Institute for Theoretical Physics Strongly Correlated Systems
  • Home
  • Contact
  • Research
  • Members
  • Publications
  • Teaching
  • Openings
  • Conferences
just a picture

Uni-Search
Extended Search

LINKS
Institute for Theoretical Physics

SFB 1225 ISOQUANT

ExtreMe Matter Institute EMMI

Department of Physics
and Astronomy

Graduate School of
Fundamental Physics

Graduate Academy


altenativer text
Institute for Theoretical Physics ⇒ Group Home ⇒ Teaching ⇒ Quantum Field Theory II ⇒ Script

Advanced Quantum Field Theory (QFT II)

Jörg Jäckel, Jan Martin Pawlowski, summer term 2020

Preliminary TeX version (pdf)

Editors: Jörg Jäckel, Jan M. Pawlowski, Athanasios Kogios

 
  • Up to date version on Practical Groups
 
  • Local version (preliminary)



Table of Contents

 
  • 1 Functional integral approach
 
    • 1.1 Path integral in quantum mechanics
 
    • 1.2 Functional integral for scalar fields
 
    • 1.3 Feynman rules
 
    • 1.4 Effective action & spontanuous symmetry breaking
 
  • 2 Functional integral for fermions
 
    • 2.1 Quantum mechanics
 
    • 2.2 Quantum field theory
 
  • 3 Functional Methods*
 
    • 3.1 Effective action
 
    • 3.2 Functional relations
 
  • 4 Non-Abelian gauge theories
 
    • 4.1 Action & gauge invariance
 
    • 4.2 Generating functional
 
    • 4.3 BRST-Symmetry & Unitarity
 
    • 4.4 Quantum master equation*
 
    • 4.Appendix Gribov & Neuberger Problem: a one-dimensional example
 
  • 5 QCD
 
    • 5.1 Renormalisation
 
    • 5.2 RunningCoupling
 
  • 6 Lattice gauge theory
 
    • 6.1 Scalar fields on the lattice
 
    • 6.2 Non-Abelian gauge fields on the lattice
 
    • 6.3 Wegner-Wilson loop & static quark potential
 
    • 6.4 Continuum limit of lattice Yang-Mills theory
 
    • 6.5 Fermions on the lattice
 
  • 7 Renormalisation group
 
    • 7.1 Wilson's renormalisation group
 
    • 7.2 Fixed points
 
    • 7.3 Callan-Symanzik equation
 
  • 8 Symmetry breaking in QFT
 
    • 8.1 Spontaneous symmetry breaking
 
    • 8.2 Anomalies






          

© Copyright University of Heidelberg, J.M. Pawlowski, 2019.