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1 Quantum theory of matter

This chapter contains mainly introductory material needed later. Most of the material presented
here can be found in standard text books on quantum mechanics or advanced quantum mechanics,
e.g. the book by Dick [5].

1.1 Recapitulation: Schrödinger equation, central potentials,
angular momentum

The fundamental equation in standard quantum mechanics is the Schrödinger equation

i
∂ψ

∂t
= Hψ (1.1)

with the Hamiltonian H and the time dependent wave function ψ. Formally, ψ is an element of a
Hilbert space and H is a hermitian operator acting on that Hilbert space.
One of the first examples one treats in quantum mechanics is the problem of a single particle

in a central potential. An example is the simple motion of a single particle, an electron, in a
1/r potential, which is typically treated as a simple model for the hydrogen atom and is exactly
solvable. In that case, the wave function depends on the three coordinates of the particle, in
Cartesian coordinates ψ = ψ(x1, x2, x3, t), and the Hamiltonian is

H =
1

2m
p2 + V (r) (1.2)

where r2 =
∑

i x
2
ı̂ is the distance of the particle from the origin and p = 1

i∇ is the momentum
operator. Obviously, the system of a particle in a central potential is rotationally invariant. By
Noether’s theorem, the angular momentum is a conserved quantity and the operator of the angular
momentum L = (L1,, L2, L3) with Lj =

∑
k,l εj,k,lxkpl commutes with the Hamiltonian, [H,L] = 0.

The operator L is also the generator of rotations, exp(iθ ·L) with θ = (θ1, θ2, θ3) is a rotation around
the axis given by the direction of θ with the angle |θ|. The operators Lj obey the commutation
relations [Lj , Lk] = i

∑
l εj,k,lLl. As a consequence, only L2and one component of L, e.g. L3 can

be diagonalised simultaneously. For the problem of a single particle in a central potential, the
eigenfunctions are the spherical harmonic functions Yl,m with l ∈ N, m ∈ {−l, . . . , l} ⊂ Z.

1.2 The su(2)-algebra

The rotation group is actually the group SO(3). It has a matrix representation in the space of real
orthogonal 3× 3 matrices. The properties of representations of the group can be derived using the
commutation relations [Lj , Lk] = i

∑
l εj,k,lLl. We choose L3 and L2 to be diagonal and introduce

L± = L1 ± iL2. One obtains
[L3, L±] = ±L± (1.3)

[L+, L−] = 2L3 (1.4)

L2 =
1

2
(L+L− + L−L+) + L2

3 (1.5)
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1 Quantum theory of matter

Since L3 is hermitian, it has real eigenvalues m. We denote the corresponding eigenfunctions as
|m〉. The commutation relations imply

L±|m〉 = c±(m)|m± 1〉 (1.6)

and
c+(m− 1)c−(m) = 2m+ c−(m+ 1)c+(m) (1.7)

Further, L†+ = L− implies c−(m) = c+(m − 1)∗. Eliminating c− in the above equation using this
relation yields

|c+(m)|2 = |c+(m− 1)|2 − 2m (1.8)

Since the left hand side is non-negative, there must be a maximal value m = l and c+(l) = 0,
L+|l〉 = 0. As a consequence we have |c+(l − 1)|2 = 2l and after n iterations

|c+(m− n)|2 = 2nl − n(n− 1) (1.9)

Again, since the left hand side is non-negative, there must be a maximal value N for n and
2l = N − 1, c+(l − N) = c−(−l) = 0. Therefore we have N = 2l + 1 and −l ≤ m ≤ l. As a
consequence of this purely algebraic derivation, l = 1

2(N − 1) is either integer or half integer. We
already know that for the angular momentum operator L only integer values of l are realized, the
eigenfunctions are Yl,m. The reason is that the algebra allows for

exp(i(θ + 2πθ/|θ|) · L) = ± exp(iθ · L) (1.10)

whereas for pure rotations only the +-sign is realized. The group, which allows the −-sign as well
is the group SU(2) of unitary 2×2 matrices, the corresponding algebra is called su(2)-algebra. For
spin 1

2 a standard representation of the su(2) algebra is given by 1
2σx,y,z where σx,y,z are the Pauli

matrices, in there standard representation

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ± = σx ± iσy (1.11)

1.3 Identical particles

When one considers a system of many particles, e.g. balls, in classical mechanics, it is often useful
to consider those balls as marked e.g. by a number or colour. Numbering or painting the balls does
not change their physical behaviour.
In microscopic systems as they are described by quantum mechanics, this is not possible. Identical

particles are strictly indistinguishable. Consider a system with two or more particles. Take any
observable A and any state ψ and let P be a permutation operator of the particles. Then the
expectation value of the operator should not change, if we permute the particles, i.e.

〈Pψ|A|Pψ〉 = 〈ψ|A|ψ〉 (1.12)

The left hand side of this equation can be written as 〈ψ|P †AP |ψ〉 and since permutation are unitary
operators we have P † = P−1. Therefore 〈ψ|P−1AP |ψ〉 = 〈ψ|A|ψ〉. Since this must hold for any
state ψ, the operator identity P−1AP = A must hold. Multiplying with P from the left, we obtain

[P,A] = 0 (1.13)

for any observable.
The eigenvalues of P are ±1. To show that, consider a permutation P of two particles. For this

permutation we have P 2 = 1. The eigenvalues of this permutation are therefore ±1. Since any
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1 Quantum theory of matter

permutation can be constructed as a product of permutations of two particles, this holds for any
permutation. Eigenstates of P are symmetric for the eigenvalue 1 and antisymmetric for eigenvalue
−1.
This now means that in quantum mechanics, a many particle state must be either symmetric if

one permutes two particles or it must be antisymmetric. Particles with symmetric many particle
states are called Bosons, those with antisymmetric states are called Fermions.

1.4 Spin and statistics

Since the angular momentum allows only integer values of the quantum numbers l and m, is was a
huge surprise when first Stern and Gerlach found half-integer values. The explanation was provided
by Pauli, who proposed an intrinsic angular momentum for the electron, called spin. Later it was
shown that all elementary particles have a spin. The spin operators form a su(2)-algebra. Further,
with the help of relativistic field theory, Fierz, Pauli, and others derived the so called spin-statistics
theorem. It states that all particles with a half-integer spin have anti-symmetric wave functions
with respect to an exchange of particles, whereas all particles with an integer spin have symmetric
wave functions with respect to an exchange of particles. Particles with a half-integer spin are
Fermions, those with an integer spin are Bosons.

1.5 Time reversal symmetry

For a good introduction on time reversal symmetry I refer to the second chapter of the book of
Haake [11].
In classical physics, time reversal symmetry means that a system is symmetric under the trans-

formation x → x, t → −t, p → −p and consequently L → −L. In quantum mechanics, if we have
a spinless particle and a Hamiltonian of the form

H =
p2

2m
+ V (x) (1.14)

the conventional time reversal operation is

x→ x, p→ −p, t→ −t, ψ(x, t)→ ψ(x,−t)∗ (1.15)

This holds in position representation. A general time reversal operator T must be of the form
T = UK where K is the operator of complex conjugation and U is a unitary operator. Further,
acting with T twice on a wave function should reproduce that wave function, eventually with a
phase factor, i.e. T 2 = u with |u| = 1. Using the representation T = UK we obtain u = T 2 =
UKUK = UU∗K2 = UU∗ and therefore U = u(U∗)−1 = uU t. Transposing this equation and
inserting U ton the right hand side yields U = u2U and therefore u2 = 1, i.e. u = ±1. As a
consequence, the time reversal operator in quantum mechanics needs to fulfill

TxT−1 = x (1.16)

TpT−1 = −p (1.17)

TJT−1 = −J (1.18)

and

〈φ|ψ〉 = 〈Tψ|Tφ〉 (1.19)

T 2 = ±1 (1.20)
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1 Quantum theory of matter

Let us now ask how time reversal acts on a spin. For spin 1
2 we have

TσxT
−1 = UKσxKU

† = UσxU
† = −σx (1.21)

TσyT
−1 = UKσyKU

† = −UσyU † = −σy (1.22)

TσzT
−1 = UKσzKU

† = UσzU
† = −σz (1.23)

which is solved by U = iσy. Therefore, T = iσyK and we obtain T 2 = −1. This can be generalized
to systems with many particles and with arbitrary spin. If the total spin of the system is integer,
we have T 2 = 1,if it is half integer, we have T 2 = −1. For more details on time reversal symmetry,
we refer to [11].

1.6 Creation and Annihilation Operators for Fermions

For an excellent introduction of creation and annihilation operator as presented in this chapter I
refer to chapter 1 of the book of Negele and Orland [18].
Let {φi(~r, σ)} be an orthonormal basis of single particle states. We denote the coordinate and

the spin by q = (~r, σ). In the case of Fermions, for which the states must be antisymmetric if one
exchanges two particles, a basis of N -particle states can be build out of Slater determinants of the
single particle states:

|i1, i2, ..., iN 〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
φi1(q1) φi1(q2) ... φi1(qN )
φi2(q1) φi2(q2) ... φi2(qN )

...
...

...
φiN (q1) φiN (q2) ... φiN (qN )

∣∣∣∣∣∣∣∣∣ (1.24)

This state can be written in the form

|i1, i2, ..., iN 〉 =
1√
N !

∑
P

(−1)P
∏
j

φij (qP (j)) (1.25)

Because of the construction as a determinant, the state is antisymmetric if one permutes a pair of
indices, as it should be for Fermions.

|i1, ..., iα, ..., iβ, ..., iN 〉 = −|i1, ..., iβ, ..., iα, ..., iN 〉 (1.26)

Normalization:
〈i1, i2, ..., iN |i1, i2, ..., iN 〉 = 1 (1.27)

Orthogonality:

〈j1, j2, ..., jN |i1, i2, ..., iM 〉 = (1.28){ ∑
P (−1)P

∏
k δjk,iP (k)

ifN = M

0 ifN 6= M.
(1.29)

We now define the creation operator of a particle in the state i by

c†i |i1, i2, ..., iN 〉 = |i, i1, i2, ..., iN 〉 (1.30)

c†i maps states with N onto states with N + 1 particles. The right hand may vanish, this happens
if and only if one of the indices ik = i. One has

c†ic
†
j |i1, i2, ..., iN 〉 = |i, j, i1, i2, ..., iN 〉 (1.31)

= −|j, i, i1, i2, ..., iN 〉 (1.32)

= −c†jc
†
i |i1, i2, ..., iN 〉 (1.33)

7



1 Quantum theory of matter

This holds for all states, so we have
c†ic
†
j = −c†jc

†
i (1.34)

Therefore we have c†ic
†
i = 0. Furthermore one may write

|i1, i2, ..., iN 〉 = c†i1c
†
i2
...c†iN |vac.〉 (1.35)

For each operator c†i we introduce the Hermitian conjugate operator ci:

〈j1, ..., jM |ci|i1, ..., iN 〉 = 〈i1, ..., iN |c†i |j1, ..., jM 〉
∗ (1.36)

= 〈i1, ..., iN |i, j1, ..., jM 〉∗ (1.37)

=

{
δi1,iδi2,j1 ...− δi1,j1δi2,i ± ... alltogether N ! permutations, if N = M + 1
0 if N 6= M + 1.

(1.38)

= δi1,i〈i2, ..., iN |j1, ..., jM 〉∗ − δi2,i〈i1, i3, ..., iN |j1, ..., jM 〉∗ + ... (N terms). (1.39)

and therefore

ci|i1, ..., iN 〉 = δi1,i|i2, ..., iN 〉 − δi2,i|i1, i3, ..., iN 〉+ ... (N terms). (1.40)

and
ci|vak.〉 = 0 (1.41)

The commutation relations for the creation operators c†i can be carried over onto the annihilation
operators ci:

cicj = −cjci (1.42)

We now introduce the anticommutator [A,B]+ = AB+BA for arbitrary operators A and B. Then
we may write

[c†i , c
†
j ]+ = 0, [ci, cj ]+ = 0 (1.43)

Because of
c†icj |i1, ..., iN 〉 = δi1,j |i, i2, ..., iN 〉 − δi2,j |i, i1, i3, ..., iN 〉+ ... (1.44)

cjc
†
i |i1, ..., iN 〉 = δi,j |i1, ..., iN 〉 − δi1,j |i, i2, ..., iN 〉+ δi2,j |i, i1, i3, ..., iN 〉+ ... (1.45)

we obtain
(cjc

†
i + c†icj)|i1, ..., iN 〉 = δi,j |i1, ..., iN 〉 (1.46)

and since this holds for any state, we have

[c†i , cj ]+ = δi,j (1.47)

1.7 Creation and Annihilation Operators for Bosons

Bosonic wave functions are symmetric. Therefore we could make the ansatz, in analogy to the
Fermions

|i1, i2, ..., iN 〉 =
1√
N !

∑
P

∏
j

φij (qP (j)) (1.48)

But this state is not normalized. Since these wave functions are symmetric against permutations
of two indices, they do not vanish if two indices are identical. Let ni be the number of particles in
the state i. Then we have

〈i1, i2, ..., iN |i1, i2, ..., iN 〉 =
∏

i∈{i1,...,iN}

ni! (1.49)

8



1 Quantum theory of matter

Therefore, the correct normalization is

|i1, i2, ..., iN 〉 =
1√

N !
∏
i∈{i1,...,iN} ni!

∑
P

∏
j

φij (qP (j)) (1.50)

and therefore

〈j1, j2, ..., jN |i1, i2, ..., iM 〉 ={
1∏

i∈{i1,...,iM}
ni!

∑
P

∏
k δjk,iP (k)

if N = M

0 if N 6= M.
(1.51)

For Bosons, the creation operators can be defined as

c†i |i1, i2, ..., iN 〉 =
√
ni + 1|i, i1, i2, ..., iN 〉 (1.52)

Here, ni is the number of particles in the single particle state i contained in |i1, i2, ..., iN 〉. This
is in complete analogy to the operators one introduces in the typical text-book treatment of the
harmonic oscillator.
The Hermitian adjungate operators to c†i are ci and we obtain:

〈j1, ..., jM |ci|i1, ..., iN 〉 = 〈i1, ..., iN |c†i |j1, ..., jM 〉
∗ (1.53)

=
√
ni + 1〈i1, ..., iN |i, j1, ..., jM 〉∗ (1.54)

=

√
ni + 1∏

i′∈{i1,...,iN} ni′ !

{
δi1,iδi2,j1 ...+ δi1,j1δi2,i + ... alltogether N ! permutations, if N = M + 1
0 if N 6= M + 1.

=
1√
ni + 1

(δi1,i〈i2, ..., iN |j1, ..., jM 〉∗ + δi2,i〈i1, i3, ..., iN |j1, ..., jM 〉∗ + ... (N terms)) . (1.55)

Here again ni is the number of particles in the single particle state i contained in |j1, ..., jM 〉. This
means

ci|i1, ..., iN 〉 =
1
√
ni

(δi1,i|i2, ..., iN 〉+ δi2,i|i1, i3, ..., iN 〉+ ... (N terms)) (1.56)

where now ni is the number of particles in the single particle state i contained in |i1, ..., iN 〉 (one
particle more than in |j1, ..., jM 〉). In complete analogy to the fermionic case treated before, we
obtain

[c†i , c
†
j ]− = 0 (1.57)

[ci, cj ]− = 0 (1.58)

[ci, c
†
j ]− = δi,j (1.59)

where now [., .]− is the commutator. The creation operators can be used to form the multi particle
states:

|i1, i2, ..., iN 〉 =
1√∏

i∈{i1,...,iN} ni!
c†i1c

†
i2
...c†iN |vac.〉 (1.60)
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1 Quantum theory of matter

1.8 Summary: Creation and Annihilation Operators

We introduce the variable ζ, which is −1 for Fermions, +1 for Bosons. With the help of this
variable, we may write the formula for both types of particles in the compact form

|i1, i2, ..., iN 〉 =
1√

N !
∏
i∈{i1,...,iN} ni!

∑
ζPP
∏
j

φij (qP (j)) (1.61)

〈j1, j2, ..., jN |i1, i2, ..., iM 〉 ={
1∏

i∈{i1,...,iM}
ni!

