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JanM. Pawlowski

Katja Schwarz

Last edited: February 3, 2020





Contents

1. Introduction 1

2. Free Scalar Field 5
I. Classical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II. Noether Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
III. Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

III.1. Canonical commutation relations . . . . . . . . . . . . . . . . . . . . . . . . . 14
III.2. Hamiltonian of the free scalar field . . . . . . . . . . . . . . . . . . . . . . . . . 18
III.3. Fock space of scalar quantum field theory . . . . . . . . . . . . . . . . . . . . . 19

3. Perturbation Theory 27
I. Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
II. Wick’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III. Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
IV. Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
V. LSZ-Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

V.1. The spectral function and the Källén-Lehmann representation of the propagator . 53
V.2. The LSZ reduction formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. Fermions 60
I. Fields and Lorentz Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
II. Spinor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
III. Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5. Gauge Fields 82
I. Gauge Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
II. Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6. QED 93
I. Action and Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
II. Elementary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7. Renormalisation 99
I. φ4-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
II. QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A. Complementary Calculations 109
I. Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





Chapter 1. Introduction

1. Introduction

Quantum Field Theory (QFT) describes the fundamental interactions of matter. It can be understood as
the many body limit of quantum mechanical systems such as (an)harmonic oscillators. This is depicted
in the lower horizontal map in Fig. 1.1. It can also be obtained from a quantisation of a classical field
theory, depicted in the right vertical map in Fig. 1.1, historically called second quantisation. Evidently
this simply is the quantisation introduced in quantum mechanics, as can be seen from Fig. 1.1.

x, p φ(x), Π(y)
classical mechanics // classical field theory

[x̂ , p̂]=i~

��

[φ̂(x) , π̂(y)]=i~δ(x−y)

��

quantum mechanics // quantum field theory

x̂, p̂ φ̂(x), π̂(y)

Figure 1.1.: Different paths from classical mechanics to quantum field theory.

The applications of quantum field theory are manifold, and encompass all quantum systems from small
to large scales. Amongst its variousq physical applications is the Standard Model & Beyond Stan-
dard Model physics including potentially even quantum gravity, condensed matter systems and ultracold
gases. In particular modern theoretical particle physics is a great success story of quantum field theory.
In the Standard Model the Higgs-boson corresponds to a scalar field (spin 0), leptons and quarks are
described by (spin 1/2) fermion fields, and (spin 1) vector (gauge) fields are used for photons, W± and Z
bosons, and gluons.
Due to its pivotal importance for the descriptions of general quantum systems, quantum field theoretical
methods has been continuous and rapid advances from its early beginnings in the 30ties and 40ties of the
20th century. From the very beginning one of the key methods used in QFT applications is perturbation
theory, that is the expansion of the physics at hand about a non-interacting case in order (number) of
interactions (scatterings). This is a Taylor expansion in the interaction strength of the theory, in QFT this
series is an asymptotic one (to be explained later). This will be the main method used in the applications
in the current lecture course, and its success and limits will be discussed in detail. As a side remark we
mention that, despite its matureness, even in perturbation theory there have been recently exciting new
developments that go under the name of resurgence.
Despite its success the limits of perturbation theory are obvious, for strongly coupled or correlated sys-
tems an expansion in the number of scatterings may not be sufficient. A simple but relevant example is
an observable O(λ) that has the following dependence on the coupling,

O(λ) = Pol0(λ) + Pol1(λ) exp
{
−

cont.
λ2

}
, (1.1)
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Chapter 1. Introduction

where Poli(λ) with i = 1, 2 are polynomials or converging series in λ. Evidently, an expansion of (1.1)
about λ = 0 will only catch part of the series. Terms such as (1.1) arise typically from topological effects
in QFT and quantum mechanics, and it is also here where the recent developments in resurgence have
their merits.
In any case in general, the description of the physics of strongly correlated systems calls for non-
perturbative methods. Prominent and important examples are the lattice approach to QFT, where the
QFT is put on a space or space-time grid, and (functional) renormalisation group approaches, where the
scale-dependence of the theory is resolved successively. Both approaches will be discussed briefly in
the current lecture course, while more details are given for the latter, the renormalisation group, as it is
also essential for perturbation theory. A full account of these approaches has to be subject of dedicated
advanced QFT courses.
Let us now come back to the limits in Fig. 1.1, which we want to elucidate with two examples, the
oscillating masses/string and electrodynamics.

Example 1-1: Oscillating masses / string. We consider a chain of oscillating point masses with a
fixed position in x on a string (harmonic forces between next neighbours). This situation is depicted in
Fig. 1.2.

i-1 i i+1 i+2

a

...

q

a→0 // φ(t, x)

Figure 1.2.: Oscillating masses at a distance a on a string.

