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Quantum Gravity and the Renormalization Group
Assignment 2 — Oct 27

Exercise 4: Alternative gravitational theories

Motivation: We will now investigate alternative theories for gravity. This has both theoretical and experimental
motivations: on the theoretical side, we know that General Relativity breaks down, e.g., at the centre of black holes,
and a quantum theory has to take over. On the experimental side, with recent observations of gravitational waves
and black hole shadows, we will soon be able to test deviations from General Relativity. We will discuss these

theories in some more detail in the lectures soon.

Let us study the simplest extensions of General Relativity by adding terms to the action with four
derivatives of the metric, and investigate what impact these have on gravitational waves.

a) Find a basis of all independent terms with (in total) four derivatives that are constructed
purely in terms of the metric, and that respect diffeomorphism invariance. Hints: This
should involve curvatures and covariant derivatives only. How many derivatives of the metric
does the Riemann tensor have, and what are its symmetries? Also, how many uncontracted
indices can terms in the action have?

b) Derive the equations of motion from the generalised action that you have found.

c) [hard question] Let us consider one specific (and phenomenologically very important)
model, the Starobinsky theory. Its action is that of General Relativity with an R2-term

added,
Staro 4 R—2A 2
S = [ d%x y/—detg +a R, (4.1)
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so it is a special case of the theory above. From the equations of motion that you derived in
b), find out if solutions to Einstein’s equations are still solutions to the Starobinsky theory.
If yes, where is the “new physics” in this theory?

d) [hard question] Back to the full system of b): linearise the equations of motion in
Minkowski space. Do gravitational waves propagate differently now? Can these differences
be removed by a suitable gauge fixing?

a) The Riemann tensor has two derivatives of the metric. Terms in the action have no uncontracted
indices. This means that we can either have two curvature tensors, or two derivatives acting on a
single curvature tensor, with all indices contracted.

Let us start with two derivatives acting on a single curvature tensor. We cannot use the Riemann
tensor, since it has four indices, and if we would contract all indices with derivatives, we would be
at sixth derivative order. This means that the only combinations are

D'DYR,,, D’R. (4.2)



However, we can use the contracted differential Bianchi identity to simplify the first term. Starting
from
D[aRyu]pa =0, (43>

(here, the angular brackets denote complete anti-symmetrisation over the indices within the brack-
ets), and contracting the indices pu and p, we find

D.R,; — D,Ros + D’Rype = 0. (4.4)
Now contracting a and o, we find
D*R,, — D,R+ D’R,, =0, (4.5)
so that )
DPR,, = §D0R. (4.6)

From this, we see that the only independent term with two derivatives and one curvature tensor is
D*R. (4.7)

Next, we can form all contractions of two curvature tensors. From index considerations, it is clear
that we can either contract two Riemann tensors, two Ricci tensors, or have the square of the
Ricci scalar. The latter is a scalar, and is thus the first invariant:

R?. (4.8)
Two Ricci tensors can only be contracted in a single way, since it is symmetric:
R"R,, . (4.9)
Finally, let us discuss all contractions of two Riemann tensors,
RMP7 Ropys - (4.10)

First, using symmetries we can always make it that p and « are contracted with each other:
RMYPTR6ys - (4.11)

Next, we can contract v either with 5, or with v — contracting it with ¢ instead is minus the
contraction with v due to the symmetry. In the first case, there is one way left to contract the
remaining indices — the other is minus the same:

RYPT Ry po - (4.12)
In the second case, we can also only find one contraction, namely
RYPP R (4.13)
the other way is dependent:
R"P"Rygup = R Ryppe = —R"™P Rypyo - (4.14)
Is the second contraction really independent? Actually not — we can use the Bianchi identity
Rywple =0, (4.15)
contract it with R**?, and find
RMYPPRypye = %R“”’”RWW. (4.16)

Summarising, we have four independent terms, one of which is a total derivative:

D*R, R*, R"™R,, R"R... (4.17)




b) Let us make an ansatz for the total action that we consider:

