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Exercise 1: Counting gravitons

Motivation: In this exercise, we estimate the number of gravitons emitted in a binary merger. This gives us an
idea whether the detection of single gravitons from such events is feasible.

Consider a binary merger of two solar mass (m ∼ 2 × 1030kg) black holes. Estimate the number
of gravitons Nh emitted via gravitational waves.
For this, assume that about r = 5% of the total mass is radiated away in mono-“chromatic”
gravitational waves with a frequency of about 100 Hz. Given this number and keeping in mind
the huge experimental effort in detecting gravitational waves, do you find it likely that we will
detect single gravitons in the near future?

For massless particles like the graviton, we can estimate the energy of a single quantum by the
relation

Eh = h ν . (1.1)

The total energy radiated away is

EGW = r × (2m)× c2 ≈ 5

100
× 2×

(
2× 1030kg

)
×
(
3× 108m/s

)2
= 18× 1045J = Nh × Eh . (1.2)

We thus find
Nh =

EGW

h ν
≈ 18× 1045

(66× 10−35) · 100
≈ 3× 1077 . (1.3)

It thus seems rather implausible that we will detect single gravitons in such a setup.

Exercise 2: Einstein’s equations

Motivation: We review the derivation of Einstein’s equations from an action. In this exercise, we will do so with
the background field method. The goal is to get some (more) practice with computing perturbations, which will come
in very handy very soon.

Einstein’s equations are the equations of motion of General Relativity, and can be derived from
an action principle. The action of General Relativity is the Einstein-Hilbert action, given by

SEH[g] =
1

16πGN

∫
d4x

√
− det g (R− 2Λ) , (2.I)

where GN is Newtons constant, R is the Ricci scalar and Λ the cosmological constant. Derive
Einstein’s equations from the requirement of a stationary action,

δS[g]

δgµν(x)
= 0 . (2.II)



There are multiple ways to go about this. We will use one of them that will be helpful in going
forward. Let us first expand the determinant of the metric. The starting point is

gµν = ḡµν + hµν , (2.1)

where the metric g is split into an arbitrary background metric ḡ and a linear perturbation h. Taking
the determinant and suppressing indices, we can write

det g = det(ḡ + h) = det
[
ḡ
(
1+ ḡ−1h

)]
=

[
det ḡ

] [
det

(
1+ ḡ−1h

)]
=

[
det ḡ

]
exp tr ln

(
1+ ḡ−1h

)
≃

[
det ḡ

]
exp tr

(
ḡ−1h

)
≃

[
det ḡ

] [
1 + tr

(
ḡ−1h

)]
=

[
det ḡ

]
[1 + ḡµνhµν ] .

(2.2)

Taking the square root and expanding again, we have√
− det g ≃

√
− det ḡ

[
1 +

1

2
ḡµνhµν

]
≡

√
− det ḡ

[
1 +

1

2
h

]
. (2.3)

Second, we need the Christoffel symbol to compute the Ricci scalar. By definition,

Γµ
αβ =

1

2
gµν (∂αgνβ + ∂βgνα − ∂νgαβ) . (2.4)

It turns out that it is most convenient to first consider the Christoffel symbol with all indices lowered,
as it is linear in the metric. We expand the Christoffel symbol by inserting the split of the metric and
then converting partial derivatives to background covariant derivatives:

Γναβ =
1

2
(∂αgνβ + ∂βgνα − ∂νgαβ)

=
1

2
(∂αḡνβ + ∂β ḡνα − ∂ν ḡαβ) +

1

2
(∂αhνβ + ∂βhνα − ∂νhαβ)

= Γ̄ναβ +
1

2

(
D̄αhνβ + D̄βhνα − D̄νhαβ

)
+ Γ̄µ

αβhµν

= Γ̄µ
αβ (ḡµν + hµν) +

1

2

(
D̄αhνβ + D̄βhνα − D̄νhαβ

)
= Γ̄µ

αβgµν +
1

2

(
D̄αhνβ + D̄βhνα − D̄νhαβ

)
.

(2.5)

Here, we have used the general relation between partial and covariant derivatives,

DαX
µ1...µm

ν1...νn
= ∂αX

µ1...µm
ν1...νn

+
m∑
i=1

Γµi

αβX
µ1...µi−1βµi+1...µm

ν1...νn

−
n∑

i=1

Γβ
ανi

Xµ1...µm

ν1...νi−1βνi+1...νn
,

(2.6)

to transform the partial derivatives that act on h to background covariant derivatives plus the corre-
sponding background Christoffel symbols. From this, we find

Γµ
αβ = Γ̄µ

αβ +
1

2
gµν

(
D̄αhνβ + D̄βhνα − D̄νhαβ

)
. (2.7)



To linear order,

Γµ
αβ ≃ Γ̄µ

αβ +
1

2
ḡµν

(
D̄αhνβ + D̄βhνα − D̄νhαβ

)
. (2.8)

For later use, we also evaluate

Γµ
µβ ≃ Γ̄µ

µβ +
1

2
D̄βh . (2.9)

Clearly, we also need the inverse metric. To linear order, it is easy to verify that

gµν ≃ ḡµν − hµν , (2.10)

where the indices of h are raised with the background metric: hµν = ḡµαhαβ ḡ
βν .