∑
ζPP
∏
k δjk,iP (k)

ifN = M

0 ifN 6= M.
(1.62)

c†i |i1, i2, ..., iN 〉 =
√
ni + 1|i, i1, i2, ..., iN 〉 (1.63)

ci|i1, ..., iN 〉 =
1
√
ni

(δi1,i|i2, ..., iN 〉+ ζδi2,i|i1, i3, ..., iN 〉+ ... (N terms)) (1.64)

[c†i , c
†
j ]−ζ = 0 (1.65)

[ci, cj ]−ζ = 0 (1.66)

[ci, c
†
j ]−ζ = δi,j (1.67)

|i1, i2, ..., iN 〉 =
1√∏

i∈{i1,...,iN} ni!
c†i1c

†
i2
...c†iN |vac.〉 (1.68)

1.9 Single particle operators

Let us now discuss the operator
N̂ =

∑
i

c†ici (1.69)

One has
c†ici|i1, ..., iN 〉 = (δi1,i + δi2,i + ...+ δiN ,i)|i1, ..., iN 〉 (1.70)

and therefore
N̂ |i1, ..., iN 〉 = N |i1, ..., iN 〉 (1.71)

N̂ is the particle number operator. It is a single particle operator, since it may operate on single
particle states. Any single particle operator T (for instance the kinetic energy or a potential)
operates on the single particle basis. One has

T |i1〉 =
∑
i

ti,i1 |i〉 (1.72)

We consider first operators which are diagonal in the chosen basis

T |i〉 = ti|i〉 (1.73)
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1 Quantum theory of matter

For N -particle states we have similarly

T |i1, ..., iN 〉 =
∑
j

tij |i1, ..., iN 〉 (1.74)

The operator acts on each particle independently. We now want to show that

T =
∑
i

tic
†
ici (1.75)

With this form of T one calculates

T |i1, i2, ..., iN 〉 = T
1√

ni1 + 1
c†i1 |i2, ..., iN 〉 =

1√
ni1 + 1

[T, c†i1 ]|i2, ..., iN 〉+
1√

ni1 + 1
c†i1T |i2, ..., iN 〉

(1.76)
and further on

[T, c†i1 ] =
∑
i

ti[c
†
ici, c

†
i1

] = ti1c
†
i1

(1.77)

T |i1, i2, ..., iN 〉 = ti1 |i1, i2, ..., iN 〉+ c†i1T |i2, ..., iN 〉 (1.78)

=
∑
j

tij |i1, ..., iN 〉 (1.79)

which shows that the representation of T is correct.
We will deal with single particle operators which are non diagonal. Since any hermitian operator

can be diagonalized with the help of a unitary transformation, we have to know how a unitary
transformation acts on the creation and annihilation operators. Let us introduce a new basis
|α〉 =

∑
i uαi|i〉 where U = (uαi) is a unitary matrix.Let c†α be the new creation operators. We

have

c†α|vac.〉 = |α〉 (1.80)

=
∑
i

uαi|i〉 (1.81)

=
∑
i

uαic
†
i |vac.〉 (1.82)

=
∑
i

〈α|i〉 c†i |vac.〉 (1.83)

and therefore we let
c†α =

∑
i

〈α|i〉 c†i (1.84)

c†i =
∑
i

〈i|α〉 c†α (1.85)

cα =
∑
i

〈i|α〉 ci (1.86)

ci =
∑
i

〈α|i〉 cα (1.87)

11



1 Quantum theory of matter

Then we have

T =
∑

tic
†
ici (1.88)

=
∑
i,α,β

ti 〈α|i〉 〈i|β〉 c†αcβ (1.89)

=
∑
α,β

tα,βc
†
αcβ (1.90)

This is the general form of a single particle operator.

Examples:

• Potential: V (~r)

ti,j =

∫
d3r φ∗i (~r)V (~r)φj(~r) (1.91)

• Kinetic energy:

ti,j =

∫
d3rφ∗i (~r)

(
−∇

2

2m

)
φj(~r) (1.92)

In the orthonormal basis φ~k,σ = 1√
V

exp(i~k · ~r)χσ one obtains

T =
∑
~k,σ

~2~k2

2m
c†~k,σ

c~k,σ (1.93)

1.10 Interactions

In this course, we will also treat interacting systems. Almost any interaction is an interaction
between two particles. Such interactions can be described as two particle operators. Generically,
we cannot expect that interactions are diagonal in the multi particle states constructed out of given
single particle basis. But, for simplicity, we will start with this case. Let V be the operator of the
interactions, then, in this basis, we have

V |i, j〉 = Vij |i, j〉. (1.94)

|i, j〉 is a two particle states. For matrix elements of states with N particles, we obtain

〈j1 . . . jN |V |i1 . . . iN 〉 =
∑
P

ζP
1

2

∑
k 6=k′
〈jPk , jPk′ |V |ik, ik′〉

∏
l 6=k,k′

〈jPl |il〉 (1.95)

=

1

2

∑
k 6=k′

Vik,ik′

 〈j1 . . . jN |i1 . . . iN 〉 (1.96)

Here 1
2

∑
k 6=k′ is the sum over all pairs of particles in the states |i1 . . . iN 〉. For i 6= i′, the number

of pairs of particles in the states i and i′ is nini′ . For i = i′, it is 1
2ni(ni − 1). Using

ninj − δi,jni = c†icic
†
jcj − δi,jc

†
ici (1.97)

= ζc†ic
†
jcicj (1.98)

= c†ic
†
jcjci (1.99)

12



1 Quantum theory of matter

we therefore obtain
V =

1

2

∑
i,j

Vi,jc
†
ic
†
jcjci =

1

2

∑
i,j

〈i, j|V |i, j〉c†ic
†
jcjci (1.100)

For i 6= j the factor 1/2 in front takes into account that pairs in the sum are counted twice. For
i = j, the factor 1/2 comes from the number of pairs. Transforming this into a general basis, we
obtain

V =
1

2

∑
i,j,k,l

〈i, j|V |k, l〉c†ic
†
jclck (1.101)

This is the general form of any two particle operator. Each two particle interaction can be written
in that form.
The representation of any operator, e.g. the Hamiltonian of a given model, with the help of

creation and annihilation operators is thus a simple short form of writing down the matrix elements
of that operator in a multi particle basis that has been constructed from a single particle basis
by either forming completely antisymmetric states, Slater determinants, in the case of Fermions
or completely symmetric states in the case of Bosons. The advantage of this representation are
the simple algebraic relation ship between the creation and annihilation operators in the form of
commutation relations (Bosons) or anti-commutation relation (Fermions). Many calculations are
much easier in this representation.

1.11 Quantum states

1.11.1 The density matrix

In quantum mechanics, one typically describes a system using a Hamiltonian, and one tries to
calculate or estimate its eigenstates. Let the system be in such an eigenstate, e.g. in the ground
state ψ0. Then one has complete information about the system. One can calculate any expectation
value of any observable A simply using 〈A〉 = 〈ψ0|A|ψ0〉.
In all more complex realistic cases, one does not have complete knowledge of the system. This is

already true in classical mechanics. And there is no way to obtain complete knowledge of a system
by doing experiments, simply because of the finite accuracy of any experiment. Therefore, in a
realistic description of a system, one cannot have complete knowledge of the system.
How do we introduce such an incomplete knowledge into quantum mechanics? Let us assume

that {ψi, i ≥ 0} is a orthonormal basis (ONB) of the Hilbert space of our system, e.g. the ONB
formed by the eigenstates of the Hamiltonian. We can describe incomplete knowledge of the system
by assigning to each state ψi a probability pi. We will later present some ideas how to estimate
these probabilities. In the case of complete knowledge, one of the probabilities is equal to 1, all the
others vanish. The expectation value of an observable A would then be

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 (1.102)

We now introduce the operator

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
i

piPi (1.103)

and write the expectation value in the form

〈A〉 = TrρA (1.104)
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1 Quantum theory of matter

The operator ρ is called density matrix. The representation (1.103) is the diagonal representation
of it. Since the piare probabilities, we have 0 ≤ pi ≤ 1 for all i and pi ≥ p2

i , further
∑

i pi = 1. As
a consequence, the density matrix obeys the conditions

0 ≤ ρ2 ≤ ρ ≤ 1 (1.105)

Trρ = 1 (1.106)

1.11.2 Special density matrices

According to Jaynes, the missing information about a state of a system is given by I = −
∑

i pi ln pi.
If we let kB = 1 it is identical to the entropy. For a quantum system, this can be written as

I = −Trρ ln ρ (1.107)

Suppose that we have some additional information about the system, e.g. the expectation value
of an operator A. If we want to estimate ρ given this knowledge, we have to maximize I under
the condition〈A〉 = TrρA. This condition can be taken into account using a Lagrangian multiplier
λ. A second condition we always need to take into account is (1.106). We do this using a second
Lagrangian multiplier α. Then we get

δ(Trρ ln ρ+ αTrρ+ λTrρA) = 0 (1.108)

which yields
Tr(ln ρ+ 1 + α+ λA)δρ = 0 (1.109)

Since this must hold for arbitrary variations δρ we obtain

ρ = exp(−1− α− λA)

where α and λ need to be determined using the two conditions.
Let A be the Hamiltonian itself and assume we know its expectation value. Then the density

matrix is given by

ρ =
1

Z
exp(−βH) (1.110)

where
Z = Tr exp(−βH) (1.111)

and β can be identified with the inverse temperature in analogy to classical physics. This is called
the canonical ensemble. We can also introduce the grand canonical ensemble, where also the particle
number is not known exactly but only its expectation value, or the micro canonical ensemble, where
the energy is known precisely.

1.11.3 Time dependent systems

Consider now a time dependent system. Then we would have time dependent states ψ(t) obeying
the time dependent Schrödinger equation. Let P (t) = |ψ(t)〉〈ψ(t)| be the projector onto that state.
For the projector, we obtain (in the Schrödinger picture)

dP

dt
= −i[H,P ] (1.112)

Since the incomplete information one has initially about the system does not change as long as no
measurements are done, the probabilities pi are constant in time and one obtains for the density
operator

dρ

dt
= −i[H, ρ] (1.113)
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2 Open quantum systems

The aim of this chapter is to give an overview on open quantum systems. Some details esp. on
driven dissipative quantum systems will be treated later. A comprehensive treatment of dissipative
quantum systems is given in the book of Weiss [26]. I also refer to the review article by Caldeira
and Leggett [3].

2.1 A preliminary study: classical systems

An open system in classical as well as in quantum physics is a system coupled to an environment.
Before we enter to quantum systems, let us look at a simple model for a classical open system. The
starting point is a Hamilton function of the system coupled to the environment of the form

H = HS +HB +HSB (2.1)

HS is the Hamiltonian for the system. The environment is a simple heat bath described by HB

and the coupling between the system and the bath is given by HSB. Although the model looks
symmetric, it is asymmetric. The heat bath is much larger than the system we are looking at.
In most cases we will perform a thermodynamic limit where the heat bath contains infinitely
many degrees of freedom whereas the system itself contains typically few degrees of freedom. As a
consequence, the heat bath will influence the system but the system will have (almost) no effect on
the bath. Further, we will typically have a detailed knowledge about the structure of the system
whereas we typically know only very few properties of the bath, like its temperature or some other
macroscopic quantities.
What one is typically interested in is the effect of the bath on the dynamics of the system. What

we expect is an energy transfer from the system to the bath, in classical mechanics described as
friction, and eventually an energy transfer from the bath to the system, which is uncorrelated and
causes phenomena like Brownian motion. The aim of this subsection is to derive these phenomena
from a model given by (2.1).
In classical physics, in the theory of small vibrations, one expands a system to second order and

performs a principal axis transformation. The result is a set of independent harmonic oscillations.
With this idea in mind we can describe the bath as a set of independent harmonic oscillators. Let
us now as a very simple example consider a classical one-dimensional particle in a potential as our
system. Then, the Hamiltonian function is

H =
p2

2m
+ V (q) +

∑
i

(
p2
i

2mi
+
mi

2
ω̃i

2q2
i ) +

∑
i

λi(q − qi)2 (2.2)

The equations of motion are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, q̇i =

∂H

∂pi
, ṗi = −∂H

∂qi
. (2.3)

and one obtains
q̇ =

p

m
(2.4)
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2 Open quantum systems

ṗ = F (q)− 2
∑
i

λi(q − qi) (2.5)

q̇i =
pi
mi

(2.6)

ṗi = −miω̃
2
i qi − 2λi(qi − q) (2.7)

These equations can be investigated further by integrating the equations of motion for the bath
variables and inserting the result into the equation of motion for the system. The result is an integro-
differential equation for the system which contains the initial conditions of the bath variables as
parameters. One then needs to make some assumptions about the statistical properties of these
initial conditions. To illustrate the procedure, let us take a simple example, the dissipative harmonic
oscillator. The Hamiltonian is

H =
p2

2m
+
m

2
ω̃2q2 +

∑
i

(
p2
i

2m
+
m

2
ω̃i

2q2
i ) +

∑
i

λi(q − qi)2. (2.8)

We expand the last term in (2.8) and introduce the quantities ω2 = ω̃2 + 2
m

∑
i λi, ω

2
i = ω̃2

i + 2
mi
λi.

ω must be finite, therefore
∑

i λi must be well defined. Further, similarly to the treatment of the
harmonic oscillator in quantum mechanics, it is useful to introduce complex coordinates

b =
1√
2

(
√
mωq + ip/

√
mω) (2.9)

bi =
1√
2

(
√
miωiqi + ipi/

√
miωi) (2.10)

The transformation back to the original coordinates is

q =
1√

2mω
(b+ b∗) (2.11)

p =
1

i

√
mω

2
(b− b∗) (2.12)

and similarly forqi and pi. Using these quantities, the Hamiltonian becomes

H = ωb∗b+
∑
i

ωib
∗
i bi −

∑
i

λi√
mωmiωi

(b+ b∗)(bi + b∗i ) (2.13)

We introduce gi = λi√
mωmiωi

as the new coupling constant in the last term. The Hamiltonian

equations of motion are ḃ = −i ∂H∂b∗ and similarly for bi and their complex conjugates. One obtains

ḃi = −iωibi + igi(b+ b∗) (2.14)

ḃ = −iωb+ i
∑
i

gi(bi + b∗i ) (2.15)

Integrating the first equation yields

bi = bi0 exp(−iωit) + igi

∫ t

0
exp(−iωi(t− t′))(b(t′) + b∗(t′))dt′ (2.16)
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We introduce this result into the equation of motion for b and obtain

ḃ = −iωb−2i
∑
i

g2
i

∫ t

0
sin(ωi(t−t′))(b(t′)+b∗(t′))dt′+i

∑
gi(bi0 exp(−iωit)+b∗i0 exp(iωit)) (2.17)

The first term is the simple harmonic oscillation of the system. The second term contains a coupling
of the system to its previous states. This is a memory effect, the system remembers its past. We
will make a plausible assumptions that reduces this memory significantly. It will turn out that this
term describes dissipation. The last term depends on the initial conditions of the bath variables,
which are typically not known. We will see that it represents a stochastic force.
In a first step we take the thermodynamic limit and we assume that the bath frequencies form

a continuous spectrum. As long as the bath is finite, there is no "real" dissipation. We introduce

G(ω′) = 2
∑
i

g2
i δ(ω

′ − ωi) (2.18)

which is a continuous function. It can be used to rewrite the second term in the equation of motion
as ∫

dω′G(ω′) sin(ω′(t− t′)) = − d

dt′

∫
dω′

G(ω′)

ω′
cos(ω′(t− t′)) = − d

dt′
R(t− t′) (2.19)

The two functions G(ω) or equivalently R(t) describe the bath and the system-bath-coupling. After
a partial integration, the equation of motion can now be written as

ḃ = −iωb+ iR(0)(b+ b∗)− iR(t)(b(0) + b∗(0))− i
∫ t

0
dt′R(t− t′)(ḃ(t′) + ḃ∗(t′))

+i
∑

gi(bi0 exp(−iωit) + b∗i0 exp(iωit)) (2.20)

The second term yields a shilft of the frequency. The equation is well defined if and only if
2R(0) ≤ ω. R(t) is a sum of many small oscillating contributions and can therefore be expected to
fall of quickly as a function of time. Therefore, the third term only contributes for small t and the
fourth term only contributes for t ≈ t′. Taking the real and the imaginary part of this equation,
we obtain the equation forp and q.

q̇ =
p

m
(2.21)

ṗ = −mω2q+2mωR(0)q−2mωR(t)q(0)−κq̇+
√

2mω
∑
i

gi(bi0 exp(−iωit)+ b∗i0 exp(iωit)) (2.22)

which yields
mq̈ = −mω2

renq − κq̇ + F (t) (2.23)

with
κ ≈ 2mω

∫ ∞
0

dtR(t) (2.24)

ωren =
√
ω2 − 2ωR(0) (2.25)

and
F (t) =

√
2mω

∑
i

gi(bi0 exp(−iωit) + b∗i0 exp(iωit)) (2.26)

ωren should be real, therefore 2R(0) ≤ ω must hold as already stated above.
If R(t) falls of quickly, we see that the fourth term in the equation for b directly yields a typical

friction. The fifth term contains a time dependent force F (t). It depends on the unknown initial
conditions of the bath . We eventually know some statistical properties of the bath. Let us take
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2 Open quantum systems

F (t) as a stochastic force. If we assume a symmetric distribution of the initial conditions, i.e. the
probabilities for e.g. pi(0) and −pi(0) are the same, the expectation value of F (t) vanishes. Let us
calculate the second moments of F (t).〈

F (t)F (t′)
〉

= 2mω
∑
ij

gigj
〈
(bi0 exp(−iωit) + b∗i0 exp(iωit))(bj0 exp(−iωjt′) + b∗j0 exp(iωjt

′))
〉

(2.27)
We can assume that the different bath modes are independent. Then, only the term with i = j
contributes to the sum. It contains the expectation values 〈b∗i0bi0〉 which depend on ωi. We obtain〈

F (t)F (t′)
〉

= 4mω
∑
i

g2
i 〈b∗i0bi0〉 cos(ωi(t− t′)) (2.28)

Because of the equipartition theorem we have

〈b∗i0bi0〉 =
kBT

ωi
(2.29)

and we finally obtain

〈
F (t)F (t′)

〉
= 4mωkBT

∑
i

g2
i

ωi
cos(ωi(t− t′)) = 4mωkBTR(t− t′) (2.30)

The second moment of the fluctuating force is therefore directly related to the dissipation. This is
the so called fluctuation-dissipation theorem. We already assumed that R(t) falls of quickly as a
function of t. We may approximate

R(t) ≈ δ(t)
∫
dt′R(t′) =

κ

mω
δ(t) (2.31)

This is clearly in contradiction to the condition 2R(0) ≤ ω. Indeed R(t) ∝ δ(t) is an assumption
which is only valid if we keep ωren fixed. This is a typical example for renormalization, as it is
often used in many different areas of physics. The assumption R(t) ∝ δ(t) is physically reasonable.
It simply means that the correlation time τ for F (t), which determines the decay of R(t), is small
compared to ω−1 or other relevant time scales in the system.
Let us make some final remarks here:

1. The uncorrelated noise with R(t) ∝ δ(t) is called white noise. We obtain white noise ifG(ω)/ω
(or equivalent g2

i /ωi) is constant. Since formally R(0) must be finite to have a well defined
model, one has to introduce an ultra-violett cutoff ωc which represents a finite correlation
time. In the limit ωc → ∞ we obtain white noise. Keeping the theory meaningful in that
limit is a typical renormalization problem.