R—2A
ST = [ d'z/—detg [1 ot R BRY Ry +y R R + S D'R| . (418)
N

Let us start with the positive side: we already computed the Einstein-Hilbert part of the equations
of motion, and the last term is a total derivative so that it does not contribute to the equations
of motion. So far, so good. Let us then compute the contributions of all the other pieces term by
term. We start with the easiest, the R2-term. For this, we already have all the ingredients:

1 _ _ _ _
a | d*z+/— det g (1 + §h) [R + D*D"hy,, — D?h — R/whuy}z
3 . - ) )
~a [ d'z/—detg |R?+ §h R?>+ 2R (D“D”hW — D*h — R’“’hw) ] (4.19)

~a [ d'z/—detg |R?+ (%RZ g +2 (D“D”R) -2 (DQR) 7" — 2R R’“’) huv] )

In the last step, we used partial integration so that all derivatives act on the curvature tensors.
We can now read off the contribution to the equations of motion:

o BRQ 7 +2(D'D'R) — 2 (D*R) g — 2R Rl“’] | (4.20)

We continue with the R*” R, -term. Here it is important to realise that the Ricci tensor is defined
with lower indices, so that for the computation of perturbations of the Ricci tensor with upper
indices, we cannot use the earlier formulas right away. Rather, we have to use

R"™ = ¢g"* R, s gﬂv
— U « D, 1~ N N N 1= = —Bv v
~ (g"* — h"?) [Raﬁ +5D7 (Dahop 4 Dghya — Dyhag) — §DaDﬁh] (" —h™) (4.21)
DY ap v DO v 1~ B v v B v = D14
~ R — h"*R)” — R"h, +§D“/ (D"h7 + D"h. ! — D, h* ) — §D“D h.
As you can see, there are two extra terms! Combining everything, we can compute

5/d4x\/—detg (1+%h> X

DUV ap v DU v 1~ N v v B v 1~ D14
[R# — R, = R*hy! + 5 DY (DR, + D"h./" — DyW*) — S D"D h] X

_ 1 - _ _ _ 1- -
[RW + §D5 (Duhgy + Dyhg, — Dghy,) — 5DMDVh
- | A _ . 1. -
~ 3 / d'z\/—detg | R*R,, + Sh R Ry + R (§D5 (Duhgy + Dyhg, — Dghyy) — EDMDVh)

ap v DUoy UV 1 - a v v B v 1~ v D,
= (—h“ R, = R*h,’ + 5D (D*h.” + D"h,} = D) — SD"D h) Ry

:B/d‘lx\/—detg

o 1 .- _ o
R™ R, + <§RaﬁRagg“V —2R" R, — (D*D°Rag) g

4+ (DuD"R™) + (DoD”R) — (D*R™) | hya,

(4.22)



We thus find the contribution to the equations of motion to be

3 %Raﬂéaﬁgw _9RMR,” — (D*D’Rus) g + (DaD"R) + (Do DR — (D*R™)| .

(4.23)
This can actually be simplified via the differential Bianchi identity. We commute the covariant
derivatives to form divergences (which also creates Riemann tensors):

DoD"R® = [Da, D' R* + D"D, R
= R, 'R + R, 'R*” + D" D R™ (4.24)
= R'R,” — RygR"? + DD, R .

As a small check, verify that via this and the Bianchi identity, the contribution can be written as

1 = A = = — e — = 1 =9 = = = =
/)) §R(YJR(IB'§;LI/ o QR(YSRHQVJ - (DQR;U/) o 5 (DZR) g;u/ 4 (D;LDVR) ) (425>
Finally, let us discuss the Riemann-squared-term. For this, note that we can write
RF Ryvpo = R Ryupo = gaugﬁprﬁvapo ’ (4.26)

which brings the Riemann tensor into its defining index form. Repeating the computation that
we did in exercise 2 for the Ricci tensor, we find (check this!)