Now we take the limit of an infinitesimal lattice spacing a between the neighbouring point masses, thus
storing more and more oscillating masses on a given intervall with length L on the string. The forces on
a given point mass qi are described by the equation of motion,

∂2
t qi = −c2 (qi − qi−1 + qi − qi+1)

a2 , (1.2)

triggered by the harmonic forces proportional to the distance with spring constant c2/a2, where we have
dropped the mass. In the current one-dimensional example lattice spacing is seemingly a misnomer, but
the example readily extends to d dimensions, where one typically considers a rectangular lattice of point
masses. In d = 2 this leads to a two-dimensional rectangluar lattice, describing a membrane, in d = 3 we
have a cubic lattice.
Coming back to our one-dimensional example, the continuum limit a→ 0 leads us to

qi − qi−1

a
→ ∂xφ , (1.3)

the differences turn into derivatives. We now also make this limit manifest in the position variable qi.
Instead of the single position variable we introduce the density of the mass points with

qi ' φ(ai)
a→0
−→ φ(x) , with x = i a ∈ R . (1.4)
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Chapter 1. Introduction

with a ’density’ field φ(x). Collecting all theses definitions and limits we are led to

∂2
t qi = −c2 (qi − qi−1 + qi − qi+1)

a2

↓

∂2
t φ(t, x) = −c2∂2

xφ(t, x) . (1.5)

Eq. (1.5) entails that in the limit a → 0 the difference interactions turn into derivative (kinetic) terms.
As the basic object in quantum field theory we will make use of the action of the theory at hand. In the
current example the action of this system of oscillating masses is given by

S [q] =

∫
dt L(q(t), q̇(t), t) = a

∫
dt

∑
i

[
(∂tqi)2 − c2 (qi+1 − qi)2

a2

]
. (1.6)

Perfoming the continuum limit a→ 0 in (1.6) the action turns into that of a classical scalar field theory

S [φ] =

∫
dt

∫
dx

(
(∂tφ)2 − c2(∂xφ)2

)
. (1.7)

In general dimensions the action of a scalar field φ can be written as

S [φ] =

∫
dd x

(1
2

(∂tφ)2 − (∇φ)2 − V(φ)
)
,

where V denotes the potential, and we have used the common QFT notation, setting c = 1. We close this
discussion with two remarks:

(i) The problem can be simply described by a bunch of (coupled) harmonic oscillators.

(ii) The action S [φ] has Poincaré invariance (to be discussed later).

The second example is used to briefly recapitulate some basic facts of the most important example of a
classical field theory, electrodynamics. This is also used for establishing some notation. If you feel that
you are not familiar with some of the parts in this example, please recapitulate these parts. Quantum
electrodynamics will serve as the first example for the quantisation of gauge theories in the second part
of the lecture course, and some familiarity with it may come handy.

Example 1-2: Electrodynamics. Electrodynamics with only photons is a free fields theory. It is
formulated in terms of the gauge (vector) field Aµ, in quantum electrodynamics this wil ldescribe the
photon. Its classical action is given by

S [Aµ] =

∫
d4x L(Aµ(x), ∂µAν(x)) , (1.8)

where x0 = t and
(
xi
)

= x for i = 1, 2, 3, and the Lagrangian L is given by

L = −
1
4

FµνFµν , (1.9)

with the electromagnetic fieldstrength Fµν,

Fµν = ∂µAµ − ∂νAµ , with Fµν = ηµρηνσFρσ , (1.10)
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Chapter 1. Introduction

where the flat Minkowski metric ηµν is used for lowering and raising indices. The diagonal metric ηµ has
det η = −1 and η00 = −ηii (so sum over i). In this lecture course we use the notation commonly used in
QFT,

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , and ηνρηµρ = ηµ
ν = δµ

ν , (1.11)

where the latter relation in (1.11) is the orthogonality relation. Again we close with a few remarks:

(i) The representation of the Minkowski metric with η00 = 1 is commonly used in general relativity
and quantum gravity.

(ii) For general curved space-times with metrics gµν the orthogonality relation in (1.11) still holds

gνρgµρ = gµν = δµ
ν , (1.12)

In both examples the fields will be quantised by inheriting the quantum mechanical quantisation from
the underlying disrete systems, this can be decpited as

q → φ , Aµ

p → φ̇ , Ȧµ
‖ ‖

πφ , πAµ

Quantisation
−−−−−−−−→

q → φ̂ , Âµ

p → π̂φ , π̂Aµ , (1.13)

where the operators on the right hand side of (1.13) describe the annihilation and creation of particles.
Again we remark:

(i) The Hilbertspace construction rests on the operators, e.g., φ̂, π̂φ, the vacuum state (vector) |ω〉. The
creation operator a† and annihilation operators a that are part of φ̂, π̂φ are used to create all states
from the vacuum, for example the one particle state |1〉 ∝ a†|ω〉.

(ii) Modern particle physics is described by renormalisable quantum field theories:

scalar fields (spin 0): Higgs

fermion fields (spin 1/2): leptons; quarks

vector fields (spin 1): photon; W±,Z; gluons

spin 2: graviton (perturbatively non-renormalisable)

In this lecture course we will discuss the quantisation of all the above fields (except the graviton), includ-
ing their quantum phenomenology as well as the important aspect of quantum symmetries and renormal-
isation.
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Chapter 2. Free Scalar Field

2. Free Scalar Field

In this chapter we will discuss the free scalar field. Starting from classical field theory (section I) we
move on to symmetries and the Noether theorem (section II). Lastly, we advance from classical theory
to quantum field theory through quantisation. This requires the construction of the Fock space (section
III), which is basically a sum of a set of Hilbert spaces.

