_1 + p_2)^2$$

$$t = (p_1 + p_3)^2$$

$$u = (p_1 + p_4)^2$$

with $s + t + u = \sum_{i=1}^4 m_i^2$

→ the amplitude is a function of (s, t, u) , or equivalently,
in the centre-of-mass frame, (E^2, θ)

\uparrow \nwarrow scattering angle in
 $(\text{energy transfer})^2$ COM frame

⇒ if RGE makes sense, then there should be a
replacement $G_N \rightarrow G_N(E^2)$ that, inserted into the
tree-level result, gives the one-loop result

→ this should be universal, i.e., valid for
all processes

To maximise chances for success, we consider the differential cross section $\frac{d\sigma}{d\Omega}$ (measure for the effective area of a scattering target)

1) graviton-graviton scattering

$$A_{\text{tree}} \propto i G_N \frac{s^3}{t u}$$

↑ helicities (don't worry about it)

2) grav. scatt. of massless scalars

$$A_{\text{tree}} \propto i G_N \left[\frac{st}{u} + \frac{su}{t} + \frac{tu}{s} \right]$$

match RGI to one-loop $\frac{d\sigma}{d\Omega}$

$$G_N(E^2) \approx G_N [1 + c_g G_N E^2]$$

grows \nearrow with E

$$c_g > 0$$

$$G_N(E^2) \approx G_N [1 - c_s G_N E^2]$$

↳ \searrow

decreases with E

$$c_s > 0$$

(similar issue if other helicity channels are considered)

→ suggests that there is **no** reasonable def. of R_h running for G_N ??? what did we do then?

→ is $R_h I$ nonsense, or is gravity special?

to answer this, we have to go back to our starting point for renormalisation:

→ original observation: physics changes if a physical energy scale changes

→ what we compute with FRs: change when an IR cutoff changes

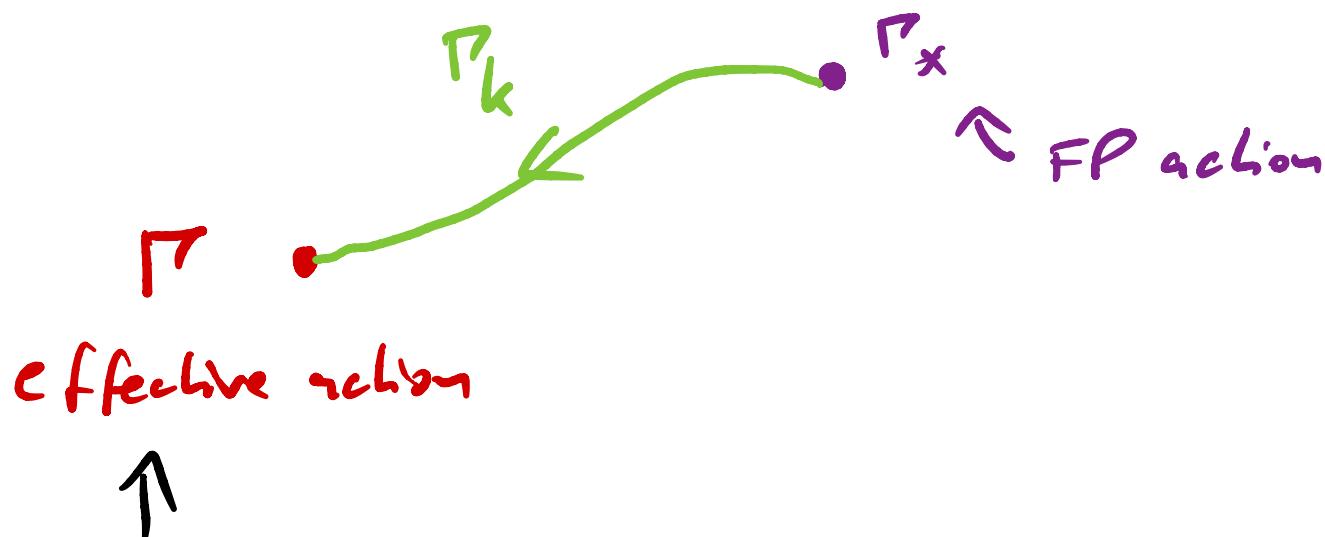
"prunning" vs. "krunning"