2. The friction constant κ and the second moment of the stochastic force F (t) are parameterized
by G and are therefore not independent. The relation ship of the two is a simple version of
the fluctuation-dissipation theorem.

3. If the mass of the harmonic oscillator is large, the effect of the fluctuating force becomes small
and can be neglected. We then obtain the usual equation of motion with a friction term.

4. It is important to perform the thermodynamic limit. Without it, system plus bath just form
a system of coupled oscillators with characteristic eigenmodes.
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2.2 Noise in quantum systems

In quantum mechanics, a state is described by a wave function or by a density matrix. If one
wants to describe a quantum mechanical system coupled to an environment, a wave function is
not suitable. One would need a precise knowledge of the environment, which is not available.
Therefore, the description using a density matrix may be better.
If one describes a quantum mechanical system by a density matrix, the equation of motion for

the density matrix is
dρS
dt

= −i[ρS , HS ] (2.32)

An effective description of a quantum mechanical system coupled to an environment can eventually
be obtained by adding further terms to this equation. In analogy to the classical case one has
to expect a memory term which contains ρ(t′) for times t′ < t, and a stochastic term. But the
situation is not easy since a modified equation of motion for the density matrix has to fulfill certain
condition which guaranty that the result is again a density matrix. The necessary conditions for
the density matrix are

1. ρS ≥ ρ2
S ≥ 0.

2. TrρS = 1.

3. 〈φ|ρSφ〉 ≤ 1 for all φ.

These conditions need to be fulfilled for all times and all allowed initial conditions.
Another possibility is to describe the coupled system plus environment by a joined Hamiltonian

as in the classical case. Eventually, one can derive either an equation of motion for ρS from such
a model or at least equations of motion for some observables of interest. As above, a coupled
Hamiltonian has the form

H = HS ⊗ IB + IS ⊗HB +AS ⊗AB (2.33)

The indices S denote the system, B the bath (the environment). IS,B are identities on the Hilbert
spaces of the system and the bath, resp.. The Hilbert space of the entire system is the direct
product of the two Hilbert spaces of system and bath.
The combined density matrix ρ of system and bath obeys the equation

dρ

dt
= −i[ρ,H] (2.34)

The density matrix of the system can be obtained from ρ by a reduction on the Hilbert space
of the system by a partial trace over the states in the Hilbert space of the bath. If we arrive at
applying this reduction directly to the equation of the coupled system, we would get an effective
equation for ρS . The same is true for the equations of motion for observables. The full equation
of motion for an observable of the system contains bath operators. If one succeeds to eliminate
those, one would have an effective equation of motion for the observable. In this way, we treated
the classical dissipative harmonic oscillator. Let us now look at the quantum analogue.

2.2.1 The dissipative harmonic oscillator

With a harmonic approximation for the bath, i.e. using a bath of independent harmonic oscillators
and a linear coupling to the system, we have

HS =
p2

2m
+
m

2
Ω2q2 (2.35)
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HB =
∑
k

(
p2
k

2mk
+
mk

2
ω2
kq

2
k

)
(2.36)

AS = q (2.37)

AB =
∑
k

gkqk (2.38)

as in the classical case. Introducing level operators, or, in the language of the first chapter, bosonic
creation and annihilation operators, the Hamiltonian can be written in the form

H = Ωa†a+
∑
k

ωka
†
kak +

∑
k

λk(a+ a†)(ak + a†k) (2.39)

The equations of motion are
da

dt
= iΩa+ i

∑
k

λk(ak + a†k) (2.40)

dak
dt

= iωkak + iλk(a+ a†) (2.41)

As in the classical case we formally integrate the equation for ak

ak(t) = ak(0) exp(iωkt) + iλk

∫ t

0
dt′ exp(iωk(t− t′))(a(t′) + a†(t′)) (2.42)

and obtain

da

dt
= iΩa+ i

∑
k

λk(exp(iωkt)ak(0) + exp(−iωkt)a†k(0)) (2.43)

−2i
∑
k

λ2
k

∫ t

0
dt′ sin(ωk(t− t′))(a(t′) + a†(t′)) (2.44)

Although this equation looks very similar to the corresponding equation in the classical case, the
two equation are different. In the quantum case, we have an equation for operators. Fortunately,
the operators from a closed algebra, which makes it possible to solve the equation. There are several
ways to do that. A direct integration of the equation of motion is possible in principle. It has the
disadvantage that it cannot be generalized to more complex quantum systems. Another possibility
is to rewrite the system in terms of path integrals [26]. This allows to integrate out the bath
variables. A third possibility is to use a Hamiltonian based renormalization approach called flow
equations for Hamiltonians [25, 12]. It uses continuous unitary transformations to diagonalize the
Hamiltonian. This approach has been applied successfully to a lot of dissipative quantum systems.
The exact solution of the dissipative harmonic oscillator using flow equations was first presented in
[13]. Using one of these approaches, it is possible to calculate e.g. dynamical correlation functions
like 〈q(t)q(0)〉. One obtains

〈q(t)q(0) + q(0)q(t)〉 =
1

8mΩ

∫
dωC(ω)(2n(ω) + 1) cos(ωt) (2.45)

with
n(ω) =

1

exp(ω/T )− 1
(2.46)
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C(ω) =
2J(ω)(ω2 + Ω2)(

Ω2 − ω2 + 4ΩP
(∫ dω′ ω′J(ω′)

ω2−ω′2

))2
+ 4π2Ω2J2(ω)

(2.47)

J(ω) =
∑
k

λ2
kδ(ω − ωk) (2.48)

P (.) stands for the principal value of the integral. We introduced here the spectral density of
the environmental coupling J(ω). As long as the bath is finite, there is no "real" dissipation.
As in classical physics, real dissipation only occurs, if you take the thermodynamic limit. In the
thermodynamic limit the spectrum of the bath becomes continuous and J(ω) becomes a continuous
function of ω. Examples will be discussed below in connection with the dissipative two-level system.
The formula for C(ω) shows several things:

1. The first term in the denominator of C(ω) is a pole term. For vanishing coupling we have
C(ω) ∝ (δ(ω − Ω) + δ(ω + Ω)). For a finite coupling the maxima are shifted to lower values

Ω2
ren = Ω2 + 4ΩP

(∫
dω′ω′J(ω′)

Ω2
ren − ω′2

)
(2.49)

As a consequence one needs

Ω2 + 4ΩP

(∫
dω′ω′J(ω′)

Ω2
ren − ω′2

)
≥ 0 (2.50)

This condition guaranties that the Hamiltonian is bounded from below..

2. The second term yields a damping. As a consequence, there are no poles at ω = ±Ωren but
maxima.

3. In contrast to the classical case we obtain damping already for T = 0. The reason are
quantum fluctuations.

4. For finite temperature C(ω)(2n(ω) + 1) if proportional to T
ωJ(ω) for small ω. The case of

friction according Stoke’s law corresponds to the case J(ω) ∝ ω. Correlation functions fall of
exponentially in this case, as in the classical case.

5. For T = 0, when only quantum fluctuations are present, we have n(ω) = 0 and therefore
C(ω) ∝ J(ω) for small ω. For J(ω) ∝ ω, we obtain an algebraic decay of the correlation
function ∝ t−2.

6. In quantum mechanics, other baths exist where J(ω) ∝ ωs with s > 1 or s < 1. Phonons
in solids have s = 3. As a consequence there are quantum baths with a non-exponential
damping.

2.2.2 The two-level system

The dissipative two-level system is the paradigm for dissipative quantum systems. In analogy the
the harmonic oscillator, the Hamiltonian can be written as

H = HS ⊗ IB + IS ⊗HB +AS ⊗AB (2.51)

= −∆

2
σx +

∑
k

ωkb
†
kbk +

1

2
σz
∑
k

λk(bk + b†k) (2.52)

21



2 Open quantum systems

The two level system is described by a 2 × 2-matrix, here σx. The coupling to the bath induces
transitions between the two states, thereby creating or annihilating a Boson. The bath is again
represented by independent Bosons. The model is often called spin-boson model.
In the language of quantum computers, a two level system is a quantum bit. The above model

describes a quantum bit coupled to an environment. In quantum computing, the goal is to keep the
coupling to the bath as small as possible. But since it can never be reduced to zero, it is important
to understand how the quantum bit reacts when coupled to a bath and how different types of baths
create a different behaviour.
The spin-boson model has also been used to describe tunneling systems in an environment, for

instance impurities in solids or glasses.
The model is for most cases not exactly solvable. An exact solution is known for J(ω) =∑
k λ

2
kδ(ω − ωk) = ω. For other cases, renormalization approaches or field theoretic approaches

have been proven useful.

2.2.3 A nucleon in a pion-cloud

Another simple two-level system is given by the Hamiltonian

H =
∑
k

ωk(a
†
kak + b†kbk) + g0

∑
k

(2ωk)
−1/2[(ak + b†k)σ+ + (a†k + bk)σ−] (2.53)

Here, ak and bk are bosonic operator represented charged mesons (π±). They interact with a
nucleon, which has two states, a proton or a neutron. By emitting or absorbing a π±, the nucleon
is transferred from a proton to a neutron and back. The transitions are described by the Pauli
matrices σ±. g0 is a coupling constant and ωk = (k2 + µ2)1/2, where µ is the meson mass. The
model was proposed and investigated first by Ken Wilson in 1965 [27, 28]. It serves as a prototype
for a local quantum field theory. The model cannot be treated by perturbation theory because of
divergences. Instead, renormalization needs to be used.

2.2.4 Fermionic baths

The cases discussed so far had heat baths formed by Bosons, which is natural if one thinks of
vibrations. But in reality there are also fermionic baths. The classical prototype of a model with
a fermionic bath is the Kondo model. It describes a magnetic impurity in a Fermi see of band
electrons in a solid. The Hamiltonian reads

H =
∑
k,σ

εkc
†
kσckσ − 2J~s(0) · ~S (2.54)

where ~S is the spin of the magnetic impurity located at 0 and ~s(0) is the spin of the band electrons
at this location,

~s(0) =
1

2

∑
k,k′,σ,σ′

c†kσ(~σ)σσ′ck′σ′ (2.55)

The Hamiltonian has the same form as a typical system-bath model with a vanishing system
part (which may be included if one introduces a local external magnetic field). The system-bath
interaction is a usual (typically anti-ferromagnetic, J < 0) exchange interaction. Kondo showed
that at temperatures below the Kondo temperature

TK = D exp(
1

2N(0)J
) (2.56)
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perturbation theory breaks down. Here, D is the band width and N(0) is the density of states at
the Fermi level. The model has been analyzed in detail by Wilson using numerical renormalization.
Below the Kondo temperature, the electrons form a singly occupied localized state which forms a
singlet with the impurity spin.
A similar model with a fermionic bath is the Anderson impurity model. The Hamiltonian

H = εd
∑
σ

c†d,σcd,σ + Uc†d,↑c
†
d,↓cd,↓cd,↑ +

∑
k,σ

εkc
†
kσckσ +

∑
Vk(c

†
d,σckσ + c†kσcd,σ) (2.57)

describes an impurity by the first two terms which is coupled to a band of electrons, the third
term, via a hybridization, the fourth term. It can be (approximately) transformed to the Kondo
model if the Fermi energy lies somewhere in the band, εd, the impurity energy, lies well below
and εd + U lies well above the Fermi energy. Then, the impurity is occupied by a single electron
which has spin 1

2 and is coupled via the hybridization to the band. This produces virtual processes
where electrons can move from the impurity to the band an vice versa, which produces an effective
exchange interaction between the spin on the impurity and the spins of the band electrons.

2.3 Flow equations for Hamiltonians

A suitable method to treat dissipative quantum systems are continuous unitary transformations,
also called flow equations. In this chapter I will first introduce the basic idea. For details I refer to
the original papers by Wegner [25] and Glazek and Wilson [8, 9]. For a comparison of the different
approaches I refer to an old lecture on the method (in German) [16]. A good introduction can be
found in the book by Kehrein [12]. In a second section of this chapter I will present the treatment
of the spin-boson model using this method. The method can also be applied to time dependent
quantum systems, see the following chapters.

2.3.1 Basic idea

If one wants to diagonalize a matrix numerically one typically applies a sequence of unitary trans-
formations with the goal to reduce or eliminate off-diagonal matrix elements. The basic idea of
flow equations is to do that using a continuous unitary transformation. A continuous unitary trans-
formation depends on a parameter `. We denote it as U(`) with U(0) = 1. The continuous unitary
transformation shall be constructed such that U(∞) diagonalizes the given Hamiltonian or matrix
H. This yields a `-dependent matrix

H(`) = U †(`)HU(`). (2.58)

If the transformation U(`) was known, one could directly calculate H(∞) and the problem would
be solved. This is typically not the case. Therefore we reformulate the unitary transformation as
an infinitesimal unitary transformation

dH(`)

d`
= [η(`), H(`)]. (2.59)

Here η is the generator of the transformation. η is anti-hermitian, η† = −η. For the matrix
elements, one obtains

dhk,q(`)

d`
=
∑
p

(ηk,p(`)hp,q(`)− hk,p(`)ηp,q(`)) (2.60)

η shall be chosen such that the matrix becomes more and more diagonal with increasing `. A
possible condition could be that

∑
k 6=q h

2
k,q decays monotonically as a function of `. Let H =

Hd +Hr, Hd = diag(H).
TrH2

d + TrH2
r = TrH2 = const. (2.61)
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∑
k 6=q h

2
k,q = TrH2

r decays monotonically if TrH2
d increases monotonically.

dTrH2
d

d`
=

d

d`

∑
q

h2
q,q

= 2
∑
q

hq,q
∑
p

(ηq,php,q − hq,pηp,q)

= 2
∑
p,q

ηp,qhp,q(hp,p − hq,q) (2.62)

The right hand side should be non-negative. A possible choice for ηp,q is ηp,q = hp,q(hp,p − hq,q) or

η = [Hd, Hr]. (2.63)

It yields
dhk,q(`)

d`
=
∑
p

(hk,k(`) + hq,q(`)− 2hp,p(`))hk,p(`)hp,q(`). (2.64)

d

d`

∑
k 6=q

h2
k,q = − d

d`

∑
k

h2
k,k

= −2
∑
k,q

(hk,k − hq,q)2h2
k,q

= −2
∑
k,q

η2
k,q (2.65)

Since
∑

k 6=q h
2
k,q decays monotonically but is bounded from below, the derivative must vanish for

`→∞ which means
η(`) = [Hd, H]→`→∞ 0 (2.66)

This means that with the choice (2.63) we achieved our goal almost. We obtained a matrix that
commutes with its diagonal part. That means that for degenerate diagonal matrix elements there
may still remain some off-diagonal non-vanishing matrix elements. Let us mention that there
are other choices of η which avoid this behaviour, but they are not suitable for the treatment
of dissipative quantum systems. It is intuitive to explicitly treat the case of a 2 × 2-matrix to
understand how the method works, we leave this as an exercise.