I. Classical Theory

At first we consider a real scalar field φ(x). The scalar property entails, that φ is invariant under Poincaré
transformations, that are space-time translations, spatial rotations, and Lorentz boosts, the lattter two
forming the Lorentz transformations. Moreover, Poincaré transformations also include spatial and tem-
poral reflections, altogether forming the Poincaré group P, a non-compact Lie group. The invariance of
a scalar field φ reads

φ(x) 7→ P(φ(x)) = φ(x) , P ∈ P . (2.1)

Poincaré transformations are those that leave the scalar product of space-time differences (x−y)2 = (xµ−
yµ) ηµν (xν − yν) invariant. Trivially, a translation of the coordinates with a constant a: x, y→ x + a, y + a
leaves the scalar product invariant as the shift drops out from the difference x − y. Continuous Lorentz
transformations Λ are rotations and boosts that leave the Minkowski metric invariant:(

ΛTηΛ
)

= η , in components: Λ
ρ
µηρσΛσ

µ = ηµν . (2.2)

P = (Λ, a) : xµ 7→ P(xµ) = Λ
µ
νxν + aµ , (2.3)

Hence, a general Poincaré transformation P ∈ P is defined by the pair of translations a and Lorentz
transformations Λ: P = (Λ, a). The composition of Poincaré transformations is given by

(Λ1, a1) ◦ (Λ2, a2) = (Λ1Λ2,Λ1a2 + a1) . (2.4)

We will consider Lorentz-invariant actions, and we exemplify the invariance within the standard scalar
field theory, the φ4-theory.

S [φ] =

∫
d4x L(φ(x), ∂µφ(x)) , (2.5)

with the Lagragian

L =
1
2
∂µφ ∂

µφ − V(φ) , V(φ) =
1
2

m2φ2 + O(φ3) . (2.6)

For the kinetic term Lorentz invariance follows from

∂µφ ∂
µφ 7→ ∂νφΛ ν

µ Λ
µ
ρ ∂

ρφ = ∂νφ
(
ΛTηΛ

)ν
ρ
∂ρφ

Eq. (2.2))
= ∂νφ ∂

νφ , (2.7)
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Chapter 2. Free Scalar Field

while it trivially follows for the potential term due to the scalar property of the field φ,

V(φ) 7→ V(φ) . (2.8)

In summary, the Lagragian and hence also the action are Lorenz invariant,

L(φ, ∂µφ) 7→ L(φ, ∂µφ) , =⇒ S [φ] 7→ S [φ] . (2.9)

We proceed by deriving the general solution to the equation of motion of the free theory. This general
solution will turn out to be a simple superposition of plane wave solutions with general coefficients, the
latter reflecting the fact, that the free theory is nothing but the continuum limit of a d-dimensional version
of the string we have started with. The coefficients of the general solution characterise the density of these
harmonic oscillators. This representation serves as the starting point for the canonical quantisation of the
theory, by using the quantum mechanical commutaion relations for the single harmonic oscillators. To
begin with, we discuss the equation of motion (EoM). For the case above it holds

0 !
= δS = δ

∫
d4x

(1
2

(∂φ)2 −
1
2

m2φ2
)

=

∫
d4x

(
∂µφ (∂νδφ) ηµν − m2φ δφ

)
as δ(∂φ)2 = δ (∂µφ ∂νφ) ηµν

= −

∫
d4x

(
ηµν∂µ∂νφ + m2φ

)
δφ (using partial integration)

= −

∫
d4x δφ (∂2 + m2) φ . (2.10)

We conlcude that the scalar field satisfies the Klein-Gordon equation,

Klein-Gordon equation
(∂2 + m2) φ(x) = 0 . (2.11)

The Klein-Gordon equation is the equation of motivation for a four dimensional scalar field. We obtain
the desired expression for the general solution for a scalar field φ with a linear superposition of all
solutions of (2.11). Let us start with the solution for 1+0 dimensional theory, and subsequently generalise
it to d dimensions. The quantised 1+0 dimensional theory simply is quantum mechanics,

φ(t, x)
∣∣∣∣∣
1+0 dim

= φ(t) = q(t) , L =
1
2

q̇2 −
1
2

m2q2 −
λ

4
q4 . (2.12)

The first two terms correspond to a harmonic oscillator and the last is an anharmonic term. The equation
of motion is then the Euler-Lagrange equation

∂t
∂L

∂q̇
−
∂L

∂q
= 0 . (2.13)

It follows that
q̈ + m2q + λq3 = 0 . (2.14)

For λ = 0 this is the differential equation of a harmonic oscillator, which is solved by a plane wave

q(t) = A0 eikt with k2 − m2 = 0 . (2.15)

6



Chapter 2. Free Scalar Field

When extending to d dimensions (1 time + (d-1) spacial dimensions), φ describes a density of coupled
harmonic oscillators with the general solution

φ(x) =

∫
d3k

(2π)3

1
√

2ωk

(
α(k) e−ikx + α∗(k) eikx

)
with ωk B

√
k2 + m2 . (2.16)

Note, that φ is real and satisfies Eq. (2.11). Further note, that∫
d3k

(2π)3

1
2ωk

=

∫
d4k

(2π)4 (2π) δ(k2 − m2) θ(k0) , (2.17)

i.e. that this is a Lorentz invariant measure. This can be derived by using

δ(g(x) − g(a)) =
1
|g′(a)|

δ(x − a) , (2.18)

where g(x) is any C1 function. Then

δ(k2 − m2) = δ((k0)2 − k2 − m2) = δ(k2
0 − ω

2
k) =

1
|2ωk|

δ(k0 − ωk) . (2.19)