We can now construct the linearised Ricci scalar step by step. Recall the Riemann tensor

R σ
µνρ = Γσ

ναΓ
α
µρ − Γσ

µαΓ
α
νρ + ∂νΓ

σ
µρ − ∂µΓ

σ
νρ , (2.11)

and the Ricci tensor
Rµν = Γσ

σαΓ
α
µν − Γα

µσΓ
σ
αν + ∂αΓ

α
µν − ∂µΓ

α
αν . (2.12)

To compute the linear perturbation of the Ricci tensor, we could simply insert the expansion of the
Christoffel symbol and perform the computation by brute force. Let us try to be a bit more economical.
Without perturbations, the Ricci tensor is just the background Ricci tensor, so let us subtract the latter
from the former and use their respective definitions:

Rµν − R̄µν =
(
Γσ

σαΓ
α
µν − Γ̄σ

σαΓ̄
α
µν

)
−
(
Γα

µσΓ
σ
αν − Γ̄α

µσΓ̄
σ
αν

)
+ ∂α

(
Γα

µν − Γ̄α
µν

)
− ∂µ

(
Γα

αν − Γ̄α
αν

)
.

(2.13)
We will now use (2.6) to transform the partial derivatives above to background covariant derivatives. For
this, recall that the difference of connections transforms as a tensor, so performing this transformation
makes sense geometrically. Concretely,

∂µ
(
Γα

αν − Γ̄α
αν

)
= D̄µ

(
Γα

αν − Γ̄α
αν

)
+ Γ̄β

µν

(
Γα

αβ − Γ̄α
αβ

)
, (2.14)

and

∂α
(
Γα

µν − Γ̄α
µν

)
= D̄α

(
Γα

µν − Γ̄α
µν

)
−Γ̄α

αβ

(
Γβ

µν − Γ̄β
µν

)
+Γ̄β

αµ

(
Γα

βν − Γ̄α
βν

)
+Γ̄β

αν

(
Γα

µβ − Γ̄α
µβ

)
.

(2.15)
Using this, we can group terms to only get differences of full and background Christoffel symbols:

Rµν − R̄µν =
(
Γσ

σαΓ
α
µν − Γ̄σ

σαΓ̄
α
µν

)
−

(
Γα

µσΓ
σ
αν − Γ̄α

µσΓ̄
σ
αν

)
+ D̄α

(
Γα

µν − Γ̄α
µν

)
− Γ̄α

αβ

(
Γβ

µν − Γ̄β
µν

)
+ Γ̄β

αµ

(
Γα

βν − Γ̄α
βν

)
+ Γ̄β

αν

(
Γα

µβ − Γ̄α
µβ

)
− D̄µ

(
Γα

αν − Γ̄α
αν

)
− Γ̄β

µν

(
Γα

αβ − Γ̄α
αβ

)
=

[
Γσ

σαΓ
α
µν − Γ̄σ

σαΓ̄
α
µν −

(
Γσ

σα − Γ̄σ
σα

)
Γ̄α

µν − Γ̄σ
σα

(
Γα

µν − Γ̄α
µν

)]
−

[
Γα

µσΓ
σ
αν − Γ̄α

µσΓ̄
σ
αν −

(
Γα

µσ − Γ̄α
µσ

)
Γ̄σ

αν − Γ̄α
µσ

(
Γσ

αν − Γ̄σ
αν

)]
+ D̄α

(
Γα

µν − Γ̄α
µν

)
− D̄µ

(
Γα

αν − Γ̄α
αν

)
=

(
Γσ

σα − Γ̄σ
σα

) (
Γα

µν − Γ̄α
µν

)
−
(
Γα

µσ − Γ̄α
µσ

) (
Γσ

αν − Γ̄σ
αν

)
+ D̄α

(
Γα

µν − Γ̄α
µν

)
− D̄µ

(
Γα

αν − Γ̄α
αν

)
≃ +D̄α

(
Γα

µν − Γ̄α
µν

)
− D̄µ

(
Γα

αν − Γ̄α
αν

)
.

(2.16)



In the last step, we used that each of the brackets is of order h, so products of the brackets are already
of quadratic order. We thus find the linearised Ricci tensor

Rµν ≃ R̄µν + D̄α

(
Γα

µν − Γ̄α
µν

)
− D̄µ

(
Γα

αν − Γ̄α
αν

)
≃ R̄µν +

1

2
D̄β

(
D̄µhβν + D̄νhβµ − D̄βhµν

)
− 1

2
D̄µD̄νh .

(2.17)

For the Ricci scalar, we then have

R = gµνRµν ≃ ḡµν
[
R̄µν +

1

2
D̄β

(
D̄µhβν + D̄νhβµ − D̄βhµν

)
− 1

2
D̄µD̄νh

]
− hµνR̄µν

= R̄ + D̄µD̄νhµν − D̄2h− R̄µνhµν .