2.3.2 Flow equations for the spin-boson model

The general Hamiltonian of a system coupled to a bosonic bath can be written as

H = HS +A
∑
k

λk(bk + b†k) +
∑
k

ωk : b†kbk : . (2.67)

where we assume that we take the thermodynamic limit where the function

J(ω) =
∑
k

λ2
kδ(ω − ωk) (2.68)

becomes a continuous function of ω. As long as the bath is finite, there is no "real" dissipation.
As in classical physics, see (2.18), real dissipation only occurs, if you take the thermodynamic
limit. In the thermodynamic limit the spectrum of the bath becomes continuous. Further, we
introduced normal ordering : b†kbk := b†kbk − nk which is especially important for T > 0. Typically,
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HS is a Hamiltonian of a particle in a potential. Let us assume that we have a general coupling∑
kWk(q − qk) with arbitrary functions Wk. For small vibrations, it is sufficient to expand the

functions Wk about the minimum. The first non-trivial part is
∑

k
ck
2 (q − qk)2. It yields a term

∝ q2 which can be absorbed in HS and terms ∝ q2
k, which are small in the thermodynamic limit

since ck ∝ λk ∝ 1√
N

. The mixed term is proportional to qqk which is exactly the form of the
coupling in (2.67). For the spin-boson model we have

HS = −∆

2
σx + E0 , A =

1

2
σz (2.69)

A general choice of η can be

η = i
∑
k

Ak(bk + b†k) +
∑
k

Bk(bk − b†k) (2.70)

[η,H] = i
∑
k

ωkAk(bk − b†k) +
∑
k

ωkBk(bk + b†k)

+i
∑
k

[Ak, HS ](bk + b†k) +
∑
k

[Bk, HS ](bk − b†k)

+i
∑
k,q

λq[Ak, A] : (bk + b†k)(bq + b†q) : +i
∑
k

λk[Ak, A](2nk + 1)

+
∑
k,q

λq[Bk, A] : (bk − b†k)(bq + b†q) : +
∑
k

λk[Bk, A]+ (2.71)

We impose the conditions

Ak = − i

ωk
[Bk, HS ], (2.72)

ωkBk + i[Ak, HS ] = −λkAf(ωk, `). (2.73)

For the spin-boson model and for the dissipative harmonic oscillator these equations can be solved
explicitely. This allows to prevent the creation of terms in [η,H] which contain expressions con-
taining (bk − b†k). The remaining terms are quadratic in the bosonic operators. Since already in
the construction of the model such terms have not been included, we neglect these terms in a first
step. The flow equations then are

dλk
d`

= −λkf(ωk, `) (2.74)

dHS

d`
= i
∑
k

λk[Ak, A](2nk + 1) +
∑
k

λk[Bk, A]+. (2.75)

This is still a generic expression. For the spin-boson model we obtain

Ak = −1

2
λkf(ωk, `)

∆

ω2
k −∆2

σy, (2.76)

Bk = −1

2
λkf(ωk, `)

ωk
ω2
k −∆2

σz. (2.77)

∂J(ω, `)

∂`
= −2f(ω, `)J(ω, `) (2.78)

dHS

d`
=

1

2

∫
dωJ(ω, `)f(ω, `)

(
∆

ω2 −∆2
σx −

ω

ω2 −∆2

)
. (2.79)
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The parameters ∆ and λk are now functions of `. f(ω, `) can still be chosen. To avoid vanishing
denominators we choose f(ω, `) = (ω −∆)2. This yields

d∆

d`
= −∆

∫
dωJ(ω, `)

ω −∆

ω + ∆
, (2.80)

dE0

d`
= −1

2

∫
dωωJ(ω, `)

ω −∆

ω + ∆
. (2.81)

The equation for J(ω, `) can be formally integrated

J(ω, `) = J(ω, 0) exp(−2

∫ `

0
d`′(ω −∆)2) (2.82)

Inserting this in the equation for ∆ we obtain

d ln ∆

d`
=

1

2

∫
dω
∂J(ω, `)

∂`

1

ω2 −∆2
(2.83)

For small values of ` the integral will be dominated by large values of ω. For large values of ` we
may assume that ∆ approaches its final value ∆(∞). This allows us to replace ∆ by ∆(∞) on the
right hand side. This yields

d ln ∆

d`
=

1

2

d

d`

∫
dωJ(ω, `)

1

ω2 −∆2(∞)
, (2.84)

and finally

ln
∆(∞)

∆
= −1

2

∫
dω

J(ω, `)

ω2 −∆2(∞)
(2.85)

The final form of the Hamiltonian is

H(∞) = −∆(∞)

2
σx +

∑
k

ωkb
†
kbk (2.86)

Let us discuss some interesting examples:

• The Ohmic bath:
J(ω, 0) = 2αωfc(ω/ωc) (2.87)

with a cutoff function fc. It corresponds to the case discussed earlier which in the classical
example yields a friction proportional to the velocity. We obtain∫

dω
J(ω, `)

ω2 −∆2(∞)
≈ 2α

∫ ωc

0
dω

ω

ω2 −∆2(∞)
≈ 2α ln

∆(∞)

ωc
(2.88)

which yields
∆(∞)

∆(0)
∝
(

∆(0)

ωc

) α
1−α

(2.89)

for α < 1, ∆(∞) = 0 for α > 1.

• The super-Ohmic bath
J(ω, 0) = K1−sωsfc(ω/ωc), s > 1 (2.90)∫

dω
J(ω, `)

ω2 −∆2(∞)
≈ 1

s− 1

ωs−1
c

Ks−1
(2.91)

∆(∞) = ∆(0) exp

(
− 1

2(s− 1)

ωs−1
c

Ks−1

)
. (2.92)

In this case ∆(∞) does not vanish.
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For both cases we see strong renormalization effects. These are found in other approaches as well.
Due to these effects, a pertubational treatment of the coupling terms is useless. For the Ohmic
case, we further see a quantum transition from a state where the system tunnels between the two
states with a renormalized tunneling frequency ∆∞ to a state where the system is localized in one
of the two states. This is a Kosterlitz-Thouless transition. These results can as well be obtained
by other methods, see e.g. [26], but the current calculation is a lot easier.

2.3.3 Equilibrium correlation functions

An important dynamical quantity for the spin-boson model is the equilibrium correlation function

C(t)
def
=

1

2
〈σz(t)σz(0) + σz(0)σz(t)〉T (2.93)

where 〈.〉T indicates the thermal average at temperature T . Later, we will also discuss the limit
T → 0 betrachten. The Hamiltonian has a simple structure in the limit ` → ∞. Therefore it is
useful to calculate C(t) in that limit. This means that we have to apply the continuous unitary
transformation to σz Let us use the following ansatz for σz(`)

σz(`) = h(`)σz + σx
∑
k

χk(`)(bk + b†k) . (2.94)

Calculating the commutator [η(`), σz(`)],we obtain the flow equations

dh

d`
= −∆

∑
k

λkχk(2nk + 1)
ωk −∆

ωk + ∆
(2.95)

dχk
d`

= ∆hλk
ωk −∆

ωk + ∆
(2.96)

For the correlation function one obtains

C(t) = h2(∞) cos(∆(∞)t) +
∑
k

χ2
k(∞)(2nk + 1) cos(ωkt). (2.97)

Using the flow equations one can show that

d

d`
(h2 +

∑
k

χ2
k) = 0 (2.98)

Therefore h2 +
∑

k χ
2
k is constant which guaranties C(0) = 1. For small ωk � ∆(∞) the coefficients

χk are propotional toλk. The Fourier transform of C(t) is therefore proportional to J(ω, 0) for small
ω which yields the correct long time behaviour.
Analyzing the asymptotic behaviour of the flow equations for J(ω, `) and ∆(`) for large ` one

can learn a bit more about the correlation function C(t). For ωk = ∆(∞) the factor ωk−∆ decays
∝ `−1/2 and λk decays like λk ∝ `−1/4. Therefore, h must vanish in the limit `→∞ since otherwise
χk would diverge which contradicts h2 +

∑
k χ

2
k = 1. This yields

σz(∞) = σx
∑
k

χk(∞)(bk + b†k) . (2.99)

C(t) =
∑
k

χ2
k(∞)(2nk + 1) cos(ωkt). (2.100)

which means that even for T = 0 coherence vanishes for long times. (2.99) shows that as a
consequence, the observable σz decays completely into combinations involving bath operators.
Let us close this section with some remarks:

27



2 Open quantum systems

1. The treatment of the spin boson model is generic and can be applied to many other dissipative
quantum systems.

2. The dissipative harmonic oscillator can be solved exactly using flow equations. To do that,
the neglected terms quadratic in the bosonic operators must be taken into account.

3. The flow equations for the spin-boson model can be improved by including terms quadratic
in the bosonic, this is esp. important for the description of dynamics at ω ≈ ∆(∞).

4. The spin-boson model with an Ohmic bath at α = 1
2 can be solved exactly using flow equa-

tions.
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3 Time dependent quantum phenomena

If the Hamiltonian of a system is time-dependent, the notion of eigenstates becomes more or less
useless. Solutions of the time-dependent Schrödinger equation ∼ exp(−iEt) no longer occur. We
need instead a way of solving the time-dependent Schrödinger equation. In this chapter we will first
discuss the driven two-level system. Although it is (over-) simplistic, it shows several interesting
phenomena. We will then discuss in more detail general periodically driven quantum systems.
Perodically driven systems are already very interesting in classical physics. In most cases where

the non-driven system is classically integrable, the driven system is not integrable and may even
show chaotic behaviour. For a comprehensive discussion I refer to the book of Haake [11]. See also
the review article [10] for many details discussed in this and the subsequent chapter.
Clearly, a driven quantum system cannot be separated from its environment. The discussion of

open driven quantum systems is done in the subsequent chapter.

3.1 The driven two-level system

There are several ways to write down a Hamiltonian for a driven two-level system. Here, I will use
the representation

H(t) = −∆

2
σx + h(t)σz (3.1)

You may think of it as an atom with only the two lowest states taken into account coupled to an
external field. Another interpretation would be a driven tunneling system, this corresponds to the
interpretation often used for the spin-boson model presented in the previous chapter.
Suppose that h(t) is constant in some fixed time intervals, i.e.

h(t) = hn for tn ≤ t < tn+1, tn = n∆t (3.2)

Let ψ(t = 0) = ψ0 be the initial state, then we obtain

ψ(t = tn) = Un−1Un−2 . . . U1U0ψ0 (3.3)

where
Un = exp(−iH(tn)∆t) (3.4)

We introduce a time ordering operator T that acts on products of operators and puts them in a
time order. For two operators, we have

T [A(t)B(t′)] =

{
A(t)B(t′) if t > t′

B(t′)A(t) if t < t′
(3.5)

Using the time ordering operator, we can rewrite (3.3) as

ψ(t = tn) = T [

n−1∏
j=0

Uj ]ψ0 (3.6)
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The sequence of the Uj ’s in the product is determined by the time ordering operator. Now notice
that

Uj+1Uj = exp(−iH(tj+1)∆t) exp(−iH(tj)∆t) = exp(−i(H(tj+1) +H(tj))∆t+O(∆t2)) (3.7)

For small (and in the end infinitesimal) ∆t we can neglect the quadratic term and therefore write

ψ(t = tn) = T [exp(−i∆t
n−1∑
j=0

H(tj))] (3.8)

which formally in the limit ∆t→ 0 can be written as

ψ(tn) = U(tn)ψ0 (3.9)

with

U(t) = lim
∆t→0

T [
n−1∏
j=0

Uj ] = T

[
exp

(
−i
∫ t

0
dt′H(t′)

)]
(3.10)

The expression (3.10) clearly holds for any time dependent Hamiltonian, not only for the driven
two-level system in (3.1). Note that this is only a formal expression which is only defined in the
form (3.6) with the limit t ∆t→ 0 .
Despite the simplicity of the Hamiltonian (3.1), there is no general solution to the time-dependent

Schrödinger equation. An easy case is a constant external field h(t) = h0 for t < 0 that is switched
of, i.e. h(t) = 0 for t > 0. Another easy case is that of a kick, i.e. h(t) = δ(t). We leave those to
the exercises.

3.1.1 Periodical driving close to resonance

Let us now discuss the case of periodical driving, i.e. h(t) = h0 cos(ωt). In a first step we expand
ψ(t) in the eigenbasis of σx

ψ(t) = a1(t) exp(i
∆

2
t)

1√
2

(
1
1

)
+ a2(t) exp(−i∆

2
t)

1√
2

(
1
−1

)
(3.11)

We have

σxψ(t) = a1(t) exp(i
∆

2
t)

1√
2

(
1
1

)
− a2(t) exp(−i∆

2
t)

1√
2

(
1
−1

)
(3.12)

σzψ(t) = a1(t) exp(i
∆

2
t)

1√
2

(
1
−1

)
+ a2(t) exp(−i∆

2
t)

1√
2

(
1
1

)
(3.13)

which yields the differential equations for the time-dependent coefficients

i
da1

dt
= a2h exp(−i∆t) =

1

2
h0a2(exp(i(ω −∆)t) + exp(−i(ω + ∆)t)) (3.14)

i
da2

dt
= a1h exp(i∆t) =

1

2
h0a2(exp(i(ω + ∆)t) + exp(−i(ω −∆)t)) (3.15)

There is no analytical solution to these two equations. To proceed further we assume that δ =
ω −∆ � ω + ∆, i.e. we are working in a case close to resonance. In a first step, we assume that
a1,2(t) are functions that oscillate slow in time. We can then replace the fast oscillating terms in
the two equations by there averages, which vanish. We therefore neglect the fast oscillating terms
in the two equations and obtain

i
da1

dt
=

1

2
h0a2 exp(iδt) (3.16)
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i
da2

dt
=

1

2
h0a1 exp(−iδt) (3.17)

which by eliminating a2 yields
d2a1

dt2
− iδ da1

dt
+

1

4
h2

0a1 = 0 (3.18)

with the general solution
a1(t) = a1+ exp(iω+t) + a1− exp(iω−t) (3.19)

where
ω± =

1

2
δ ± 1

2

√
δ2 + h2

0 (3.20)

For a2 we obtain
a2(t) = − 2

h0
[a1+ω+ exp(−iω−t) + a1−ω− exp(−iω+t)] (3.21)

Suppose, we switch off the external field after a time tf . The system then is in a mixed state of
the two eigenstates of the Hamiltonian with h = 0. We now measure the energy. Then, |a1(tf )|2 is
the probability to find the system in the state with energy −1

2∆, which is given by

|a1(tf )|2 =
h2

0

δ2 + h2
0

sin2

√
δ2 + h2

0

2
tf (3.22)

The oscillations of this quantity as a function of tf are called Rabi oscillations, named after the
American physicist Isidor Isaac Rabi (Nobel prize 1944). The amplitude of the oscillations id
proportional to (1 + δ2/h2

0) which is a typical resonance curve, a so called Lorentzian with a
maximum at δ = 0, i.e. ω = ∆. This resonance is also the basis of NMR (Nobel prize for Bloch and
Purcell 1952, Ernst 1991) with its medical application MRT (Nobel prize Lauterbur and Mansfield
2003). There, the two level system is a nuclear spin which is coupled to a time-dependent magnetic
field.

3.1.2 Fast driving

For a fast driven system, ω � ∆,we need to modify the ansatz for the wave functions. Since ∆ is
small, we choose as a basis to expand the states the eigenbasis of σz. For ∆ = 0 we have

ψ(t) = ψ+(t)

(
1
0

)
+ ψ−(t)

(
1
0

)
(3.23)

with
i
dψ±
dt

= ±h(t)ψ± (3.24)

The solution is

ψ±(t) = ψ±,0 exp(∓i
∫ t

0
dt′h(t′)) (3.25)

= ψ±,0 exp(∓ih0

ω
sin(ωt)) (3.26)

Therefore, for small ∆ we make the ansatz

ψ(t) = c1(t) exp(−ih0

ω
sin(ωt))

(
1
0

)
+ c2(t) exp(i

h0

ω
sin(ωt))

(
0
1

)
(3.27)
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3 Time dependent quantum phenomena

and obtain from the Schrödinger equation

i
dc1,2

dt
= −∆

2
exp(±2i

h0

ω
sin(ωt))c2,1 (3.28)

As before, for fast oscillations we can replace the time-dependent terms by their time averages. For
the exponential functions, the average over one period is

ω

2π

∫ 2π/ω

0
exp(2i

h0

ω
sin(ωt))dt = J0(

2h0

ω
) (3.29)

where J0 is the zeroth-order Bessel function. We then obtain

i
dc1,2

dt
= −∆

2
J0(

2h0

ω
)c2,1 (3.30)

with the solution
c1,2(t) = c0

1,2 exp(±i∆
2
J0(

2h0

ω
)t)

This is the behaviour of a usual two-level system with a reduced tunneling frequency ∆J0(2h0/ω).
The fast oscillations slow down the tunneling and can even localize the tunneling particle at values
of 2h0/ω where the Bessel function has zeros. This effect is called coherent destruction of tunneling.
See the review article [10] for details. The small oscillations we obtain for c1,2 justify a posterio
the approximation from (3.28) to (3.30).