It follows∫
d4k

(2π)4 (2π) δ(k2 − m2) θ(k0) =

∫
d4k

(2π)4 (2π)
1
|2ωk|

δ(k0 − ωk) θ(k0) =

∫
d3k

(2π)3

1
2ωk

. (2.20)

Lastly, let us consider the case of a complex scalar field

φ(x) =
1
√

2

(
φ1(x) + i φ2(x)

)
, (2.21)

where φ1 and φ2 are both real scalar fields. The action is given by

S [φ] =

∫
d4x L(φ, ∂µφ) , (2.22)

with

L(φ, ∂µφ) = ∂µφ ∂
µφ∗ − m2φ φ∗ =

1
2

[
(∂φ1)2 + (∂φ2)2 − m2(φ2

1 + φ2
2)
]
. (2.23)

Then the general solution of Eq. (2.11) is given by

φ(x) =

∫
d3k

(2π)3

1
√

2ωk

(
α(k) e−ikx + β∗(k) eikx

)
with ωk B

√
k2 + m2 . (2.24)

Remarks:

(i) The action (2.22) is invariant under multiplication of φ with a global phase eiω. This global U(1)
symmetry implies a conserved charge, as will be discussed in the subsequent section.

(ii) An action that is invariant under a local U(1) rotation, φ(x) → eiω(x)φ(x) is gauge invariant. The
action (2.22) is not gauge-invariant, this would require the introduction of a U(1) gauge field, to
be discussed later.

7



Chapter 2. Free Scalar Field

II. Noether Theorem

Symmetries play a pivotal rôle in the description of quantum field theories. Their applications range from
the direct deduction of physics simply from symmetry arguments, i.e. the exlcusion of processes based
on their lack of symmetry to general construction principles (and hence restrictions) of quantum field
theories, in particular for Beyond Standard Model physics. Most of these powerful symmetry principles
originate in Noether’s theorem. Loosely speaking it states, that

Continuous symmetries of the action leads to a conserved current density and a conserved charge.

We discuss this theorem first with a continuous symmetry with one parameter.

Example 2-1: U(1)-symmetry in the action of a complex scalar field.
A nice example to keep in mind is that of the field theory with a complex scalar with the action (2.22).
The action is invariant the symmetry φ→ eiωφ as discussed at the end of the last chapter. An infinitesimal
transformation with ω = ε and ε → 0 is described by

ei εφ = φ + δεφ , with δεφ = iεφ, ∆φ =
∂δεφ

∂ε

∣∣∣∣∣
ε=0

= iφ . (2.25)

In (2.25), δεφ is the infinitesimal transformation, and ∆φ is the generator of the transformation. Evidently
the action (2.22) is invariant under such the global transformation with ∂µε = 0. Let us now consider a
space-time dependent ε(x). Then, the action is shifted with

S [φ(x)]→ S [φ(x) + iε(x)φ(x)] = S [φ(x)] − i
∫

d4x ∂µε(x)
[
φ∗∂µφ − (∂µφ∗)φ

]
+ O(ε2) . (2.26)

With a partial integration of the last term we arrive at the form

S [φ(x) + iε(x)φ(x)] ' S [φ(x)] +

∫
d4x ε(x)∂µ jµ , jµ = i

[
φ∗∂µφ − (∂µφ∗)φ

]
. (2.27)

This is an important result. It entails that for global symmetries the local variation of the action can be
written as an integral of a total derivative ∂µ jµ, multiplied by ε(x). In turn, without the global symmetry,
the non-invariant term cannot be written as a total derivative.
Clearly, the action is not invariant under the space-time dependent U(1)-transformation. We also see, that
for chosing constant ε, the ε-dependent terms reduce to a total derivative and vanishes upon integration,
as it must. Now we use that δεφ simply is a specific variation of the field in the direction of the symmetry.
This entails already that the term proportional to ε in (2.26) has to vanish on the equations of motion, as
the latter are the stationary points of the action under a general variation. This leads us to

∂µ jµ
∣∣∣
EoM = 0 , (2.28)

the theory has a conserved current. The current jµ can be easily derived from the Lagrangian as it is only
generated from the terms dependent on ∂µφ. We have

jµ =
∂L

∂∂µφ
∆φ , or ∂µ jµ(x) =

δS [φ]
δε(x)

∣∣∣∣∣
ε=0

. (2.29)

The latter definition is the far more convenient one but requires some knowledge about functional deriva-
tives. While not required at the present state of the lecture course, we suggest to the reader to get
acquainted with functional derivatives as soon as possible, they facilitate quite some derivations and
computations.

8



Chapter 2. Free Scalar Field

We also see that an additional term
∫

d4x ε(x)∂µJµ in (2.26) would not have changed the existence of
a conserved current. It simply would have led to a subtraction of Jµ on the right hand side of the first
definition in (2.29), and would not have altered the second one. The latter fact again emphasises the
naturality of using functional derivatives.
We emphasise again that (2.28) only holds true in the presence of a global symmetry. In turn, with a
global symmetry (or for general variations) the right hand side is non-vanishing. An additional term
occurs, namely (∂L/∂µφ)∆φ.
The conserved current (2.28) leads to a Noether charge Q, which is conserved on the EoM. We define

Q =

∫
d3x j0(x) = i

∫
d3x

[
φ∗∂tφ − (∂tφ

∗)φ
]
. (2.30)

Using ∂t j0 = ∇~j from (2.28) we are led to

∂tQ
∣∣∣
EoM =

∫
d3x ∂t j0(x) EoM

=

∫
d3x ~∇~j(x) = 0 , (2.31)

which can be also proven directly with the EoM. The charge (2.30) is nothing but the electric charge (up
to normalisation) of the complex scalar field.