Ry = R/wpa ~ D, (Fgup - Faup) - Du (Favp o faup)

1. - _ _ 1. - _ _
~ 5Dy (D, + Dyh?y = Dhyy) = 5 D (DI, + Dyh®, = D7hy)

At the level of an action, this gives
1
v [ d*zy/—detg (1 + §h) [g*" — h**] [g” — hPP] x

[Raﬂﬂy + %DU (Dahyﬂ + Dﬁhl/a - Dyhaﬁ) - %Da (Dahyﬂ + Dﬂhyg — Dyhgg):| X
L
2

(4.27)

1- _ _ _
5Du (D17, +D,h”, - Dahyp)}

— | PUVPT D 1 DUVPT D af p vpo D DULPVO TY TN
~~ [ d'z/—detg | R*"" R, + Sh B Rywpo — 21 PR, Ry py — ARM DUDphW]

— | PUVPCT D 1_o¢ D, —uv DO 914 N T PRUpYo
~~ [ d'z\/—detg | R R,po + (ER P Ragysg" — 2R"TRY 5 — 4 (DD R )) h,w]

(4.28)
Look at the second step — a lot of simplifications appear due to the symmetries of the Riemann
tensor (check this explicitly)! We read off the contribution to the equations of motion as

1- _ _ _ o
v [ﬁRaﬂW‘sRang — 2RMVRY . — 4 (DpDUR"p’”’)] . (4.29)

Once again, we can use the Bianchi identity — actually we can use it a second time after sorting
covariant derivatives. Check the intermediate steps! We arrive at

1 - _ _ _ _ _ _ = o
v 53@“(53@%59“” — 2RMYRY gy — ARag R + ARM R, — 4 (D*R™) + 2 (D“D”R)}
(4.30)



You might now think that this is finally it. Ha, gotcha! There is one final simplification, which
is specific to four dimensions, and comes from the idea of “oversymmetrisation”. This idea states
that if one antisymmetrises over a number of indices which is larger than the spacetime dimension,
the resulting expression is zero (convince yourself that this is the case). Now consider

_ v af ) KS A TS w
0= (%[ R."R_) 1) 5,76,5.7 5 (4.31)

where the antisymmetrisation is indicated by the angular brackets. We thus completely antisym-
metrise over the upper indices {v, o, 8,7,0}. With a lot of patience, one finds the relation

1 1
Ryas R, = 9w Rupys R + 2R R s + 2R R, — 9, R’ R — R R, + I guwR?. (4.32)

If you want to understand this better, decompose the Riemann tensor into the Weyl tensor, Ricci
tensor and Ricci scalar. The Weyl tensor C' is the completely tracefree version of the Riemann
tensor:

1 1
Cluvpe = Buvps — 2 [RupGve — Ruoup + RuoGup — RupGuo) + 6 [GupGvo — GuaGup] 1. (4.33)
With this final simplification, we arrive at
o o 1 o o
~ [—SRQSR“‘W + 25" R*° Ry + 2R™ R — 5,(7#“’1%2 —4(D*R™) +2(D"D"R) | . (4.34)

Combining all the contributions, including the Einstein-Hilbert term, we have

o fdy
].67TGN 2

1
(R“” —5Rg" + Ag“”) — 2(8 + 47)Rap R*" + R Ropg"” — 2(a — y)R*™ R

— 4
+ 2T R — (5 +49)DPR™ + (20 + 4+ 29) D*D" R — 12 Y (p*R)g = 0.
(4.35)
Note the following curiosity: if we shift the couplings «, £,~ in the following way,
a—at+c, [ F—4c, y—v+e, (4.36)

the equations of motion do not change. We will come back to the reason for this later.

Let us set f =~ =0 to get the equations of motion for the Starobinsky model:

1 1
_ R™ — ~Rg™ + Ag" ) — 2aR" R + SR2¢" + 2aD"D'R — 2a(D*R)g" = 0 (4.37)
16’/TGN 2 2
We can rewrite this in a suggestive way:
1 1 1
— R™ — Ag") — =(R —4A)g" | =2a R [ R*™ — =R¢g"™ | 4+2a (D"*D" — ¢"'D*) R =0.
167TGN(( 9") = 5( )g> a ( 4g)+cv( 9" D?)
(4.38)
We can now insert the solution to Einstein’s equations,
R, = Ag, R =4\, (4.39)

and confirm that this is indeed a solution. Now where is the new physics? For this, let us take the
trace of the equations of motion:

R — 4\ — 967G ya(D?*R) = 0. (4.40)

The new physics lies in the observation that R = 4A is a solution to this equation, but it is not
the only one.



d) Linearising the equations of motion, we can directly throw out all the terms quadratic in curvature
—only the GR-part and the part with covariant derivatives survives. For the same reason, we do not
have to linearise the covariant derivatives. As before, we also have to set A = 0. We furthermore
lower the indices and multiply with (—1) for convenience, so that we have to linearise

1 1 do +
—— | B — 5 Rgu +(5+47>D2RW—(2&+ﬁ+2v>DuDuR+a—5<D2R)guu:0- (4.41)
167TGN 2 2

We can now insert the formulas that we have derived before, (3.1) and (3.2):

1
32nGyN [8M8ahay T a”aahaﬂ B th/u/ - 8uayh — Nuw (80‘8%@,3 - azhﬂ
+(ﬁ + 47)82% [8M8aha’/ + 8Vaahau - thMV - 8uauh] (4.42>

do +

—(2a+ B +27)9,0, [0°0°hos — °R] + N [0°0°hap — 0%h] = 0.
To investigate gravitational waves, let us now impose a gauge condition of the form

O hy = cOh, (4.43)

and for the moment forget about h. This is justified since the spin two part (i.e., the actual wave)
is carried by the transverse-traceless part. With this, we have

1L Bt+dyy
_ _ h
327’(’G’Na 2 a

0. (4.44)

This is not a standard wave equation anymore, and the extra terms cannot be removed by a
gauge-fixing. The change is simply the physical effect of the Ricci and Riemann terms in the
action.

Extra material 2: Beyond four derivatives and generalised wave equations

It is interesting to think about further extensions of the gravitational action. One way — called the
derivative expansion — proceeds by adding terms according to the number of derivatives acting on
the metric, as we did. This gets complicated very quickly. To get some handle on this, one can
use group theory — the relevant buzz word to look for is Young tableau. The standard reference
in this context is Fulling, King, Wybourne, Cummins, Class. Quant. Grav. 9 1151. Even if we
discard boundary terms (like the term D?R above), at sixth order there are 10 independent terms
(which reduces to eight in four dimensions)!

Starting at sixth order in derivatives, however, not all terms contribute to the wave equation when
the equations of motion are linearised. For example, the term R? does not contribute to it, while
RD?R does. Convince yourself that the only terms that contribute to the wave equation in flat
space are in fact terms with at most two curvatures, but an arbitrary number of derivatives.



https://iopscience.iop.org/article/10.1088/0264-9381/9/5/003

Exercise 5: Evidence for Quantum Gravity?

In the lecture, we discussed an argument for the quantisation of gravity that relies on what the
gravitational field would be of a superposition of a massive object at different positions.

In 1981, Page and Geilker wrote a paper about an experiment they conducted (Phys. Rev. Lett.
47 (1981) 979-982). Read the paper and critically comment on whether their experiment realises
the above argument.

As we discussed during the tutorial, there are several issues with this paper. Probably the main issue
is the insufficient discussion of decoherence. Some more discussion can be found in the two comments
on the paper, together with their replies (B. Hawkins, Phys. Rev. Lett. 48 (1982) 520 + Don N. Page,
Phys. Rev. Lett. 48 (1982) 521; L. E. Ballentine, Phys. Rev. Lett. 48 (1982) 522 + Don N. Page,
Phys. Rev. Lett. 48 (1982) 523). Sabine Hossenfelder also discussed this paper long ago on her blog,
but in my opinion it is a rather superficial discussion.


https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/PhysRevLett.48.520
https://doi.org/10.1103/PhysRevLett.48.521
https://doi.org/10.1103/PhysRevLett.48.521
https://doi.org/10.1103/PhysRevLett.48.522
https://doi.org/10.1103/PhysRevLett.48.523
https://doi.org/10.1103/PhysRevLett.48.523
http://backreaction.blogspot.com/2012/01/real-thought-experiment-that-shows.html