3.2 Floquet theory

Let H(t) be a time periodic Hamiltonian, H(t + 2π
ω ) = H(t). Then, the Floquet theorem states

that the time dependent Schrödinger equation

i
∂ψ

∂t
= Hψ

is solved by
ψa(t) = ua(t) exp(−iεat) (3.31)

where ua(t) = ua(t + 2π
ω ) is time periodic. The εa are obtained as eigenvalues of the Floquet

operator

F = H(t)− i ∂
∂t

(3.32)

acting in the Floquet space which is the direct product of the original Hilbert space and the space
of time periodic function with period 2π

ω . Let φn be an ONB of the original Hilbert space. Let
fn(t) = exp(−inωt) be an ONB in the space of time periodic function with the scalar product

〈f |g〉 =
ω

2π

∫ 2π
ω

0
dtf∗(t)g(t) (3.33)

Then an ONB in the Floquet space is given by ψn,m = φn exp(−imωt). The eigenvalue equation
for F is

Fua(t) = [H(t)− i ∂
∂t

]ua(t) = εaua (3.34)

Note that the state ua,n(t) = ua(t) exp(−inωt) is an eigenstate of F with eigenvalue εa − nω. But
ua,n(t) and ua,0(t) = ua(t) are physically identical solutions of the Schrödinger equation. Therefore
it is sufficient to consider states with

−ω
2
≤ εa <

ω

2
(3.35)
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3 Time dependent quantum phenomena

3.2.1 The two level system

Let us discuss again the Hamiltonian (3.1). For ∆ = 0, (3.34) yields the two uncoupled equations

[±h(t)− i d
dt

]u± = ε±u± (3.36)

with the solution

u±(t) = exp(∓i
∫ t

0
dt′h(t′)) exp(iε±t) (3.37)

Since due to the Floquet Theorem, u±(t) must be periodic and because of (3.35), ε± = 0. The two
eigenstates are thus degenerate.
We now consider the case of small ∆. In first order degenerate perturbation theory, we obtain

the 2× 2-matrix (
h++ h+−
h−+ h−−

)
with

hs1s2 = −∆

2
(σx)s1s2〈us1 |us2〉 (3.38)

It has the same form as the original tunneling Hamiltonian −∆
2 σx but with an effective tunneling

matrix element
∆eff = ∆〈u−|u+〉 (3.39)

For h(t) = h0 cos(ωt) one obtains

∆eff = ∆J0(
2h0

ω
) (3.40)

as in the previous section for fast driving.
There is a second way to interpret the result. The unitary time evolution is in general given by

U(t) in (3.10). After n full cycles of driving, we obtain U(2π
ω n) = TnF with the so called Floquet

map (not to be confused with the Floquet operator in (3.32))

TF = U(
2π

ω
) (3.41)

It is described and used in Detail in [11]. Since TF is a unitary operator, it can be written as

TF = exp(−2π

ω
iHeff) (3.42)

with a hermitian operator Heff . This defines an effective Hamiltonian Heff . For a given initial state
ψ(t = 0) we obtain

ψ(t =
2π

ω
n) = TnFψ(0) (3.43)

The Floquet map TF or the effective Hamiltonian thus yields a stroboscopic description of the
system. The dynamics given by Ueff(t) = exp(−iHefft) yields an exact description of the dynamics
of the system only for those stroboscopic times. The deviation between exact dynamics and effective
dynamics is given by

UF (t) = Ueff(t)U †(t) (3.44)

and it is possible to obtain the effective Hamiltonian as

Heff = UF (t)H(t)U †F (t)− iUF (t)
d

dt
U †F (t) (3.45)
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3 Time dependent quantum phenomena

We can therefore obtain the effective Hamiltonian by finding a time-dependent unitary transform-
ation UF (t) such that the resulting Hamiltonian does not depend on time and UF (0) = 1.
For the driven two-level system we make the ansatz

UF (t) = exp(ia(t)σz) (3.46)

we obtain
Heff = −∆

2
cos(2a(t))σx −

∆

2
sin(2a(t))σy + h(t)σz −

da

dt
σz (3.47)

We choose da
dt = hand obtain for h = h0 cos(ωt)

Heff = −∆

2
cos(

2h0

ω
sin(ωt))σx −

∆

2
sin(

2h0

ω
sin(ωt))σy (3.48)

We now set
cos(

2h0

ω
sin(ωt)) =

∑
k

cos(kωt)Jk(
2h0

ω
) (3.49)

and neglect the oscillating terms which is a good approximation for large ω as noted before. The
second term in the Hamiltonian contains only fast oscillating terms and is therefore neglected
entirely. Then we obtain the same effective Hamiltonian with the effective tunneling frequency as
before. Let us mention that we get the same result if we use flow equations and assume ω to be
large which is obvious since in the case there is no difference to the full unitary transformation
(3.46). But flow equations can be used to eliminate the fast oscillating terms to any order and to
obtain a more precise expression for the effective Hamiltonian.

3.2.2 Strong correlations in optical lattices

The above treatment of the two level system has a very important application in the current
experimental investigation of strongly correlated systems in optical lattices. An optical lattice is
a typically two dimensional lattcie formed by the interference of counter-propagating laser beams.
This creates a spatially periodic potential in which atoms can be trapped. Cooling them down yields
a system similar to a crystal lattice but with the advantage that all parameters can be controlled
experimentally. This allows for precise quantum simulations to understand strong correlations in
lattices.
The atoms trapped in such a lattice have typically a short range interaction, since they are

neutral. This interaction takes place when two atoms sit on the same lattice site and is assumed
to be repulsive. Therefore, such a system resembles the Hubbard model, a tight binding model
for particles on a lattice with a purely local interaction. The aim of this course is not to study
the Hubbard model in detail, for the interested reader I refer to the literature, e.g. [17]. The
particles in the lattice form energy bands. The essential parameters are the band width D, the
interaction strength U , and the density of particles n. Strong correlations occur when U is larger
thenD. There are lattices, for instance the kagomé lattice, which have among others a flat band, i.e.
D = 0. This is a prototype of a strongly correlated system and shows many interesting properties.
But unfortunately, the flat band lies at the top of the spectrum. The experimental idea is now to
periodically shake the system to eventually obtain effective hopping similar to (3.40). Since the
Bessel function changes its sign as a function of the argument, it should be possible to reverse the
sign of the hopping and achieve a situation where the flat Band lies at the bottom of the spectrum.
This would allow experimental quantum simulations of flat band systems.
To illustrate such a system we consider a one dimensional bosonic Hubbard model

HH = −t
∑
i

(b†ibi+1 + b†i+1bi) + U
∑
i

ni(ni − 1) (3.50)
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3 Time dependent quantum phenomena

The first term is the hopping term. Particles can hop from a site i to its neighboured sites. The
second term is the repulsive interaction. Putting more than one particle on a site costs energy U
times the number of pairs of particles on that site. To this Hamiltonian we now add a periodic
shaking of the form

HS = h cos(ωt)
∑
i

ini (3.51)

which corresponds to an oscillating field constant in space. We now proceed as before and try to
find an effective Hamiltonian Heff . This can be done using

UF (t) = exp(i
h

ω
sin(ωt)

∑
j

jnj) (3.52)

which with the same approximation as for the two level system yields (3.50) with an effective
hopping

teff = tJ0(
h

ω
) (3.53)

This result has been first obtained in [6]. Since in experiments one finds deviations from this result,
it may be suitable to obtain higher orders. This can be done using the flow equations from section
2.3. Details may be found in [24].
Applications of optical lattices are e.g. quantum computers and very precise atomic clocks, so

called lattice clocks.

3.2.3 The kicked rotator (and Anderson localization)

The kicked rotator is described by the Hamiltonian

H(t) = − 1

2I

∂2

∂θ2
+
λI

τ
V (θ)δ(t− nτ) (3.54)

The classical kicked rotator is a prototype for a classically chaotic system. For sufficiently large
coupling is shows chaotic behaviour. It is therefore studied as a prototype to investigate the
quantum properties of a classically chaotic system. A detailed treatment of the kicked rotator and
its relation to Anderson localization (Nobel prize 1977) may be found in Chapter 7 of the book by
Haake [11]. In this subsection, I follow mainly the presentation of Haake.
The Hamiltonian (3.54) is periodic in t with period τ . I is the moment of inertia, λ is a

dimensionless coupling constant, and V (θ) is a periodic potential with period 2π. For simplicity
we let I = τ = 1. Think of V (θ) = cos(θ).
Instead of a continuous time-periodic function H(t) contains a periodic series of kicks. This

makes the dynamics easier to describe. The Floquet map can be written as

T+
F = exp(−iλV (θ)) exp(

i

2

∂2

∂θ2
) (3.55)

It describes the stroboscopic time evolution from a state immediately after one kick to a state
immediately after the next kick. Similarly, the Floquet map that maps a state immediately before
the kick to one immediately before the next kick is

T−F = exp(
i

2

∂2

∂θ2
) exp(−iλV (θ)) (3.56)

= exp(iλV (θ))T+
F exp(−iλV (θ)) (3.57)
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3 Time dependent quantum phenomena

and the two operators are related by a unitary transformation. Thus they have the same eigenvalues.
Let

T±F u
± = exp(−iφ)u± (3.58)

be the eigenvalue equation. The eigenstates are related via

u− = exp(iλV )u+ (3.59)

We now introduce
u =

1

2
(u+ + u−) (3.60)

and the hermitian operator

W = − tan
λV

2
(3.61)

We have
exp(−iλV ) =

1 + iW

1− iW
(3.62)

and
u = (1 + iW )−1u+ = (1− iW )−1u− (3.63)

which in the end, using the eigenvalue equation, yields

(1− iW )u = exp(iφ) exp(
i

2

∂2

∂θ2
)(1 + iW )u (3.64)

Writing u =
∑
un exp(−inθ) we obtain

un − i
∑
r

Wn−rur = exp(iφ− i

2
n2)(un + i

∑
r

Wn−rur) (3.65)

which can be rewritten as
εnun +

∑
r 6=0

Wrun+r = W0un (3.66)

with

εn = tan(
φ

2
− n2

4
) (3.67)

(3.66) looks like a Schrödinger equation of a particle on a one dimensional chain in tight binding
representation. n ∈ Z represent the lattice sites. un is the wave function in position representation.
εn are on-site energies of the particle sitting on the site n. Wr are hopping matrix elements which
allow the particle to move from a site n to a site n+ r. They do not depend on n, the hopping is
therefore translational invariant. The interesting point is that the εn are pseudo random numbers.
The quantity (φ + 1

2n
2)mod 2π is dense and uniformly distributed in the interval [0, 2π). This

means that the εn are distributed according to the density ρ(ε) = 1/(π(1 + ε2)). If the εn were
true random numbers drawn from that distribution, (3.66) would be the Lloyd model, a special
form of the Anderson model with random numbers according to this density. For the Anderson
model, the eigenstates are localized. They fall off exponentially as a function of the distance, here
n. There is no proof that one obtains localization for the pseudo random numbers, but in all
numerical calculations the un show the same properties as for usual random numbers. Due to the
localization, the diffusive behaviour observed in the classical system is suppressed.
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3 Time dependent quantum phenomena

3.3 Adiabatic time dependence and the Berry phase

So far, we often considered fast moving systems. If the system is initially in a given state ψ, the
dynamics of the system do not allow the state to adopt to the fast motion. Esp. fast oszillations
average out. Such fast motions are called diabatic. Now we will consider slow motions of the
Hamiltonian.
Consider a Hamiltonian H(t) that, for a fixed time t can be diagonalized with eigenvalues εn(t)

and eigenstates φn(t), i.e.
H(t)φn(t) = εn(t)φn(t) (3.68)

The eigenstates form on ONB of the Hilbert space. The motion is called adiabatic if it is slow
enough so that it remains in an eigenstate φn(t) if it starts at φn(t = 0).
Consider now the following problem: at t = 0 the system is prepared in the initial state

ψn(t = 0) = φn(t = 0) (3.69)

With this initial condition, we want to solve the Schrödinger equation

i
dψn
dt

= H(t)ψn(t) (3.70)

The question is: under which conditions is it possible to directly relate ψn(t) to φn(t)? If that was
possible, and since both are normalized, they can only differ by a phase, we would have

ψn(t) = exp(−iΩn(t))φn(t) (3.71)

Inserting this ansatz into the Schrödinger equation we obtain

dΩn

dt
φn + i

dφn
dt

= εnφn (3.72)

and therefore
dΩn

dt
= εn − i〈φn|

dφn
dt
〉 (3.73)

which can directly be integrated and yields

Ωn(t) =

∫ t

0
dt′(εn(t′)− i〈φn(t′)|dφn

dt′
〉) (3.74)

However, the ansatz (3.71) is generically not a solution of the Schrödinger equation. It is only a
solution to the Schrödinger equation if

dφn
dt
∝ φn (3.75)

Otherwise, we would get contributions ∝ φm, m 6= n in the Schrödinger equation. But if this
proportionality holds, we get

1

i

dφn
dt

= (
dΩn

dt
− εn(t))φn (3.76)

and therefore
φn(t) = exp(−iβn(t))φn(t = 0) (3.77)

with

βn(t) = i

∫ t

0
dt′〈φn(t′)|dφn

dt′
〉 (3.78)
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βn(t) is called the Berry phase [1]. Under which conditions can this approach be applied at least
approximately to a given problem? In general, since the φn form an ONB, we have

dφn
dt

=
∑
m

〈φm|
dφn
dt
〉φm (3.79)

Therefore, the requested proportionality (3.75) holds approximately if

|〈φm|
dφn
dt
〉| � |〈φn|

dφn
dt
〉| (3.80)

or in other words, if the initial state φn(0) fulfills

H(t′)φn(0) ' εn(t′)φn(0) (3.81)

for times t′ between 0 and t. The latter can be seen by comparing

ψn(t) = T exp(−i
∫ t

0
dt′H(t′))φn(0) (3.82)

and the approximation

ψn(t) = exp(−i
∫ t

0
dt′εn(t′))φn(0) (3.83)

The last statement can be made precise, it is then called adiabatic theorem and states that a
physical system remains in its instantaneous eigenstate if the time evolution is slow enough and if
there is a gap between the eigenvalue and the rest of the spectrum. To show that, one uses the
ONB φn to expand a solution of the time dependent Schrödinger equation as

ψ(t) =
∑
n

cn(t)φn(t) exp(−i
∫ t

0
dt′εn(t′)) (3.84)

Substituting this into the Schrödinger equation yields

i
∑
n

(ċnφn + cnφ̇n − icnεnφn) exp(−i
∫ t

0
dt′εn(t′)) =

∑
n

cnH(t)φn exp(−i
∫ t

0
dt′εn(t′)) (3.85)

which simplifies to∑
n

ċnφn exp(−i
∫ t

0
dt′εn(t′)) = −

∑
n

cnφ̇n exp(−i
∫ t

0
dt′εn(t′)) (3.86)

Taking the scalar product with φm we obtain

ċm(t) = −
∑
n

cn〈φm|φ̇n〉 exp(−i
∫ t

0
dt′(εn(t′)− εm(t′)) (3.87)

On the right hand side, all terms except the one for n = m are oscillatory and cancel out over long
time. To make this statement mathematically rigorous is not easy and goes beyond the scope of
this lecture.
Trivial examples where the adiabatic theorem holds occur whenever the eigenstate of a system is

given by some quantum number that remains constant in time. Take e.g. the harmonic oscillator
with a time dependent ω. The eigenstates are described by the quantum number n. If ω changes
adiabatically, transitions between states are not induced, the system remains in the eigenstate with
the same quantum number and only the energy changes.
In the original work of Berry [1], the case where H(t) depends on t through a set of parameters

was discussed and the case, where the system is moved adiabatically on a closed curve in this
parameter space. This is the case where H(t) = H(0),and φn(t) is the phase the wave functions
picks up when it is moved on a the closed curve. For a more comprehensive review look at [29].
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3.3.1 The driven two-level system

Let us take again the driven two-level system with the Hamiltonian now denote as

H(t) = ~h · ~σ (3.88)

with
~h = h(sin θ cosφ, sin θ sinφ, cos θ) (3.89)

For this Hamiltonian, we obtain
ε±(t) = ±h(t) (3.90)

and the eigenvectors are

φ+ =

(
cos θ2

exp(iφ) sin θ
2

)
(3.91)

and the eigenvectors are

φ− =

(
exp(−iφ) sin θ

2

− cos θ2

)
(3.92)

One obtains
〈φ±|

dφ±
dt
〉 = ±idφ

dt
sin2 θ

2
(3.93)

Consider now a closed curve in the parameter space. Then the Berry phase becomes

β± = ±
∫ t

0
dt′
dφ

dt′
sin2 θ

2
= ±

∫ φ(t)

φ(0)
dφ sin2 θ

2
(3.94)

which for constant θ becomes ±2π sin2 θ
2 .

The two level system is a caricature of a general system in which, depending on parameters, a
degeneracy occurs. The degeneracy for the two level system occurs at h = 0. If we have discrete
energy states we may reduce the general system to a two level system if the level spacing between
the two almost degenerate states is small compared to the distance to the other states. In this
sense, the above treatment is generic for a Hamiltonian with a crossing point of two energy levels.