We now proceed with the derivation of the general theorem. Each step can be mapped back to our simple
example discussed above. We consider an infinitesimal global symmetry transformation δε with

φ(x) 7→ φ(x) + δεφ(x) . (2.32)

As has been discussed in our example, the global symmetry is described by a constant infinitesimal
parameter ε with ∂µε = 0. The transformation (2.32) is a symmetry of the action for

S [φ(x)] 7→ S [φ(x) + δεφ(x)] = S [φ(x)] . (2.33)

For the general case it is convenient to consider the transformation of the Lagrangian L. Eq. (2.33) holds
if the Lagrangian transforms with

L 7→ L + ε ∂µJµ(φ) , (2.34)

as has been also discussed briefly in our introductory example below (2.29). The last term, ∂µJµ, vanishes
if inserted in the action, as it is a divergence. This necessitates the absence of surface terms, that is
Jµ[φ](‖x‖ → ∞) = 0. Then it follows

S [φ] =

∫
d4x L 7→

∫
d4x L + ε

∫
d4x ∂µJµ(φ) . (2.35)

In our simple example we have Jµ = 0. Symmetries with Jµ , 0 are e.g. space-time symmetries that lead
to a conserved energy momentum tensor, to be discussed later.
Let us now assume that the theory has a global symmetry leading to (2.34). We have already seen in our
example, that this leads to a local current, that is conserved on the equations of motion. Accordingly, we
consider the explicit global symmetry transformation of the Lagrangian L,

L 7→ L +
∂L

∂φ
δεφ +

∂L

∂(∂µφ)
∂µδεφ . (2.36)

The last term on the right hand side of (2.36) depends on the derivative of the variation. We rewrite this
term as a total derivative and a term, where the derivative hits the ∂µφ-variation of the Lagrangian. This
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term combines with the first term on the right hand side of (2.36) to the equation of motion, indicated in
red:

L 7→L +
∂L

∂φ
δεφ + ∂µ

(
∂L

∂(∂µφ)
δεφ

)
−

(
∂µ

∂L

∂(∂µφ)

)
δεφ

=L + ∂µ

(
∂L

∂(∂µφ)
δεφ

)
+ (EoM) δεφ

!
=L + ε ∂µJµ , (2.37)

The steps in (2.37) simply are the same as for the derivation of the Euler-Lagrange equations for the field
theory (with variations restricted to the global symmetry). It is the identification of the non-invariant
terms with a divergence ε ∂µJµ in the last line of (2.37), that only holds for global symmetries. In
summary we are led to the relation

∂µ

(
∂L

∂(∂µφ)
δεφ − ε Jµ

)
= −(EoM) δεφ . (2.38)

that holds for general field configurations φ. For fields that satisfy the EoM, the right hand side vanishes
and we are left with a conserved current, that is defined by the linear order in ε of the right hand side of
(2.38). Using

∂δεφ

∂ε

∣∣∣∣∣
ε=0

= ∆φ , (2.39)

we arrive at the general definition of the Noether current for a one-parameter global symmetry,

Conserved current (for a one-parameter global symmetry of a single scalar field)

jµ B
∂L

∂(∂µφ)
∆φ − Jµ , with ∂µ jµ = 0 . (2.40)

The conservation law can also be expressed in terms of the

Noether charge

Q(t) ,B
∫

d3x j0(t, x) with Q̇(t) = 0 . (2.41)

The Noether theorem extends readily to field theories with more than one field, indeed our example is
such a case with (2.21). Then, the first term in jµ needs to be replaced by a sum of the variations of the
different fields. Also, the generalisation to the case of symmetries with N parameters r = 1, ...,N is done
by extending δε → δεr . This leads us to the generators of the symmetry, ∆rφi with

∆rφi =
∂δεφi

∂εr

∣∣∣∣∣
ε=0

, (2.42)

10
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Repeating the derivation above in this general case leads us to the general definition of N Noether cur-
rents,

Conserved current (general case)

jµr B
∂L

∂(∂µφi)
∆rφi − Jµr , with ∂µ jµ = 0 , r = 1, ...,N . (2.43)

The N conserved currents are related to N conserved Noether charges

Noether charge (general case)

Qr(t) B
∫

d3x j0(t, x) , with Q̇r(t) = 0 , r = 1, ...,N . (2.44)

We close this derivation with a remark on general symmetries that involve both, transformation of the
field as well as of its argument, the space-time variable x. This suggestes to split δεφ into an infinitesimal
transformation of the field φ, δε |x φ, and the symmetry variation of the space-time variable δε xµ. We
obtain

δεφ = δε |x φ + δε xµ ∂µφ , with ∆
(φ)
r φi =

∂δε |x φi

∂εr

∣∣∣∣∣
ε=0

, ∆r x =
∂δε x
∂εr

∣∣∣∣∣
ε=0

. (2.45)

This split of the transformation translates into an according one for the Noether currents jµ: they have
a part that stems from the symmetry variation of the field, ∆

