b) black holes:

· every vacuum solution of GR 3 also a vacuum solution to Qualratic gravity Asheet 2

=> Kerr BHs are salutions

but there are ofhers!

(only known numerically)

Lu, Perhily Pope, Stelle

Stable

1502.01028

Schverzschild M=rn/26N theorem as for GR
in d=4

(in d>4 thre con
be other solutions like
black strings)

new branch

you can also strated the thermodynamics of these new solutions my light enough BHs might be described by this new branch

more branches exist, e.g. also wormholes and nonsity who holes

Wolds of buzz in recent years
ho huestigate solutions to
classical gravity theories
beyond GR

3 Renormalisability

compute superficial degree of divergence of Quadratic Gravity:

at large momenta, the R2-terms dominate

as propagator & p-4 recall R~22h ~p2h

wertices & p4

in d'dimensions, a diagram with P propagators, Vvertices and L loops scales like

D = dL - 4P + 4V = (d-4)L + 4 = 4 in d=4 L = P - V + 1

this mean that divergences scale like p4 at worst, independent of the loop order

-> we have py terms in the action

-> we can absorb all divergences!

=> Quadratie Gravity is pertortatively renor-alisable!

so this is it? can we go home and coll it a day?

(> Is perhabitive renormalisability enough to cusure
that a theory is fundamental, i.e. validated scales?

NO.

m) renormalisability only ensures that a finite number of counterterms is needed to absorb all divergences

my no implication by itself on how couplings dange under the renormalisation group (RG) flow Grand will have divergences in the finitely many retained couplings > Landar pole

We will introduce the RG Flow more properly lake; for now the idea is the following:

· we can probe the theory at different scales

e.g.: experimentally by performly scattering at

different energies

theoretically by introducting a cutoff and shifting it around

these are related, more on
this lates (Pandin's box
ahead)

my values of couplings change

· we call the "probley scale" 1 for now unik of energy = momender

and we introduce the B-Fuction

$$\beta_g = \mu \partial_{\mu} g(\mu)$$
for the coupling $g(\mu)$

Example: \$4 theory in d=4 in Mikoushi space

~> action $S = \int d^4x \left[\frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{\lambda}{4!} \phi^4 \right]$

G is renormalisable A sheet 3 but "drivial", i.e. it has a Landau pole

to see this, investigate B-function of λ at one loop: $\beta_{\lambda} = \frac{3}{16\pi^2} \lambda^2 + O(\lambda^3)$ higher loop contributions

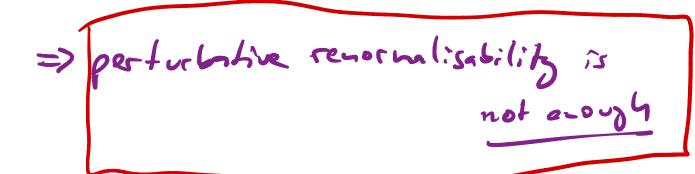
recall what this means -it is a differential equation $\mu \partial_{\mu} \lambda(\mu) = \frac{3}{16\pi^2} \lambda(\mu)^2$

the solution reads

$$\lambda(p_0) = \frac{\lambda(p_0)}{1 + \frac{3}{16\pi^2}\lambda(p_0)\ln\frac{p_0}{p_0}}$$

Ho = reference Scale ~ shegrallon Constant

for fixed po and $\lambda(\mu) \neq 0$, we encounter a pole at $\mu = \mu_0 e^{-\frac{16\pi^2}{3\lambda(\mu_0)}}$


=> divergence (=Landau pole) at finite scale

unless \(\lambda(\pi) = 0 \)

\[\rangle \lambda(\pi) = 0 \, so the theory

is non-intracting

(dr.hiel)

note: the above arjunant relies on the one-loop Branchian even though & becomes large close to the Landau pole, so that the perturbable series breaks dowy honever, there is non-perturbative evidence from lattice studies that strongly suggests About d'- theory is indeed destinal

bach to Quadratic Gravity: is it UV-complete?

= does it avoid

Londau poles?

to investigate this, we reperameterise the action and use the fact that we can pick any two out of the three muriants at D (RY) this topological term

C is the Weyl tensor = completely traceless version of the Rieman know

in d=4, Cruse = Rruse - 3 ple Roju + Jule Roju + 3 8 ple doju R

-> this system has 4 couplings (you are also add the Gruss-Bounet bermuith an exder coupling)

we are interested in the high-energy limit of Quadratic Gravity, so we focus on 2,5

Buccio, Donoghue, Henezes, Percacci
2403.02397

$$\beta_{\lambda} = -\left(\frac{1}{4\pi}\right)^{2} \frac{1617\lambda - 20\%}{90}$$

$$\beta_{\xi} = -\left(\frac{1}{4\pi}\right)^{2} \frac{\$^{2} - 36\lambda\% - 2520\lambda^{2}}{36}$$

B-fractions of Quadratic Gravity
have been compiled earlier,
e.j. Stelle PRD 16 (1977) 953
but recently there has been
some discussion about this

for asymptotic freedom we need B<0 => Gr $\lambda > 0$ and g> 569- \(386761 \) Pott constant 20 40 5000 vs h>00 > like QCD!