3.3.2 The Aharonov-Bohm effect

Consider two charged particles which move on two different paths from the same starting point
to the same end point, e.g. through a double slit. Each of the particles picks up a phase on its
path. The difference of the two phases is the phase a particle would pick up if it runs on a closed
path consisting of the first and the second reversed. Consider now the case where this closed path
encloses a region with a magnetic field. Even if the magnetic field vanishes along the path, the
magnetic vector potential will not vanish and influences the particle. This causes a phase the
particle pics up, it is given by the charge of the particle and the magnetic flux through the path.
This phase is the Berry phase for this setup. Experimentally it has been observed as a shift of the
interference pattern of the double slit experiment mentioned above.
To derive this phase, we follow closely the presentation by Berry [1]. He considers a magnetic

field consisting of a single flux line of flux Φ. The magnetic field vanishes outside this flux line. The
magnetic vector potential does not vanish outside this flux line, because for any curve C around
the flux line we have by definition of the flux∫

C
d~r · ~A(~r) = Φ (3.95)

39



3 Time dependent quantum phenomena

Consider now a particle in a confining box located at ~R. The box shall not contain the flux line.
Without a magnetic field the Hamiltonian is

H =
1

2m
~p2 + V (~r − ~R) (3.96)

where V is the potential of the confining box. We may assume that V vanishes inside the box and
imposes boundary conditions at the boundaries of the box, so that the eigenstates of the particle in
the box are standing waves inside the box. We denote the eigenfunctions in position representation
by ψn(~r− ~R) and the eigenvalues by En. If we now turn on the magnetic field with the single flux
line, the Hamiltonian becomes

H =
1

2m
(~p− e ~A)2 + V (~r − ~R) (3.97)

and the eigenfunctions are multiplied by a Dirac phase, i.e. are

ψn,Φ = exp(ie

∫ ~r

~R
d~r · ~A)ψn(~r − ~R) (3.98)

Let us now assume that we move the box such that ~R(t) moves on a closed circuit C around the
flux line such that the box never touches the flux. Then, we obtain

β = i

∫
C
d~R · 〈ψn,Φ|∇Rψn,Φ〉 (3.99)

The integrand can be calulated as

〈ψn,Φ|∇Rψn,Φ〉 =

∫
d3rψ∗n(~r − ~R)

(
−ie ~A(~R)ψn(~r − ~R) +∇Rψn(~r − ~R)

)
(3.100)

= −ie ~A( ~R) (3.101)

and therefore
β = eΦ (3.102)

This result is universal, it only depends on the magnetic flux Φ, not on the special form of C or on
any other special setup.

3.3.3 The Landau-Zener-Stückelberg problem

For details of the problem treated in this subsection, see [10], section 3.5, p. 253ff and for applica-
tions see [20]. It has also been discussed in the context of the solar neutrino problem [2].
The Landau-Zener-Stückelberg problem deals with the tunneling between two states in a system

where two energy levels are approach each other as a function of time. It was proposed in different
contexts independently by Landau, Zener, And Stückelberg and is therefore named after these
authors.
Since only two states are considered, the problem can again be described by a two-level system.

The Hamiltonian is
H = −1

2
vtσz −

1

2
∆σx (3.103)

For large negative values of t the particle sits in the state |σz = −1〉. We assume an adiabatic time
dependency. The adiabatic energies are

ε± = ±1

2

√
v2t2 + ∆2 (3.104)
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The adiabatic time dependence transports the tunnel system from the state |σz = −1〉 at large
negative values of t to the state |σz = +1〉 at large positive values of t. If, during this process, the
system tunnels, it ends up in the state |σz = −1〉 at large positive t. Let

U(ti, tf ) = T exp(i

∫ tf

ti

H(t)dt) (3.105)

be the time evolution operator from the initial time ti to the final time tf . The tunneling probability
for the system is

P = |〈σz = −1|U(−∞,∞)|σz = −1〉|2 (3.106)

We can explicitely calculate this probability by expanding the time-ordered potential. One obtains

〈σz = −1|U(−∞,∞)|σz = −1〉 =
∞∑
n=0

(−i)n∆n

∫ ∞
−∞

dtn

∫ tn

−∞
dtn−1 . . .

∫ t2

−∞
dt1

〈σz = −1|U0(tn,∞)σxU0(tn−1, tn)σx . . . σxU0(t1,−∞)|σz = −1〉 (3.107)

where U0 is the time evolution for ∆0. In the basis where σz is dialonal, U0 is diagonal. σx switches
between the two states |σz = ±〉. Only an even number of spin flips contribute. We obtain

〈σz = −1|U(−∞,∞)|σz = −1〉 =

∞∑
n=0

(−∆)n
∫ ∞
−∞

dt2n

∫ t2n

−∞
dt2n−1 . . .

∫ t2

−∞
dt1

exp(− i
2
v

2n∑
j=1

(−1)jt2j ) (3.108)

The integrals can be calculated and one finally obtains

〈σz = −1|U(−∞,∞)|σz = −1〉 =
∞∑
n=0

(−1)n

n!

(
π∆2

2v

)n
= exp(−πγ) (3.109)

where γ = ∆2/(2v) = τc/τt. τc = ∆/v is the time the system stays in the crossover region and
τt = 2/∆ is the tunneling time. The probability is therefore P = exp(−2πγ). The adiabatic
approach is valid if the variation in time is slow. This is the case if v is small. Since the only other
scale in the Hamiltonian is ∆, we need v � ∆2. Therefore, τc is large compared to τt and γ is
large. P is therefore small.
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4 Open quantum systems II

4.1 The spin-boson model revisited

We start this chapter with a seemingly simple model, namely the spin-boson model from section
2.3.2 but now with an additional time-dependent field

H = −∆

2
σx +

1

2
σz
∑
k

λk(bk + b†k) +
∑
k

ωk : b†kbk : +h(t)σz (4.1)

4.1.1 First example: a field quench

We let
h(t) = h0θ(−t) (4.2)

i.e. the external field is h0 for t ≤ 0 and is switched off at t = 0. We assume that at t = 0 the system
is in the ground state with field h0. Denote this field as ψ0. We then ask how the expectation value
of σz evolves in time for t > 0. This means we need to calculate the expectation value

P (t) = 〈ψ0|σz(t)|ψ0〉 (4.3)

All elements to calculate this expectation value are already present in section 2.3.2. We apply the
same unitary transformation to the Hamiltonian as before and obtain (see (2.86), (2.99))

H(` =∞) = −∆(∞)

2
σx +

∑
k

ωk : b†kbk : +h(t)σx
∑
k

χk(∞)(bk + b†k) (4.4)

We evaluate (4.3) at ` = ∞. H(` = ∞) commutes with σx, both have common eigenstates. For
h0 > ∆(∞) the ground state has 〈σx〉 = 1. In that subspace, the Hamiltonian has the form

H(` =∞, σz = 1, t < 0) =
∑
k

ωk(b
†
k +

h0χk(∞)

ωk
)(bk +

h0χk(∞)

ωk
) + const. (4.5)

For the ground state we obtain

bkψ0 = −h0χk(∞)

ωk
ψ0 (4.6)

Using the expression for σz(∞) from (2.99) we get

P (t) = 〈ψ0|σx
∑
k

χk(∞)(exp(iωkt)b
†
k + exp(−iωkt)bk)|ψ0〉 (4.7)

which yields

P (t) = −2h0

∑
k

χk(∞)2

ωk
cos(ωkt) (4.8)

The Fourier transform P̃ (ω) of P (t) is therefore related to the Fourier transform C̃(ω) of the
equilibrium correlation function C(t) through P̃ (ω) = −2h0C̃(ω)/ω. We got C̃(ω) ∼ J(ω) for
small ω which means that for the Ohmic bath J(ω) ∼ ω the Fourier transform P̃ (ω) approaches a
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4 Open quantum systems II

constant for small ω which means that the correlation function P (t) falls of exponentially for large
t.
Let us note that the calculations we needed to obtain these result are not complicated. This

shows the strength of the flow equations approach. Other methods to calculate P (t) and C(t) like
a field theoretic approach or a Keldysh-type formalism are much more evolved and sometimes even
fail to give the correct long time behaviour.

4.1.2 Adiabatic time evolution and the Landau-Zener-Stückelberg problem

The Landau-Zener-Stückelberg problem has applications e.g. in the area of superconducting
quantum bits, see e.g. [20]. For such an application, the coupling of the two-level system to
an environment is essential. For a general discussion of the dissipative case, see also section 11.5
and 12.5 of [10].
The Hamiltonian (3.103) can be diagonalized via the unitary transformation

U(t) = exp(− i
2
θ(t)σy) (4.9)

with
θ(t) = − tan−1(

vt

∆
) (4.10)

If we add a bath to the Hamiltonian, i.e. (4.1) with h(t) = −vt/2, and transform this Hamiltonian
with the same unitary transformation, we obtain

Had(t) = U(t)H(t)U †(t)

= −ε+(t)σx +
1

4
(

∆

ε±
σz +

vt

ε+
σx)

∑
k

λk(bk + b†k) +
∑
k

ωkb
†
kbk (4.11)

This is only the adiabatic Hamiltonian. Since the full transformed Hamiltonian contains the addi-
tional term

−iU(t)
dU †

dt
=

1

2

dθ

dt
σy =

1

2

v/∆

(v/∆)2t2 + 1
σy (4.12)

which is small compared to ε+(t)σz if v � ∆2, the adiabatic treatment is valid if v � ∆2.
There have been several attempts to deal with the adiabatic problem described by Had. In

addition to the two time scales τc = ∆/v (crossover time) and τt = 2/∆ (tunneling time) the
correlation time 1/ωc occurs. Grifoni and Hänggi [10] argue that for a fast crossover, γ � 1, when
τc is the shortest time scale, neither the system nor the bath are fast enough to react so that the
result P = exp(−2πγ) = 1− 2πγ is still valid. This argument is problematic because the adiabatic
limit means γ � 1, see 3.3.3. In the limit of slow crossover, which is the adiabatic limit, one idea
could be to set approximately

1

4
(

∆

ε±
σz +

vt

ε+
σx) =

{
1
2σz for |t| < τ̃c
1
2σx for |t| > τ̃c

(4.13)

For |t| > τ̃c, the spin is in one of the eigenstates of σx. For |t| < τ̃c, the approximate Had looks like
the usual spin-boson model and the coupling of the bath yields a renormalized tunneling frequency
∆∞.
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4 Open quantum systems II

4.2 Quantum bits in an environment

From sections (3.1.2) and (3.2.2), where the effect of coherent destruction of tunneling and the
reversal of the sign of the kinetic energy in lattice modes are treated, we learn that the properties
of a quantum system can be controlled and changed by applying a suitable time-dependent field.
In this section, we discuss another model in which this possibility is used.
For the kicked rotator, section (3.2.3), we saw that a time dependence that is given by a series of

kicks is much easier to deal with than a continuous time dependence. In this section we will apply
this insight to a concrete system which is of importance in current research.
This section is mainly based on a paper by Götz Uhrig [22, 23]. The model, he proposes for a

quantum bit in an environment is similar to the spin-boson model

H =
1

2
σz
∑
k

λk(bk + b†k) +
∑
k

ωk : b†kbk : −1

2
hz(t)σz −

1

2
hx(t)σx −

1

2
hy(t)σy (4.14)

where for J(ω) =
∑

k λ
2
kδ(ω − ωk) we take an Ohmic bath J(ω) = 2αωfc(ω/ωc) where ωcis a high

energy (ultra-violet) cutoff and fc(x) is a cutoff function. e.g. fc(x) = exp(−x) or fc(x) = θ(1−x).
Let us first take hx,y(t) = 0. The Hamiltonian 4.14 can be easily diagonalized by the unitary

transformation
S = exp(iσzK), K = i

∑
k

λk
2ωk

(bk − b†k) (4.15)

and one gets H =
∑

k ωk : b†kbk : −1
2hz(t)σz up to an unimportant additive constant. We let

hz(t) = h0 > 0 for t < 0 and hz(t) = 0 for t ≥ 0. σz commutes with the Hamiltonian and is
therefore a good quantum number. For t < 0 the system is in the ground state with σz = 1.
Let us now take as hx(t) = hx0δ(t), hy(t) = 0. This means that a state at t = 0− is transformed

to a state t = 0+ by U0 = exp(ihx0σx/2) = cos(hx0/2) + iσx sin(hx0/2), which corresponds to a
rotation of the quantum bit around the x-axis. We obtain

U0σzU
†
0 = (cos(hx0/2) + iσx sin(hx0/2))σz(cos(hx0/2)− iσx sin(hx0/2)) (4.16)

= (cos2(hx0/2)− sin2(hx0/2))σz + 2 cos(hx0/2) sin(hx0/2)σy (4.17)
= cos(hx0)σz + sin(hx0)σy (4.18)

Let us choose hx0 = π
2 which means that σz is rotated to σy. This means that the ground state

with σz = 1 at t < 0 is transformed to the state with σy = 1 and t = 0+.

U0|σz = 1〉 =
1√
2

(|σz = 1〉+ i|σz = −1〉) = |σy = 1〉 (4.19)

We now want to measure σy at time t with h(t) = 0 for t > 0. Since H does not depend on time,
this can be done by calculating

σy(t) = exp(iHt)σy exp(−iHt) (4.20)

. We get
〈σy(t)〉 = 〈〈σy = 1|σy(t)|σy = 1〉〉T (4.21)

The outer 〈.〉T is the thermal expectation value for the bosonic bath. We calculate the right hand
side by transforming everything using Sin (4.15) to have a simple representation for H.

〈σy(t)〉 = 〈〈σy = 1|SS†σy(t)SS†|σy = 1〉〉T

Using
S†σyS = cos(2K)σy − sin(2K)σx (4.22)
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we obtain
S†σy(t)S = cos(2K(t))σy − sin(2K(t))σx (4.23)

with
K(t) = i

∑
k

λk
2ωk

(exp(−iωkt)bk − exp(iωkt)b
†
k) (4.24)

Further, we have

S†|σy = 1〉 =
1√
2

(exp(−iK)|σz = 1〉+ i exp(iK)|σz = −1〉 (4.25)

so that we finally obtain

〈σy(t)〉 =
1

2
〈(exp(iK) exp(−2iK(t)) exp(iK) + exp(−iK) exp(2iK(t)) exp(−iK)〉T (4.26)

K and K(t) are operators which are linear in the bosonic operators. Therefore, the commutator
is a number and we can apply the formular exp(A) exp(B) = exp(A+ B) exp([A,B]) which holds
if [A,B] is a number. Further, for an operator C that is linear in the bosonic operators one has
〈exp(C)〉 = exp(〈C2〉/2). This finally yields

〈σy(t)〉 = cos(ϕ(t)) exp(−2χ(t)) (4.27)

with
ϕ(t) =

∫ ∞
0

dω J(ω)
sin(ωt)

ω2
(4.28)

χ(t) =

∫ ∞
0

dω J(ω)
sin2(ωt)

ω2
coth(βω/2) (4.29)
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Figure 4.1: Signal vs. time (4.27). Solid lines for T = 0; dashed ones for T = 0.1ωD . Panels (a)
(linear) and (b) (double logarithmic) from bottom to top for α = 0.25, 0.1, 0.01, 0.001.
Panel (c) (double logarithmic) displays 1−s(t) for the same values from top to bottom.
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Figure 4.1 shows s(t) = 〈σy(t)〉 from (4.27) in different representations for an Ohmic bath

J(ω) = 2αfc(ω/ωD) with fc(x) = θ(1− x) (4.30)

with the cutoff frequency ωD. One clearly sees the loss of coherence, s(t) = 〈σy(t)〉 falls down as a
function of t. As discussed in [22], an experimentally acceptable level for 1− s(t) lies between 10−4

and 10−2. The figure shows that for weak couplings α . 0.01, values ωDt ≈ 1 can be reached which
corresponds in experimental situation to times of the order of 1ps. For more realistic couplings
α & 0.1 only very small values ωDt are possible, thus coherence gets lost already after very tiny
fractions of 1ps.
The main idea proposed in [22] is to stabilize the Q-bit by applying a sequence of pulses in y-

direction, i.e. to apply a field hy(t) =
∑

n hynδ(t−tn). This was not a totally new idea, it was known
before that one or two pulses can stabilize the Q-bit to a certain extend. Actually, Uhrig proposes
to look at s(tf ) at some final time tf and to take tn = δntf with 0 < δ1 < δ2 < . . . < 1. A pulse in
y-direction corresponds to a rotation and he chooses π-pulses, i.e. rotations around the y-axis by
an angle π. This effectively changes the sign of σz and thus the sign of the spin-bath-coupling in
the Hamiltonian (4.14).
Mathematically, the calculation is similar to what we did so far, only more complicated. The

rotation at time tn corresponds to a unitary transformation Un = exp(ihynσy) = cos(hyn) +
iσy sin(hyn), which for the π-pulse that corresponds to hyn = π yields Un = iσy. Since the algebra
of the Pauli matrices is closed and since in the unitary time evolution between two subsequent
pulses is trivial after the application of the unitary transformation S, the entire calculation is just
a matter of doing the algebra, but it can be done exactly. This allows to calculate s(t) for this case
as well and to derive and optimal sequence δn. The outcome is that by using 100 pulses, one can
achieve times up to ωDt ≈ 103.
To summarize this section, we showed that

1. Q-bits loose their coherence after a very short time which limits the calculation time of
quantum computers.

2. The coherence time of Q-bits can be significantly enhanced by using suitable pulses. This
can be calculated explicitly and exactly in a simple model given by the Hamiltonian (4.14)
and is already applied in experimental situations.