(φ)
r φ, and the one which stems from the

symmetry variation of the space-time variable x. Inserting the split (2.45) into the definition of the
Noether current, (2.43), leads us to

jµr = ∆
(φ)
r φ

∂L

∂(∂µφ)
+ ∆r xν ∂νφ

∂L

∂(∂µφ)
− Jµr . (2.46)

As a first relevant application of the Noether theorem we discuss the conservation of the energy-momentum
or stress-energy tensor. The related conservation laws entail momentum and energy conservation. The
underlying global symmetries are that of translation invariance of physics under a spatial as well as tem-
poral shift of the laboratory system: the fundamental law of physics do not change with time or space.
Hence we consider an infinitesimal global (∂µε = 0) space-time translation, x→ x + ε, of the field

φ(x) 7→ φ(x + ε) = φ(x) + εµ∂µφ(x) + O(ε2) , with ∆µφ = ηµ
ν∂νφ , (2.47)

or ∆
(φ)
µ φ = 0 and ∆µxν = ηµ

ν. Translations have four parameters, r = µ = 0, ..., 3. Note also that
in (2.47) the scalar property of the field has been used, it is invariant under Poincaré transformations.
This is different for fermion (spin 1/2) and vector fields (spin 1) to be considered later. We proceed by
discussing the current Jµr. Applying the infinitesimal transformations (2.47) to the Lagrangian amounts
to simply taking a space-time derivative of L, as the only x-dependence of the Lagrangian resides in the
fields and its derivatives. We get

L(φ(x), ∂µφ(x)) 7→ L + εµ∂µL = L + εν∂µη
µ
νL , (2.48)

leading us to

Jµν = η
µ
νL . (2.49)

11
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Inserting (2.49) in the definition of the Noether current (2.43) or (2.46) leads us to the energy-momentum
tensor,

Energy-momentum tensor (or stress-energy tensor)

T µ
ν B jµν = ∂νφ

∂L

∂(∂µφ)
− η

µ
νL with ∂µT µν = 0 . (2.50)

Consequently, we have four conserved Noether currents, i.e. Noether charges,

Pµ =

∫
d3x T 0µ , (2.51)

the 4-momentum. The energy-density for time translations is given by the zeroth component of the
4-momentum, namely

P0 =

∫
d3x T 00 =

∫
d3x

(
(∂0φ)

∂L

∂(∂0φ)
− L

)
=

∫
d3x

(
(∂0φ) π − L

)
=

∫
d3xH = H , (2.52)

with the canonical momentum of the field,

π =
∂L

∂(∂0φ)
, (2.53)

and the Hamiltonian density

H = π ∂0φ − L , (2.54)

of the Hamiltonian H. The result (2.52) was to be expected, as P0 is the Noether charge coming from
the invariance of the system under translations in time. The Hamiltonian of a theory generates the time
evolution of the system. Note also that the Hamiltonian density and the Hamiltonian are positive definite
functionals. For instance, the Hamiltonian density for the standard case of a scalar field theory with
L = 1

2 (∂φ)2 − V(φ) is

H =
1
2
π(x)2 +

1
2

(∇φ)2 + V(φ) . (2.55)

We also remark that the covariance of Pµ is seemingly not apparent. However, ∂L
∂(∂0φ) transforms as

the 0-component of a contravariant vector. Hence
∫

d3x ∂L
∂(∂0φ) has the transformation properties of the

measure d3x dx0, which is Lorentz invariant. We proceed with the spatial components of the vector of
the Noether charges: Pi. We already discussed, that P0 generates generates time translations, and the Pi

are the generators of spatial translations of the fields within the Poisson brackets. To see this we use the
explicit form of the Pi,

Pi =

∫
d3x T 0i =

∫
d3x π ∂iφ =

(∫
d3x π∇φ

)i

. (2.56)

Inserting (2.56) into the Poisson brackets with the fields generates infinitesimal spatial translations:

Generator of spatial translations with Poisson brackets{
Pi(x) , φ(x)

}
= −∇φ , with

{
φ(x) , π(y)

}
= δ(x − y) and

{
φ(x) , φ(y)

}
= 0 . (2.57)

The property (2.57) is sustained in the quantisation, which promotes the Poisson brackets to commutators
of the field (and momentum) operators. We close the discussion of the energy-momentum tensor and the
respetive Noether charges with two remarks.
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(i)∗ In general the canonical energy-momentum tensor is not symmetric, i.e. T µν , T νµ. This originates

in ∂µ
∂L

∂(∂µφ)
. However, T µν can always be symmetrised by adding a divergence to the canonical

EMT. Its symmetry is an important property for the coupling to gravity. An alternative -symmetric-
definition results from the variation of the action with respect to the metric gµν:

T µν
sym =

2√
−detg

δS
δgµν

∣∣∣∣∣
g=η

, (2.58)

with

δgαβ(x)
δgµν(y)

=
1
2

(
δαµδ

β
ν + δανδ

β
µ

)
δ(x − y) , and

δ
√
−g(x)

δgµν(y)
= −

1
2

√
−g(x)gµνδ(x − y) .

(2.59)

The derivation of the EMT from the variation of the metric inherits the symmetry of the latter.