(2.18)

Putting everything together, we find

SEH[ḡ + h]
∣∣
h
≃ 1

16πGN

∫
d4x

√
− det ḡ

[
1

2
ḡµνhµν(R̄− 2Λ) + D̄µD̄νhµν − D̄2h− R̄µνhµν

]
. (2.19)

Throwing out total derivatives, we can read off Einstein’s equations:

Rµν − 1

2
gµν(R− 2Λ) = 0 . (2.20)

Extra material 1: (Covariant) Partial integration

Let us briefly discuss why we can throw out total covariant derivatives. The reason is essentially
that we have to take into account the determinant of the metric. By the divergence theorem, the
integral over a divergence of a vector field v is a surface term (which we neglect):∫

d4x ∂αv
α ≃ 0 .

How do typical vector fields look like? Certainly, they will involve
√
− det g. Since we are interested

in a partial integration formula, let us furthermore consider the product of two tensors:

vα =
√
− det g Xµ1...µM

ν1...νN
Y αν1...νN

µ1...µM
.

Note that Y has one index more than X, and all other indices are contracted. Inserting this into
the above divergence formula and using the product rule, we get

0 ≃
∫

d4x
√

− det g

[
∂α

√
− det g√

− det g
Xµ1...µM

ν1...νN
Y αν1...νN

µ1...µM
+ ∂α

(
Xµ1...µM

ν1...νN
Y αν1...νN

µ1...µM

)]
.

The first term gives a Christoffel symbol (try to prove this!):

∂α
√
− det g√

− det g
= Γβ

αβ .

Note that the other term, where the partial derivative acts on the product of X and Y , is a vector.
If we now assume that neither of the two factors contain the determinant of the metric, we can
convert the partial derivative to a covariant derivative via (2.6). The single Christoffel symbol
then exactly cancels the one originating from the derivative acting on the determinant, so that

0 ≃
∫

d4x
√

− det g Dα

(
Xµ1...µM

ν1...νN
Y αν1...νN

µ1...µM

)
, (2.21)



or equivalently, ∫
d4x

√
− det g

(
DαX

µ1...µM
ν1...νN

)
Y αν1...νN

µ1...µM

≃ −
∫

d4x
√
− det g Xµ1...µM

ν1...νN

(
DαY

αν1...νN
µ1...µM

)
.

(2.22)

We can thus perform partial integrations with covariant derivatives – they simply take care of the
extra term that appears when we would do partial integrations with partial derivatives, when the
partial derivatives acts on the determinant of the metric.
Convince yourself that for the above argument, it was crucial that the whole expression had no
open indices, that is, it was a scalar. For example, show explicitly that∫

d4x
√
− det g DµR (2.23)

is generally not a total derivative.

Exercise 3: Linearised Einstein’s equations

Motivation: This short exercises builds upon exercise 2 to derive the wave equation for linear metric perturbations
about Minkowski space — a.k.a. gravitational waves.

Linearise Einstein’s field equations about Minkowski space, that is, consider

Rµν −
1

2
Rgµν = 0 , (3.I)

with
gµν = ηµν + hµν (3.II)

to linear order in h. Why do we have to set Λ to zero for this?

We can recycle some formulas from exercise 2. First note that since Γ̄µ
αβ = 0 for the Minkowski

metric, the only non-vanishing terms in the expression for the Ricci tensor are the those linear in the
connection. This means

Rµν ≃ ∂α

[
1

2
ηαβ (∂µhβν + ∂νhβµ − ∂βhµν)

]
− ∂µ

[
1

2
∂νh

]
=

1

2

[
∂µ∂

αhαν + ∂ν∂
αhαµ − ∂2hµν − ∂µ∂νh

]
.

(3.1)

The only contribution from the Ricci scalar comes from the contraction of the above with the Minkowski
metric. This entails

R ≃ ∂µ∂νhµν − ∂2h . (3.2)

Combining the two expressions, we find

0 = Rµν −
1

2
Rgµν

≃ 1

2

[
∂µ∂

αhαν + ∂ν∂
αhαµ − ∂2hµν − ∂µ∂νh− ηµν

(
∂α∂βhαβ − ∂2h

)]
.

(3.3)



As in the lecture, we now introduce the trace-subtracted perturbation

h̄µν = hµν −
1

2
ηµνh . (3.4)

Inserting this and collecting terms gives an equation purely in terms of h̄µν :

0 = −∂2h̄µν + 2

[
1

2
δ β
µ ∂ν +

1

2
δ β
ν ∂µ −

1

2
ηµν∂

β

]
∂αh̄αβ . (3.5)

If we now impose the gauge condition
∂αh̄αβ = 0 , (3.6)

we arrive at a wave equation for h̄µν :
□h̄µν = 0 . (3.7)

We have to set the cosmological constant to zero because otherwise, the zero-th order of Einstein’s
equations is not fulfilled.