- physical energy scale is e.g. \sim momentum
 \leftrightarrow derivative in the action
- k is a fiducial momentum scale

in some cases, k -running mimics p -running, but
there are exceptions

- when talking about RG, one has to specify
which is meant!
 - subtlety that leads to a lot
of confusion

recall what the main idea of the FRG was:



this is where the physics is

→ all quantum fluctuations included

= "path integral performed"

→ once we have Γ , we can forget that we used the FRG to compute it

\Rightarrow pruning \sim momentum dependence in Γ

\rightarrow in gravity, $\Gamma \simeq \int d^4x \sqrt{g} \left[\frac{2\Lambda - R}{16\pi G_N} + R \underline{f_{\text{eff}}(\square)} R + R_{\mu\nu} \underline{f_{\text{Ric}}(\square)} R^{\mu\nu} + \dots \right]$

no pruning!!!

Pruning here \rightarrow

$\Rightarrow G_N$ (and Λ) do not run with physical momenta!

Suppose they would, then e.g.

$$\int d^4x \sqrt{g} \frac{1}{G_N(\square)} R \Rightarrow \text{all potential terms in } \square\text{-dependence are surface terms}$$

Q: what about
 $\sqrt{R} \frac{1}{G_N(\square)} \sqrt{R}^2$?

\Rightarrow krunning = k-dependence of R_k

$$\hookrightarrow R_k = \int d^4x \, \mathcal{L} \left[\frac{2\lambda_k - R}{16\pi G_{N,k}} + R f_{R,k}(\Sigma) R + R_{\mu\nu} f_{Ric,k}(\Sigma) R^{\mu\nu} + \dots \right]$$

↑
krunning everywhere!

subject to constraints:

$$k \rightarrow 0: G_{N,k} \rightarrow G_N, \lambda_k \rightarrow \lambda, f_{R,k} \rightarrow f_R, \dots$$

$$k \rightarrow \infty: g_k \rightarrow g_x, \lambda_k \rightarrow \lambda_x, f_{R,k} \rightarrow f_{R,x}, \dots$$

↑
dimensionless in units of k

learning: • G_N and Λ have krumming
 but no pruning this explains
 \Rightarrow RGI questionable $\xrightarrow{\text{the problem with the amplitude}}$

idea for RGI of $f_{R,h}$: • f_R, f_{Ric}, \dots have both krumming and pruning

$f_{R,h}(0) \xleftrightarrow{\text{"k} \rightarrow \rho^2} f_R(\rho^2)$ \Rightarrow RGI potentially more promising

but still issue with Wick rotation: $\rho^2 \in \mathbb{R}$ but $k \in \mathbb{R}_+$

\rightsquigarrow for the amplitude, relevant one-loop contributions come from $R^2, R_{\mu\nu} R^{\mu\nu}$; these have a different tensor

structure than the Einstein-Hilbert term

\Rightarrow cannot be both captured by a single coupling

Comments to put this into perspective:

- computing pruning is **hard**
 - \rightarrow many computations rely on expansions in powers of η or RGI where it makes sense
- pheno: people do what they can, analyzing complicated actions with form factors \rightarrow

often unfeasible
i.e. for $\epsilon_0 & 1$

→ simple RGI often only way
to make any statement at all

→ nevertheless: "AS-inspired" instead
of "predictions of AS"

- large part of the literature focuses on establishing the FP in the first place
 - ~~kind~~ very important for this
- answering some of the most pressing open questions **need** to consider pruning,

e.g. is the theory unitary & causal?

e.g. check bounds on scattering amplitudes

→ also strictly needs Lorentzian computations
of which we have some now

Some of these developments came out of Constructive Criticism

from outside the community

Donoghue 1911. 02967

⇒ having an open mind is important for progress,
scientific or otherwise