(=ho Landau pole, couplings go to zero
as p=s=) analysing this for two couplings is more complicated than our \$4-example one way is to plot the hegal curves (=solutions) in a 2D plot to get an idea 5),1 arrow point towns (-rger p

internediate conclusion:

Quadratic gravity is

- · phenomenologically viable with very week constrints
- · perdurbablely renormalisable
- · Ree of Landau poles (at least at With energies)

-> why is it not the theory of QG?
= why are you still here?

4 Shbility

and potential problem tied to the fact that Quadratic Gravity is a forth-order theory

Co generic potential issue with many of such systems:
Ostrogradsky instability

we will review this in the original setting of classical uncertainies

Gonsides a Lagrange function $L(x, \dot{x}, \dot{x})$ generalisation of standard mechanics

where $L=L(x,\dot{x})$

> equations of motion have higher-order time destribles

> need more initial conditions to specify unique solution

= extra degree of freedom

~ this leads to a Hamiltonian H that is unbounded from below

generally expected to lead to instabilities/runaway, but needs to be discussed Euler-Lagrange equations:

$$\frac{\partial x}{\partial t} - \frac{\partial t}{\partial t} \frac{\partial x}{\partial t} + \frac{\partial^2}{\partial t^2} \frac{\partial t}{\partial x} = 0$$

-> 4 initial conditions needed

= number of canonical variables

(generalised positions and
momenta)

Ostrogradsky chose:
$$X_1 = X$$

$$P_1 = \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial x}$$

$$X_2 = \dot{X}$$

$$P_2 = \dot{X}$$

$$P_3 = \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial x}$$

$$P_4 = P_1 + P_2 + P_2 + P_3 + P_4 + P_4 + P_5 + P_6 +$$

= P. x + P2 x - L

I her in Pi => unbounded from be low

detailed example: sheet 5

Qualentie Gravity his the same problem at least unively

- -> R2 RNRM have 4 desintres
- -> due to local Lorente invariance, these cannot only be spatial desirables
- -> unshable (?)

not solong ago the discussion would have shoped here, but:

(1) in gravity, the Hamiltonian is a sum of constraints => for solutions, H=0! Good actually obvious that Ostrogradshy's argument

why H=0 in gravity:

- · H :s the generator of dome translations (= time evolution)
- · Let gravity has reparametrisation hunriance (time redethibba is a diffeomorphism)
- > hime costation of its subtle in gravity
- -> even more so in quantum gravity,
 long discussions about the
 "problem of line" in Coop Quantum
 Gravity

2) recent numerical studies of chrosical Rendratic Granity show that stable evolution can exist in atteast parts of phase space

the fact that His
unbounded from below
does not imply
in shability

Peffayet, Held, Mukohyana, Vikman 2305.09631

Held, Lim 2306.04725 Figuers, Held, Kovács 2407.08775

-> may be christically the throng is not as unshalle as expected -what about quanden?

for this, we will look at the propagator

here, we will family see the exam

massive modes that lead to the

exten Yulenwa terms in the Newtonian potential

if durns out that we can write

 $P_{\mu\nu\varsigma\sigma} = G_{2}(\rho^{2})P^{(2)} + G_{0}(\rho^{2})P^{(0)} + gauge shift$

P^{(0)/(2)}: spih projectors

-> project on spin 0 or 2

-> they are specific combinations of the

Jensis elements discussed earlier

quich detour: spin projectors morcpresentation theory of so(3,1)

sheet 5 (1) rectors can be de composed into bransverse and longidation parts:

Vm -> Vm + 2m v L
spin 1
spin 1
spin 0

 $\Rightarrow \text{projectors in Fourier space:}$ $T_{\mu} v = S_{\mu} v - \frac{\rho_{\mu} p^{\nu}}{\rho_{2}} \quad L_{\mu} v = \frac{\rho_{\mu} p^{\nu}}{\rho_{2}}$

check: T.V = VT, L.V = DVL, T2=T, L2=L, T.L=L.T=0

- 2) gravitons can le de conjosed into
 - · spin 2 dransverse draceless

· spin | - transverse

one sph D

degrees of

freedom

P(0,4) SG = 1 Thu TSG P(0,4) SG = 4 Ly LSG

this is a pain

+ mixing between tuse!