(ii)∗ We have already suggested the use of functional derivatives in the derivation of the Noether theo-
rem instead of using variations. Functional derivatives are conveniently defined by

δφ(x)
δφ(y)

= δ(x − y) . (2.60)

Note also that the scalar field is invariant under a combined transformation of field and space-
time variable, i.e. φ′(x′) = φ(x), and so far we have only used φ(x) 7→ φ(x′). For the combined
transformation we are led to

∆φ = 0

∆ρxν = η ν
ρ

Jµρ = 0 (L′ = L) . (2.61)

(iii) Finally, we briefly revisite the charge of a complex scalar field, used as an example in the begin-
ning. The (free) Lagrangian of a complex scalar field, (2.21), is given by

L = ∂µφ ∂
µφ∗ − m2φ φ∗ , (2.62)

and is invariant under global U(1) rotations, see (2.25), leading to Jµ = 0. With

∆φ = iφ , ∆φ∗ = −iφ∗ . (2.63)

we obtain the Noether current of the complex field:

jµ =
∂L

∂(∂µφ)
∆φ +

∂L

∂(∂µφ∗)
∆φ∗ =

∂L

∂(∂µφ)
iφ −

∂L

∂(∂µφ∗)
iφ∗ = i

(
(∂µφ∗)φ − (∂µφ)φ∗

)
. (2.64)

The Nother current is the spatial integral of j0:

Noether charge of a complex scalar field

Q =

∫
d3x j0 = i

∫
d3x

(
φ∗∂t φ − (∂tφ

∗) φ
)
. (2.65)

We have already noted in our introductory example, that the (Noether) charge is conserved on the
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equation of motion. This is now checked explicitly,

Q̇
∣∣∣∣∣
EoM

= i
∫

d3x
(
φ̇∗ φ̇ − φ̇∗ φ̇ + φ∗ ∂2

t φ − (∂2
t φ
∗) φ

)

Eq. (2.11)→ = i
∫

d3x
(
φ∗(∇2 − m2) φ − (∇2 − m2) φ∗ φ

)

= i
∫

d3x
(
φ∗ ∆φ − ∆φ∗ φ

)
= 0 , (2.66)

where we have performed twice a partial integration for the last identity as well as the absense
of boundary terms. On the equation of motion we can also use (2.24) for rewriting the Noether
charge (2.65) as a momentum space integral,

Q =

∫
d3 p

(2π)3

(
α∗(p)α(p) − β∗(p) β(p)

)
. (2.67)

In the next section we discuss the quantisation of the scalar theory. As already mentioned, in the
quantisation procedure the coefficients α, α∗ and β, β∗ are elevated to annihilation and creation
operators for particles and anti-particles, respectively. Then, their combination in (2.67) is simply
the quantum field theoretical analogue of the number operator in quantum mechanics.

III. Quantisation

In short, quantum field theory is the field-theoretical limit of quantum mechanics. Therefore, the canon-
ical quantisation relations of the position operator and the momentum operator of a single quantum
mechanical system are simply carried over to the field theory, see Fig. 2.1. This limit has been roughly
described in the beginning of this lecture course, see Fig. 1.1, and is put to work in the present section.

Quantum Mechanics Quantum Field Theory

[
q̂ , p̂

]
= i~

[
q̂ , q̂

]
= 0 =

[
p̂ , p̂

] =⇒

[
φ̂(x) , π̂(y)

]
= i δ(x − y)

[
φ̂(x) , φ̂(y)

]
= 0 =

[
π̂(x) , π̂(y)

]
,

Figure 2.1.: Quantum field theory from the many body limit of quantum mechanics. The canonical quan-
tisation relations of QM are transported to the canonical quantisation relations of QFT.

where ~ = 1 and c = 1 on the right hand side. Note, that the expectation value
〈
φ̂(x)

〉
needs to yield the

classical field.

III.1. Canonical commutation relations

The above general picture entails that the canonical quantisation in qunatum field theory can be per-
formed analoguously to quantum mechanics. For emphasising this analogy, let us briefly recapitulate
quantum mechanics as 1+0 dimensional quantum field theory. The generalisation to general dimensions
is straightforward and is done subsequently.
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Example 2-2: Quantum mechanics as 1+0-dimensional quantum field theory.
Reducing the dimensions to d = 1 + 0, the spatial integration in the action is removed. This integration is
an integration over the density of (quantum) mechanical systems. We will stick to our QFT convention
~ = 1, as this facilitates the generalisation to quantum field theory. In summary we are left with the
action of a harmonic oscillator.

S [q] =

∫
dt L =

∫
dt

(1
2

q̇2 −
1
2
ω2q2

)
. (2.68)

The corresponding Hamiltonian reads

H = pq̇ − L =
1
2

p2 +
1
2
ω2q2 with p =

∂L

∂q̇
= q̇ (2.69)

The quantisation entails p, q → p̂, q̂, with the canonical commutation relation
[
q̂ , p̂

]
B i (with ~ = 1).