3. A time dependent Hamiltonian where the time dependence is a series of pulses or kicks with
a unitary time evolution given by a time independent Hamiltonian between those kicks can
be calculated much more easily than a for a Hamiltonian with a continuous time dependence.

4.3 Periodically driven systems, quantum stochastic resonance

Periodically driven dissipative quantum systems play an important role in the theory of matter
and radiation with many applications from high energy physics to condensed matter physics and
quantum chemistry. Many phenomena can again be described by the driven dissipative two-level
system. In this section I will only give a very brief qualitative look on these systems. For a more
comprehensive discussion, see the book by Ulrich Weiss [26], chapter 22, or the review by Grifoni
and Hänggi [10].
One of the important phenomena in driven classical dissipative systems is stochastic resonance.

Consider a particle in a symmetric double well potential that is coupled to a bath and is subject to
a periodic driving force. The full time-dependent potential is V (x, t) = −a

2x
2 + b

4x
4−A0x cos(ωt).

For the non-driven system, there are two minima at xm = ±
√
a/b and a potential well of height

∆V = a2/4b between them. The system has a characteristic time, scale, the mean first passage
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time for transitions between the two minima τ ∝ exp(−∆V/T ). If one couples the periodic force
F (t) = A0 cos(ωt) to the system, one obtains a periodic change of ∆V . The particle prefers to
sit in the deeper minimum. If the driving frequency ω corresponds to the inverse of the mean
first passage time, one may get a synchronization between the external driving force F (t) and the
motion of the particle. The synchronization can be measured e.g. by the signal to noise ratio. For
the simple classical system this ratio can be calculated. For a given frequency ω this means that
there is an optimal value for the noise strength, i.e. the temperature, where the signal to noise
ratio has a maximum. This effect is called stochastic resonance. It has been observed in many
system ranging from biology to laser physics or astronomy. The observed amplification factor in
those systems has values up to 106.
The question now is whether a similar effect can be observed in the quantum regime. This is

indeed the case. At low temperatures one observes the so called quantum stochastic resonance
(QSR).
In principle, we have all the material at hand to calculate the correlation functions and the

signal to noise ratio. At low temperature one can use the two-level system One needs to know the
long-time behaviour. The periodic time dependence can be treated via the Floquet map and the
effective operator, the latter can then be dealt with using flow equations. Many other methods
have been used to treat that system, see the above references. The main results are:

1. For low temperatures, i.e. T � ωc and weak coupling to the bath (α < 1 for the Ohmic
bath), a static asymmetry is needed to observe QSR. The static asymmetry must be larger
than the driving strength. For stronger coupling, QSR occurs also in the symmetric case.

2. QSR occurs as an effect of the interplay between coherent and incoherent dynamics. The
incoherence must dominate the coherent processes.

3. QSR as the usual stochastic resonance can be well understood within a linear response theory.
Non-linear effects occur and can be taken into account but are not necessary to calculate the
effect.
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5 The (fractional) quantum Hall effect

5.1 Introduction

The quantum Hall effect was found 1980 by von Klitzing and published in a paper by von Klitz-
ing, Dorda, and Pepper [14], Klaus von Klitzing received in 1985 the Nobel prize. For a general
introduction I refer to [19]. The quantum Hall effect can be observed in two dimensional elec-
tron systems in a strong perpendicular magnetic field. Under certain conditions one observes a
conductivity tensor of the form

σ =

(
0 −n e2h
n e

2

h 0

)
(5.1)

The Hall conductivity is thus σH = n e
2

h . For the usual quantum Hall effect, n is an integer. The
most remarkable point is the experimental precision with which this number can be obtained. The
relative precision is 3 · 10−7 or even better. Therefore, the quantum Hall effect can be used to
determine the fine structure constant e2

~c ≈
1

137 with a very high precision since c is fixed. In the
fractional quantum Hall effect n is a fraction with a typically small odd denominator. The precision
is less but still high. The theory has to explain why the effect occurs and why the experimental
precision is so high. This is remarkable since the two dimensional electron system is formed at
the interface between two semi-conductors, e.g. in a Si-MOSFET or in a GaAs/GaAlAs hetero
structure. At the interface between two semi-conductors one has lots of imperfections, disorder, so
that such a high precision is really astonishing.

The Hall effect

The most simple theory takes quantum effects only in a semi-classical approximation into account.
The theory is based on the assumption that the two dimensional electrons have a mean free path `0
or equivalently a mean free flight time τ0. Both are related because the electron move at the Fermi
velocity , i.e. `0 = vF τ0. In an electric field ~E an electron is accelerated between two collisions.
The velocity between two collision increases by ∆~v = −e ~Eτ0/m. Adding up the contributions of
all electrons, one obtains the current density ~j = σ0

~E where

σ0 = ρe2τ0/m (5.2)

Quantum effects are included only via an effective mass m and via the mean free flight time τ0.
If we apply in addition a magnetic field, the Lorentz force acts on the electrons and we obtain

~j = σ0
~E − σ0

ρec
~j × ~B (5.3)

In a two dimensional system we therefore obtain

σ−1 =

(
σ−1

0
B
ρec

− B
ρec σ−1

0

)
(5.4)

The conductivity is therefore

σxx =
σ0

1 + ω2
c τ

2
0

, σxy =
ρec

B
+
σxx
ωcτ0

(5.5)
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where ωc = eB
mc is the cyclotron frequency. Note that in the limit τ0 → ∞ one obtains the result

for free electrons.

Experimental realisation

As already mentioned, the quantum Hall effect is observed at the interface of two semi-conductors,
to be precise, at the interface of a semi-conductor (e.g. doped Si, GaAlAs) and an insulator (SiO2,
GaAs). The typical systems are Si-MOSFETs or GaAs-GaAlAs hetero structures. The basic idea
is relatively simple: Via a gate one applies an electric field perpendicular to the interface so that
electrons move to the interface. Since they cannot enter the insulator, they form a two dimensional
electron gas at the interface. At the interface, the energy band is lower than in the bulk so that
electrons concentrate at the interface. They form an inversion layer. The electrons are bound in
the direction perpendicular to the interface, but they can move relatively freely parallel to the
interface. Due to defects and impurities, esp. in the doped semi-conductor, the mean free path is
expected to be short.

Landau levels

We now apply a magnetic field perpendicular to the interface. We first neglect all impurities and
interactions, we just look at a free electron in two dimensions with a perpendicular magnetic field.
The Hamiltonian is

H =
~2

2m

[(
1

i

∂

∂x
− eB

~c
y

)2

− ∂2

∂y2

]
(5.6)

where we chose a Landau gauge Ax = −yB, Ay = 0. Since x does not appear as a variable in the
Hamiltonian, we can use the ansatz

ψ ∝ exp(ikx)φ(y) (5.7)

for the eigenfunctions. This leads to the eigenvalue equation

~ωc
2

(
−l2B

∂2

∂y2
+

(
y

lB
− lBk

)2
)
φ = Eφ (5.8)

where lB = (~c/eB)1/2 is the magnetic length. This is the eigenvalue equation of a shifted harmonic
oscillator. The solutions are therefore

φn,k ∝ Hn(y/lB − lBk) exp(−(y − l2Bk)/2l2B) (5.9)

Enk = ~ωc(n+ 1/2) (5.10)

and the eigenvalues do not depend on k. We therefore obtain a huge degeneracy. The degenerate
eigenvalues are called Landau levels. The number of states in a Landau level is F/2πl2B, where F
is the area of the system. Boundary effects are neglected here. The density of states is given by

nB =
1

2πl2B
=
eB

hc
(5.11)

The single-particle states constructed in that way are localized in y-direction and extended in
x-direction. But the high degeneracy allows to take arbitrary linear combinations of states with the
same eigenvalue. Therefore, one can as well construct eigenstates that are localized in x-direction
and extended in y-direction or that are localized in both directions.
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If a Landau level is completely filled, the Fermi energy lies between two Landau levels in a region
without states. That means that there is no scattering and no diffusion, i.e. τ0 = ∞. The filling
factor

ν =
ρ

nB
(5.12)

is an even number and for the conductivity tensor one obtains

σ−1 =

(
σ−1

0
B
ρec

− B
ρec σ−1

0

)
=

(
0 h

νe2

− h
νe2

0

)
(5.13)

A second argument yields the same result. Is uses the Lorentz invariance. A system with a
magnetic field ~B and a perpendicular electric field ~E can be transformed to another system with a
Lorentz transformation with velocity

~v = c
~E × ~B

B2
(5.14)

which contains no electric field and therefore no macroscopic current. In the original system, the
current density is therefore

~j = −ρe~v (5.15)

which yields the same conductivity tensor. Therefore, without imperfections, defects or impurities
one always obtains

σxx = 0, σxy =
ρec

B
= ν

e2

h
(5.16)

The question now is, what is the influence of disorder.

5.2 The integer quantum Hall effect

In this section we will discuss two different arguments which may explain the plateaus one observes
experimentally in the integer quantum Hall effect. The main goal is a qualitative understanding
of the effect, not the theoretical details. We are mainly interested in the fractional quantum Hall
effect, where interactions play a crucial role.

5.2.1 Disorder

The integer quantum Hall effect can be explained on a very basic level as follows: We saw that
a completely filled Landau level yields a contribution of e2

h to σxy. The question is now, what
happens for a partially filled Landau level. We have many imperfections, defects and impurities, in
the system. What is the effect of disorder? Generically, disorder leads to localization, this is the so
called Anderson localization, see section 3.2.3. P. W. Anderson received the Nobel prize (together
with Mott and van Fleck) in 1977 for his contribution to the theory of localization. Suppose that
the disorder is not too large. Typically, one describes a disordered system by a potential V (x, y).
Suppose that the typical energy differences of the potential are small compared to ~ωc. Then, in a
first order perturbational treatment, one has to diagonalize the Hamiltonian

H0 = P0V (x, y)P0 (5.17)

where P0 is the projector onto a Landau level. We take the Landau level which contains the Fermi
energy. A potential V (x, y) that describes disorder is often realized as a random potential. Such
a potential lifts the degeneracy of the Landau level and tends to localize the electrons. Electrons
close to deep minima or maxima of the potential will be stronger localized and will have an energy
far away from the original energy of the Landau level. On the other hand, we know that the
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Figure 5.1: The cylinder geometry
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complete Landau level must still yield a contribution e2

h to the Hall conductivity. This contribution
cannot come from localized states. It must come from extended states which we expect to find in
the middle of the broadened Landau level. If we now change the filling factor, e.g. by changing
the magnetic field, the Fermi energy will move through the spectrum. There are regions in the
spectrum where all states are localized and do not contribute to the current. In these regions we
should observe a zero diagonal conductivity and a Hall conductivity which is an integer multiple
e2

h .
It is of course possible to formulate this argument in a mathematically more precise way. A field

theoretic formulation can be found in Chapter 5 by A. M. M. Pruisken in [19].

5.2.2 Laughlins gauge argument

Let us choose the vector potential to be

Ax = −By +
Φ

2πR
, Ay = 0 (5.18)

so that the Hamiltonian reads

H =
~2

2m

[(
1

i

∂

∂x
− eB

~c
y +

eΦ

2πR~c

)2

− ∂2

∂y2

]
+ V (x, y) (5.19)

Further, we assume periodic boundary conditions in x-direction, i.e.

x = ϕR (5.20)

where 0 < ϕ ≤ 2π. This corresponds to a cylinder geometry. The potential V (x, y) contains
the Hall voltage VH applied in y-direction, a boundary potential depending only on y, and the
disorder potential coming from the impurities. For V = 0 the energy levels are the Landau levels
characterized by the Landau index n. Within a Landau level one introduces a second index. The
eigenfunctions are

ψn,k ∝ exp(ikx)Hn(y/lB − lB(k +
eΦ

2πR~c
)) exp(−(y − l2B(k +

eΦ

2πR~c
)/2l2B) (5.21)

where k = l/R, l ∈ Z because of the periodic boundary conditions. We can write as well

ψn,l ∝ exp(2πilϕ)Hn

(
y

lB
− lB
R

(l +
eΦ

hc
)

)
exp

(
−1

2

(
y

lB
− lB
R

(l +
eΦ

hc
)

)2
)

(5.22)
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The eigenvalues do not depend on l or Φ. We now introduce a potential V0(y) that fixes the
boundary. It is still possible to describe the states by the two indices n and l, but now the
eigenvalues may depend on l and Φ. The dependency En,l(Φ) is not arbitrary. The x-dependency
of the wave function is not affected by V0(y) and the Hamiltonian depends only on l+ eΦ

hc , therefore
we have En,l(Φ) = En(l + eΦ/hc) and

En,l(Φ +
hc

e
) = En,l+1(Φ) (5.23)

V0(y) is only at the boundary different from 0. The states are therefore still localized in y-direction
close to l2B

R (l + eΦ
hc ) and only those states where the localization is close to the boundary will

be affected by the potential. Therefore, only states close to the boundary will have an energy
significantly different from ~ωc(n+ 1

2). The contribution of a state to the current in x-direction is

In,l = −c
dEn,l(Φ)

dΦ
(5.24)

Only the states close to the boundary have a significant dependency on Φ. They yield a contribution
to the current. The total current is the sum over all contributions In,l weighted with the occupation
number. Averaging over Φ yields

I =
e

h

∫ hc/e

0
dΦ
∑
n,l

nn,lIn,l

= − e
h

∑
n,l

nn,l(En,l(hc/e)− En,l(0))

= − e
h

ν∑
n=0

(En,lmax(0)− En,lmin(0))

=
e2

h
νVH (5.25)

Therefore σH = I/VH is an integer multiple of e2/h. This argument remains correct if one intro-
duces disorder to the system. In that case, the eigenenergies En,l(Φ) depend separately on l and
Φ and not only on l + eΦ

hc . But the Hamiltonian is still periodic in Φ and therefore we may still
apply the above argument. The disorder will localize most of the eigenstates, but some of them
must still carry a current. With this argument it becomes clear that in this geometry the current
carrying states are those close to the boundary.
Experimental systems always have a boundary, also in x-direction. If one introduces a boundary

potential in x-direction as well, the argument cannot be applied directly but one still expects that
the current is carried by states which are extended around the boundary. On the other hand, it is
as well possible to formulate the theory with periodic boundary conditions in both directions. In
that case there are no boundary states but there are still states carrying the current.
There is one important note to make here: The argument still holds if one adds an arbitrary

potential V (x, y) as in the initial Hamiltonian, as long as this potential is small and does not mix
states out of different Landau levels.

5.2.3 Topological arguments

There are two types of quantum numbers in quantum physics: Those related to symmetry and
those related to topology. An example for a quantum number related to symmetry is the angular
momentum. It is a good quantum number if the system is rotationally invariant. The relationship
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5 The (fractional) quantum Hall effect

between symmetry and good quantum numbers is given by Noether’s theorem. In systems with
disorder and arbitrary boundaries one cannot expect symmetries. Therefore it is natural to assume
that the quantization of the Hall current is related to topology. This is indeed the case. For details
see chapter 4 by D.J. Thouless in [19]. One can show that the Hall conductivity is determined by
a topological invariant, the so called Chern number. The Chern number is related to the Berry
phase. It is given by the integral of the Berry curvature over all states in an energy band.

5.3 The fractional quantum Hall effect

The fractional quantum Hall effect was found by Tsui, Störmer and Gossard at the end of 1981
and published in 1982 [21]. First theoretical approaches followed immediately, the main theoretical
achievement was the work by Laughlins [15] who described the ground state of the interacting
many-electron system as a quantum fluid. The Nobel Prize in Physics 1998 was awarded to Robert
B. Laughlin, Horst L. Störmer, Daniel C. Tsui for their discovery and theoretical work on the
fractional quantum Hall effect.

