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Exercise 20: Heat kernel, part 2

Motivation: This is part 2 of the heat kernel. Are you exhausted yet? Good, it’s going to become much worse. :)

At the end of the last sheet, you should have obtained the following recursion relation for the
coeflicients A,,:

(TL - g =+ % (D2J($, y))) An(x7 y) + (D“U(l’,y)) (DMA”(x’y)) o DZAT“l(:U’y) - O’ (201)
with
Ag(z,z) =Ag =1, A_y(x,y)=0, n>0. (20.11)

From now on, we will drop the position arguments. The goal of this exercise is to compute the
coincidence limit of the first heat kernel coefficient, A;.

a) Set n = 11n (20.1) and take the coincidence limit to understand which ingredients you need
to compute A;. Beware: the coincidence limit does not commute with covariant derivatives,

i.e. D2A, # D?A!

b) One of the ingredients to compute A; is D2A,. Derive an equation for the latter by acting
with D? on (20.1) and taking the coincidence limit.

At this point you should get worried about the recursion, but maybe there is some hope after all.
Instead of focussing on different derivatives of the A,,, let us switch our focus and try to compute
coincidence limits of derivatives of the world function. Recall that

1

5(D"o(@,y))(Duo(@,y)) = o(z,y), (20.111)

for any x,y, i.e. even away from the coincidence limit.

c¢) [hard question] Use (20.1II) to compute &, D,o, D,D,o, D,D,D,o and D,D,D,D,o.
Hints: take successive covariant derivatives of (20.I1I). Then take the coincidence limit of
these equations and solve iteratively. You might have to commute covariant derivatives.
Think about what you can pull out of the coincidence limit.

If you succeeded, you should feel relieved now if you look back at the equations for A; and D2 A,.
d) Use your results from c¢) to compute D2 Ay, and from there compute A;.

This illustrates the general procedure, and you can follow the same recipe to compute the A, for
larger n. It goes without saying that once again, this should not be done by hand.




Exercise 21: Heat kernel, part 3, or the inverse Laplace transform

Motivation: This is part 8 of the heat kernel — I lied that there would be only two parts. Remember where we

started? Good, we have to actually come back and compute the original supertrace.

The starting point of the heat kernel exercises was that we originally wanted to compute
STrW(A), (21.1)

for some general function W. We spent a lot of time to compute the supertrace for an exponential,
but in general we will not deal with only exponential functions, so we still need a recipe to connect
the two.

For this, suppose we could write something like

W(A) = /0 T dsTW(s) e (21.10)

for some new function W. Wouldn’t this be great? We could simply use this equation and use all
previous results:

STrW(A) = STr / ds W (s) e = / ds W (s) STre 2 . (21.11I)
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The only thing left to do would be to actually compute W and perform the integrals over s, and
we would be done. Also, we assumed that we can exchange the integral with the supertrace, but
shhhhhhh.

Let us give some substance to this idea. The integral transform (21.11) is called the inverse Laplace
transform. You can think of it like this: the original function W is the Laplace transform of some
(a priori unknown) function W. Of course, there are some conditions on its existence, but let’s
simply assume for the moment that it exists. In the two previous exercises, we computed the
supertrace of the exponential in an expansion in powers of s, so that

STrW(A)N/OOdsW(s) ( ! )Mzsn /ddg;\/gA_n. (21.1V)

; 4rs
We thus have to deal with integrals over W multiplying either negative (small n) or positive (large

n) powers of s. Do we now really have to compute W? Actually, no.

a) Negative powers: show that for n > 0,

/0°° )= ﬁ /OO dz2"" W (z). (21.V)

0

This means that one can map these integrals over W to integrals over the original function
W! The integral over z has the interpretation of the integral over the loop momentum.

b) Non-negative powers: show that for n > 0,
/ dsW(s) s™ = (=1)"W™(0), (21.V1)
0

that is, these integrals can be mapped to derivatives of the original function at vanishing
argument.




¢) [hard question] Use your combined knowledge to compute

STrW(A)

(21.VII)

up to linear order in curvature, in arbitrary dimension, for W taken from Exercise 19. To
evaluate the integrals, use the Litim regulator. What exactly did you just compute?




