Diffractive Electromagnetic Processes from a Regge Point of View

Erasmo Ferreira, H.G.D,

Motivation: Energy dependence of diffractive e m processes in Hera range: $T = W^{2\lambda}$
For VM production: \(\lambda_Y > \lambda_{J/\psi} > \lambda_\rho \)

Can in Hera Range be very well fitted by two pomerons.

Donnachie Landshoff ...

LHCb, Alice: \(J/\psi \) production in TeV region obtain the same single \(\lambda \) as obtained from HERA data.

Policy: Believe experimentalists

Consequence:
1) Dominance by a single Regge pole

2) Position on pole depends on scale

No contradiction to general principles.

Loss of predictivity. But:
Assume: Position depends only on scale of process.

Even if there are particle poles on the pomeron trajectory for \(t > 0 \), it can be accommodated:

For hadronic scale (determined by confinement): Usual soft pomeron

for smaller scales: deviations for negative \(t \)
Procedure:

From Hera data:

\[\lambda(Q^2) = \alpha_P(0) - 1 = 0.0481 \log \left(\frac{Q^2 + 0.554}{0.0855} \right), \]

adjusted for \[\alpha_P(0) = 1.09 \]

Relate \(Q^2 \) with hadronic size of photon → \(\lambda \left(Q^2(\bar{b}^2) \right) \)

\[
\rho_{\gamma^*\gamma^*;\pm 1}(Q^2, u, b_{\perp}) = \epsilon_\gamma^2 \frac{6\alpha}{4\pi^2} b_{\perp} \\
\left[(Q^2u(1-u) + m_f^2)(u^2 + (1-u)^2) K_1^2(eb_{\perp}) + m_f^2 K_0^2(eb_{\perp}) \right],
\]

\[
\rho_{\gamma^*\gamma^*;0}(Q^2, u, b_{\perp}) = \epsilon_\gamma^2 \frac{12\alpha}{4\pi^2} b_{\perp} Q^2 u^2(1-u)^2 K_0^2(eb_{\perp})
\]

Determine hadronic size of overlap VM - \(\gamma^* \)

\[
\rho_{\gamma^*,\gamma^*;\pm 1}(Q^2, u, b_{\perp}) = \epsilon_V \frac{\sqrt{6\alpha}}{2\pi} b_{\perp} \phi_{\omega}(u, b_{\perp}) \\
\left[4\epsilon b_{\perp} \omega^2(u^2 + (1-u)^2) K_1(eb_{\perp}) + m_f^2 K_0(eb_{\perp}) \right],
\]

\[
\rho_{\gamma^*,\gamma^*;0}(Q^2, u, b_{\perp}) = 16\epsilon_V \frac{\sqrt{3\alpha}}{2\pi} b_{\perp} \omega Q u^2(1-u)^2 K_0(eb_{\perp}) \phi_{\omega}(u, b_{\perp})
\]

Compare \(\lambda(\bar{b}_{VM}) \) with \(\lambda(\bar{b}_{\gamma^*}) \)
\[\delta = 4 \lambda \]

Simple AdS model for Regge slope:

\[\alpha'_p = \alpha' \frac{\bar{b}^2}{b^2_{\text{conf}}} \]

More detailed comparison later
Alternative model: Energy dependent dipole cross section.

\[T_{0,\text{pol}} = iW^2 \int_{0}^{\infty} db_{\perp} \int_{0}^{1} du b_{\perp} \sigma_{\text{pol}}(b_{\perp}, u, W) \rho_{\text{pol}}(Q^2, u, b_{\perp}). \]

\[\sigma_{\text{pol}}(b_{\perp}, u, W) = \sigma_{\text{dip}}(b_{\perp}, u)(W/W_0)^2 \beta_{\text{pol}}(b_{\perp}, u). \]

From data: \(\beta_{\text{pol}} = \beta_{\text{pol}}(\zeta) \)

\[\zeta = \sqrt{u(1-u)} b_{\perp} \]

\[\tilde{\beta}_T(\zeta) = 0.0481 \log \left[\frac{10.47}{\zeta^2} + 6.541 \right] \]

\[\tilde{\beta}_L(\zeta) = 0.0481 \log \left[\frac{17.68}{\zeta^2} + 6.530 \right] \]

<table>
<thead>
<tr>
<th>(Q^2) GeV(^2)</th>
<th>(\lambda(\text{theory}))</th>
<th>(\lambda(\text{experiment}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HERA</td>
<td>LHC</td>
</tr>
<tr>
<td>2</td>
<td>0.183</td>
<td>0.205</td>
</tr>
<tr>
<td>5</td>
<td>0.213</td>
<td>0.237</td>
</tr>
<tr>
<td>15</td>
<td>0.258</td>
<td>0.288</td>
</tr>
<tr>
<td>25</td>
<td>0.280</td>
<td>0.310</td>
</tr>
<tr>
<td>45</td>
<td>0.306</td>
<td>0.335</td>
</tr>
<tr>
<td>60</td>
<td>0.319</td>
<td>0.348</td>
</tr>
<tr>
<td>90</td>
<td>0.337</td>
<td>0.365</td>
</tr>
</tbody>
</table>
The two models give very similar results.

But different singularities in angular momentum plane:
scale dependent Regge pole

\[T_a = W^{2\lambda(b)} \]

Energy dependent dipole cross section

\[\sigma_{\text{dip}}(b, u)(W/W_0)^{2\beta_{\text{pol}}(\zeta)} \]

asymptotic behaviour

\[T_a \sim \left(\frac{W}{W_0} \right)^{\beta_0} L^{-\frac{(4-\epsilon)}{n}} \cdot L = \log \frac{W}{W_0} \]

\[\beta_0 \text{ is maximum of } \beta(\zeta) \]

Behaviour for finite W depends crucially on form of \(\beta(\zeta) \)