5.3.1 Wave functions

Lowest Landau level

Models with non-interacting electrons as introduced in the last section cannot explain the fractional
quantum Hall effect. For the fractional quantum Hall effect, the interaction between electrons is
important. The Hamiltonian is

H =
∑
j

[
1

2m

(
~
i
∇j +

e

c
~Aj

)2

+ V1(~rj)

]
+

1

2

∑
j 6=k

V (|~rj − ~rk|) (5.26)

V1(~r) is a single particle potential. In the simplest way it describes a homogeneous background. In
a more complete model in contains the effect of the lattice, of imperfections, of the boundary, etc.
The interaction V (|~r|) is typically isotropic. An ansatz would be the Coulomb interaction

V (|~r|) =
e2

|~r|
(5.27)

or a screened interaction, which may be more suitable in the case we have in mind. The electrons
move in a strong magnetic field. We assume that the spin of the electrons is polarised and can
therefore be ignored. This is a suitable approximation if the filling factor ν ≤ 1. For the vector
potential we choose a symmetric gauge

~A =
B

2
(y~ex − x~ey) (5.28)

m is the effective mass, it depends on the material we are looking at. For GaAs hetero structures
m = 0.07me is a typical value. In the following I take as a first ansatz a constant background
potential V1 which can be put to 0. The single particle Hamiltonian now reads

H =
1

2
~ωc

[(
−ilB

∂

∂x
− y

2lB

)2

+

(
−ilB

∂

∂y
+

x

2lB

)2
]

=
1

2
~ωc[z∗z + z∗∂z∗ − z∂z − ∂z∂z∗ ] (5.29)

where
z =

1

2lB
(x− iy), z∗ =

1

2lB
(x+ iy) (5.30)
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∂z = lB

(
∂

∂x
+ i

∂

∂y

)
, ∂z∗ = lB

(
∂

∂x
− i ∂

∂y

)
(5.31)

We define
a† =

1√
2

(z∗ − ∂z) (5.32)

a =
1√
2

(z + ∂z∗) (5.33)

where [a, a†] = 1, and obtain

H = ~ωc(a†a+
1

2
) (5.34)

A wave function in the lowest Landau level obeys the condition

aψ = 0 (5.35)

zψ + ∂z∗ψ = 0 (5.36)

with the general solution
ψ = f(z) exp(−z∗z) (5.37)

f(z) is an arbitrary analytic function depending on z. We assume that ~ωc is the by far largest
energy scale and that ν < 1. The Hilbert space can then be restricted to the lowest Landau level.
A general multi-particle wave function in the lowest Landau level has the form

Ψ = f(z1, . . . , zNe) exp(−
∑
i

z∗i zi) (5.38)

where f is again an analytic function.

Construction of a single particle basis and angular momentum

Before we discuss a variational ansatz for the many particle ground state, let us introduce a suitable
single particle basis. The Hamiltonian has a rotational symmetry, it commutes with the angular
momentum Lz parallel to the magnetic field. One has

Lz = ix
∂

∂y
− iy ∂

∂x

= z∂z − z∗∂z∗ (5.39)

Lzf(z) exp(−z∗z) = zf ′(z) exp(−z∗z) (5.40)

The eigenstates of Lz are therefore

ψm = zm exp(−z∗z) (5.41)

with the eigenvalue m. The ψm for a complete and orthogonal system of states within the lowest
Landau level, since they are the eigenfunctions of the operator Lz. Introducing a suitable nor-
malization the set {ψm, m = 1, . . . ,∞} forms an orthonormal basis of the single-particle Hilbert
space. |ψm(z, z∗)|2 is rotational invariant and has a maximum at |z|2 = m. To deal with a finite
system, we restrict the Hilbert space to values m ≤ M , the filling factor is then ν = Ne/M . This
corresponds to a disk geometry with a soft boundary.
A many particle wave function

Ψ = f(z1, . . . , zNe) exp(−
∑
i

z∗i zi) (5.42)

is an eigenfunction of Lz, if f(z1, . . . , zNe) is a homogeneous polynomial in the variables.
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5 The (fractional) quantum Hall effect

Laughlins ansatz for the ground state

Because of the projection to the lowest Landau level the only important contribution in the Hamilto-
nian is the interaction. There is no single particle Hamiltonian any more. Laughlins idea is that
the electrons should avoid each other as good as possible. We therefore look for an ansatz which is
homogeneous and where the electrons have a large distance between each other. An ansatz, which
was very successful in the description of liquid He3 is the Jastrow ansatz. It has the form∏

j<k

f(~rj − ~rk) (5.43)

In our case this means
Ψ =

∏
j<k

f(zj − zk) exp(−
∑
i

z∗i zi) (5.44)

This wave function must have the following properties

• It should be an eigenfunction ofLz. Therefore f(z) ∝ zm.

• It should be antisymmetric with respect to permutations of two particles. Therefore, m must
be odd.

This means that the Jastrow ansatz yields

Ψ = Ψm =
∏
j<k

(zj − zk)m exp(−
∑
i

z∗i zi) (5.45)

Ψm is a wave function with an angular momentum Lz = mNe(Ne−1)/2. The highest power which
occurs for a single argument zj is M = m(Ne− 1). As a consequence, the filling factor of the wave
function is ν = 1/m. For a fixed density, i.e. a fixed filling factor, the Jastrow ansatz has no free
parameter, the wave function is fixed.
The question is whether Ψm is a good ansatz for the ground state of the Hamiltonian, and if

yes, why. To clarify this we look at two different calculations which have been done quite early
after the publication of this ansatz by Laughlin. The first is the diagonalization of the Hamiltonian
for small numbers of particles. An exact diagonalization allows to calculate the overlap of the
true ground state with Ψm. A good overview of such calculations can be found in the book by
T. Chakraborty and O. Pietiläinen [4]. It turns out that the overlap is better for short range
interactions and that for the bare Coulomb interaction the overlap is about 99% per particle. The
calculation have been done with up to 7 electrons for ν = 1/3. The Hilbert space dimension is(

21
7

)
, the diagonalizations are done using a Lanczos algorithm.

The numerical calculations show that for short range interactions the overlap is even better.
Since the electrons in our case have all the same spin, a short range interaction of Hubbard type,
which would be V (r) = V0δ(r) in the continuum, has no effect. The Pauli principle interdicts two
electrons with the same spin at the same place. The shortest possible interaction is therefore

V (r) = V2∇2δ(r) (5.46)

One can show that Ψm is the exact ground state for such a short range interaction. We will come
back to this point. It supports the view that Ψm describes the ground state wave function quite
well.
Let us mention that it is possible to formulate a Laughlin type wave function as well for systems

with periodic boundary conditions. This is useful because in such a case the gauge argument
formulated by Laughlin for the integer quantum Hall effect can be applied. We discuss periodic
boundary conditions below.
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5 The (fractional) quantum Hall effect

Properties of Ψm

Let us first discuss the case m = 1.

Ψ1 =
∏
j<k

(zj − zk) exp(−
∑
i

z∗i zi) (5.47)

The factor
∏
j<k(zj − zk) is a so called Vandermonde determinant. One has∏

j<k

(zj − zk) = (−1)Ne(Ne−1)/2
∑
P

(−1)P
∏
i

ziP (i) (5.48)

Up to a normalization factor, Ψ1 is the Slater determinant of the Ne single particle basis states
ψm, m = 1, . . . , Ne. Therefore, Ψ1 is the exact ground state of the system for filling factor ν = 1.
Let us now discuss general wave functions Ψm. One has

|Ψm|2 = exp(−βφm(z1, . . . , zNe)) (5.49)

This is the distribution function of the electrons. It can be interpreted as a classical gas with a free
energy φm(z1, . . . , zNe). We choose β = 2/m and obtain

φm(z1, . . . , zNe) = −m2
∑
j<k

ln |zj − zk|+m

Ne∑
l=1

|zl|2 (5.50)

This is the free energy of a classical two-dimensional one-component plasma with charge m. The
general free energy of a classical two-dimensional one-component plasma is

φm(z1, . . . , zNe) = −e2
∑
j<k

ln |zj − zk|+
π

2
ρ0e

Ne∑
l=1

|zl|2 (5.51)

Here, the first term represents the two-dimensional Coulomb repulsion of the particles and the
second term represents the attractive interaction with a homogeneous background with a charge
density ρ0. In our case we have

ρ0 =
2

π
(5.52)

The plasma is neutral, the particle density is

ρ =
2

πm
(5.53)

Th physical properties of the two-dimensional single-component plasma is well understood. For not
too large m it forms an incompressible fluid. It has a homogeneous density. The most important
quantity to look at is the pair correlation function

g(z1, z2) =
Ne(Ne − 1)

ρ2

∫
d2z3 . . . d

2zNe |Ψm|2∫
d2z1 . . . d2zNe |Ψm|2

(5.54)

g describes the correlation of two particles. For a translational invariant and isotropic system, it
depends only on r = |z1− z2|. For large r the function tends to 1. For small r it decays like ∝ r2m.
The interaction energy is

EWW =
1

2

∫
d2zg(|z|)V (|z|) (5.55)
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Taking into account the homogeneous background, the total energy is

E =
1

2

∫
d2z(g(|z|)− 1)V (|z|) (5.56)

For a short range interaction V (z) = V2∇2δ(z) we have E = EWW . If g(r) decays faster than r2

one obtains E = 0. Since E is non-negative, Ψm is a ground state of the system, as stated above.
Further, one can show that Ψm is the only ground state for m = 3. For m = 5 it is not unique but
it becomes unique if a second term is introduced to the interaction V (z) = (V2∇2 + V4(∇2)2)δ(z).
Similar results can be shown for larger values of m. This explains the above proposition that Ψm

is the exact ground state of the system for short range interactions.
The function g(r) shows the typical characteristics of an incompressible fluid. It vanishes suffi-

ciently fast at r = 0, has a single maximum at some characteristic value of r and tends to 1 without
further oscillations for large r. For a crystal g(r) shows oscillations. For m = 1 we can calculate
g(r) exactly, one obtains

g(r) = 1− exp(−r2) (5.57)

The wave function Ψm therefore describes for not too large m an incompressible quantum fluid.
For an incompressible quantum fluid one expects an energy gap between the ground state and the
low lying excitations. Let us now look at the low lying excitations.

5.3.2 Elementary excitations

We use the quasi-particle concept to describe the elementary excitations. We constrict quasi-
particles and -holes. Let εp and εh be the energy of a quasi-particle or -hole respectively. Then,
ε = εp + εh is the excitation energy of an uncharged excitation. In Laughlin’s original formulation,
he created quasi-particles or -holes by changing M instead of Ne. Let us first discuss a quasi-hole.
It can be obtained by increasing M .
For a given wave function Ψ, M is determined by the number of zeros the wave function has as

a function of a single particle coordinate zi. Increasing M means increasing the number of zeros.
The simplest state is one with an additional zero, i.e. a state with M + 1 zeros. We let

Ψ(−)
m = Sz0Ψm (5.58)

Sz0 =

Ne∏
j=1

(zj − z0) (5.59)

The wave function Smz0Ψm corresponds to a wave function with filling factor 1/m and Ne + 1 elec-
trons, where one electron at z0 is taken out. Ψ

(−)
m ca therefore be interpreted as a hole where a 1/m

fraction of an electron was removed. The state is a state with a fractional charge. The quasi-hole
generated at z0 via Sz0 has the charge e/m. The same holds true for the classical two-dimensional
one-component plasma. The multiplication with Sz0 corresponds to adding −m

∑
j ln |zj − z0| to

φm, and therefore to a missing charge of 1, whereas the particles forming the plasma have a charge
m.
Because of the translational invariance of the system the energy of the quasi-hole does not depends

on z0. One can determine the energy either by diagonalizing small systems numerically like for the
ground state or by calculating the expectation value of the Hamiltonian in the state Ψ

(−)
m , which as

well must be done numerically. The typical energy of the quasi-hole is 0.025e2/lB. At typical field
strength B ≈ 10 − 20T the excitation energy corresponds to a temperature of 4 − 8K. This is in
good agreement with the experimental fact that the fractional quantum Hall effect can be observed
ate temperature below 1K.
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It is a bit more difficult to construct wave functions for quasi-particles. Laughlins proposal was
to use

Ψ(+)
m = exp(−

∑
j

|zj |2)

Ne∏
j=1

∂

∂zj

∏
k<l

(zk − zl)m (5.60)

for a quasi-particle at the origin. The numerical calculations show that this is a less good ap-
proximation. Nevertheless, the basic physical idea connected to this ansatz is the same as for
quasi-holes.
The excitation energies for quasi-particles or quasi-holes are finite, as it should be for an incom-

pressible quantum fluid. Similarly to the integer quantum Hall effect, one may now argue that the
quasi-particles or holes in the system behave like usual electrons in the integer quantum hole effect.
The only difference is the charge, which is 1/m times the original charge. This argument can then
be used to explain why there are plateaus in the Hall conductivity at integer multiples of e2/hm.

5.3.3 Periodic boundary conditions

The ideas presented so far can be formulated in a system with periodic boundary conditions as
well. The mathematical formulation is more evolved, because one has to deal with doubly-periodic
analytic functions. Such functions do not exists. Instead, one needs quasi-periodic functions, so
called θ-functions. The representation uses projective representations of the translation group.
Within this representation it can be shown that an additional particle or hole in the system is
indeed localized and thereby on can explain the existence of a plateau in the Hall conductivity.

5.4 Universality

In a seminal paper, Fröhlich and Kerler [7] showed that there is a completely different way to
explain the integer and fractional quantum Hall effect. In this last section, I briefly sketch their
view and I try to connect it to what we learned so far. Starting point is classical electrodynamics.

5.4.1 Classical electrodynamics in quantum Hall systems

In this subsection we look at the classical electrodynamics of a two-dimensional electron gas which
has a conductivity tensor of the form

σ =

(
0 −σH
σH 0

)
= σHε (5.61)

where ε = (εαβ)α,β=1,2 with ε12 = −ε21 = 1, ε11 = ε22 = 0 . We introduce the current density
~j = (j1, j2) and the charge density j0. The electric field is ~E = (E1, E2) and we introduce a
field-strength tensor F . It is anti-symmetric and has the elements F0α = Eα, F12 = −B. B is
the magnetic field perpendicular to the two-dimensional plane the electrons move in. Further, let
x0 = ct and x1, x2 be the coordinates, x = (x0, x1, x2), and

∂α =
∂

∂xα
(5.62)

The current density is given by
jα(x) = σHε

αβEβ(x) (5.63)

The continuity condition is
∂αj

α = 0 (5.64)
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and Faradays law has the form
∂B

∂x0
(x) +∇× ~E(x) = 0 (5.65)

or
εαβγ∂αFβγ(x) = 0 (5.66)

Taking the continuity condition and Faradays law, we obtain

σH∂0B = −σH∇× ~E = −∇ ·~j = ∂0j
0 (5.67)

and therefore
j0(x) = σHB(x) (5.68)

Taking this equation together with the material equations for ~j we may put everything together in
the compact form

Jαβ(x) = σHFαβ(x) (5.69)

where
Jαβ(x) = εαβγj

γ(x) (5.70)

εαβγ is the complete anti-symmetric tensor. The continuity equation now takes the form

εαβγ∂αJβγ(x) = 0 (5.71)

As a consequence, σH must be locally independent of x! Further, lines where σH changes must
carry a current. The continuity equation implies that for the current tensor Jαβ and as well for the
field-strength tensor Fαβ we can introduce a vector potential

Fαβ = ∂αAβ − ∂βAα (5.72)

Jαβ = ∂αaβ − ∂βaα (5.73)

and we obtain
∂α(aβ − σHAβ)− ∂β(aα − σHAα) = 0 (5.74)

This relation can be derived from the action

SCS(a− σHA) =

∫
R×Ω

d3xεαβγ(aα − σHAα)∂β(aγ − σHAγ) (5.75)

SCS is called Chern-Simons action. This action is independent of the choice of coordinates.
The status of the ideas presented so far is as follows: Whereas the continuity equation and

Faradays law hold exactly, the material equation J = σHF is experimentally varified only on
sufficiently large time and length scales. We therefore cannot exclude that in addition to the
Chern-Simons action SCS the total action contains a further term SI which should be symmetric
under time reversal and which should conserve parity. The total action will therefore be

S(a,A) = SCS(a− σHA) + SI(a,A) (5.76)

where the behaviour on long time and length scales is determined by SCS .
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5.4.2 Quantisation

The current density j is a quantum mechanical operator, to be precise an operator valued distri-
bution, therefore the vector potential a must be an operator as well. The same is true for A, at
least in principle. Since we do not want to treat QED, it is in our case sufficient to take A as a
classical field. The remaining task is now to quantize the action S(a,A) where A will be treated
as an external, classical field. The quantization can be performed using a path integral. We use
Euclidean path integrals and introduce the coordinates

a0 → −ia0, A0 → −iA0, ∂0 → −i∂0, dx0 → idx0 (5.77)

Further, we introduce the vector potential Ac for the external constant magnetic field so that the
total as vector potential Ã = Ac +A contains Ac and A, coming from local sources. The Euclidean
measure dPA, which describes the ground state of the system with the action S is then given by

dPA(a) := Z(Ac +A)−1 exp(−1

~
SE(a,A))D[a] (5.78)

where
SE(a,A) = −iκSCS(a− σHA) + SI(a,A) (5.79)

D[a] =
∏
x

2∏
α=0

daα(x) (5.80)

and Z(Ac + A) is the partition function, chosen such that
∫
dPA(a) = 1. The action SE(a,A)

should be derived form a microscopic theory, but such a derivation does not yet exist. The field
theoretical formulation of the non-interacting electron system presented e.g. in the chapter 5 by
Pruisken in [19] for the integer quantum Hall effect is of that form. But using just the structure
of the action one can already derive some properties. The Euclidean partition function Z(Ac +A)
should be invariant under gauge transformations and the electron wave function must be unique.
Both properties can only be fulfilled if σH takes values

σH = ± 1

2l + 1

e2

h
(5.81)

This was shown by Fröhlich and Kerler [7]. The authors further show that one may allow for more
than one current. Let J (i) be a set of currents, for each the condition

J (i) = σ
(i)
H F (5.82)

must hold. This then explains the experimentally observed values of σH .
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