We introduce creation operators a† and annihilation operators a as

q̂ =
1
√

2ω
(a + a†) , p̂ = −i

√
ω

2
(a − a†) . (2.70)

The (canonical) commutation relations for the creation and annihilation operators follow from that of q̂
and π̂,

[a , a]† = 1 , [a , a] =
[
a† , a†

]
= 0 . (2.71)

The Hamilton operator can then be written in terms of the creation and annihilation operators,

Ĥ =

(
a† a +

1
2

)
ω , (2.72)

where (1/2)ω corresponds to the vacuum energy. In the Heisenberg picture the operators evolve with
time, whereas the states are stationary, i.e.

i
∂

∂t
Ô(t) =

[
Ô(t) , Ĥ

]
, with Ô(t) = eiĤt Ô(0) e−iĤt . (2.73)

Now we use (3.1) that the commutation relation do not evolve in time, we always have the canonical
commutation relations: [

q̂(t) , p̂(t)
]

= eiĤt [
q̂ , p̂

]
e−iĤt = i . (2.74)

A final remark concerns a first step into the direction of a quantum field theory, namely the extension
of the present harmonic operator to the superposition of many harmonic oscillators as discussed in the
beginning of the lecture course. The total Hamiltonian is then a sum of the single ones, in the most
general case also with different frequencies ωi, that is

∑
i H(q̂i, p̂i;ωi) = Ĥ(â†i , â;ωi). The commutation

relation of the operators stay the same, and operators stemming from the different subsystems commute.
This leads us to [

q̂i , p̂ j
]
B i δi j ,

[
ai , a†j

]
= δi j . (2.75)

With this we close the brief recapitulation of some basic properties of the harmonic oscillator.
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The alert reader may have noticed that all derivations and properties discussed in the quantum mechanical
example above carry over to quantum field theory: the only difference of a field operator φ̂ in QFT and
the position operator q̂ in QM is the integration over spatial momentum in the former. This is a linear
operation and we expect that we simply have to change the Kronecker-δ’s in (2.75) into δ-functions. With
this introductory remark we proceed to the 1+3 dimensional theory. where it is understood that this case
serves as the generic case. From now on we shall drop the hat marking the operators, it is understood
implicitly. The Hamiltonian density for a real scalar field operator is

H = π ∂0 φ − L =
1
2

[
π(t, x)2 + φ(t, x)

(
−∆ + m2

)
φ(t, x)

]
, (2.76)

with the Laplacian ∆ = ∇2 and the field momentum operator π, and the Lagrangian

π(t, x) =
∂L

∂(∂0φ)
(t, x) = ∂0φ = φ̇ , L =

1
2

(
∂0φ ∂

0φ − (∇φ)2 − m2φ2
)
. (2.77)

the commutation relations of the field operator φ with the momentum operator π follows from that in the
quantum mechanical case: for a system of harmonic oscillators we have, see (2.75),

[qi , π j] = iδi j . (2.78)

In the many-body limit discussed in the beginning the operators qi and π j turn into spatial densities
of quantum mechanical operators. More precisely their products q2, p2, qp in the quantum mechanical
Lagrangian or Hamiltonian turn into densities proportional to the inverse spatial volume element 1/ad−1.
For example we have p2

i /a
d−1 → π2. Consequently, the quatum mechanical commutation relations

(2.78) have to be multiplied with ad−1, where the exponent simply is the (inverse) dimension of space-
time. Thus, in the many-body limit the product 1/ad−1δi j turns into the spatial δ-function, δ(x − y), and
we obtain canonical commutation relations for the field operators:

Canonical commutation relations[
φ(t, x) , π(t, y)

]
= i δ(x − y)[

φ(t, x) , φ(t, y)
]

=
[
π(t, x) , π(t, y)

]
= 0 . (2.79)

The field operators φ, π that satisfy the canonical commutation relations (2.79) operators define the free
scalar quantum field theory. We add a few remarks:

(i) The field operator φ satisfies the EoM, as do its matrix elements 〈φ〉 of time-independent states.

(ii) The free field theory describes a (coupled) set of harmonic oscillators due to the presence of φ∆φ in
the action. In Fourier space this term turns into φ(−p) p2 φ(p). Consequently, we can diagonalise
L andH in momentum space. This is done analogously to the 1+0 dimensional theory.

The field and momentum operators can be written as spatial momentum integrals by elevating the classi-
cal solutions (2.16) to operators,

φ(x) =

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−ipx + a†(p) eipx

)

π(x) = ∂0φ(x) = −i
∫

d3 p
(2π)3

√
ωp

2

(
a(p) e−ipx + a†(p) eipx

)
, (2.80)
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with the onshell frequency (2.16),

ωp =

√
p2 + m2 . (2.81)

In (2.80) the coefficients a, a† are operators that inherit their commutation relations from (2.79). The
Fourier transform is defined as

φ̃(p) B

∫
d4x eipxφ(x)

φ(x) =

∫
d4 p

(2π)4 e−ipxφ̃(p) . (2.82)

With the spatial Fourier transform (t = 0) we get the representation of the

Field operator in momentum space

φ̃(p) B

∫
d3x e−ipx φ(x) =

1√
2ωp

(
a(p) + a†(−p)

)
,

π̃(p) B

∫
d3x e−ipx ∂0φ(x) = −i

√
ωp

2

(
a(p) − a†(−p)

)
. (2.83)

The commutation relations of the operators a, a† follow from that of the field and its canonical momentum
in (2.79). To begin with, we insert (2.83) into (2.79), and derive the commutation relations of φ̃(p), π̃(p),[

φ̃(p) , π̃(q)
]

=

∫
d3x d3y e−i(px+qy) [φ(x) , π(y)

]
=

∫
d3x d3y e−i(px+qy) i δ(x − y) = i

∫
d3x ei(p+q)x

= i (2π)3 δ(p + q) , (2.84)

and [
φ̃(p) , φ̃(q)

]
= 0 =

[
π̃(p) , π̃(q)

]
. (2.85)

Eqs. (2.84) & (2.85) entail that π̃(q) is conjugate to φ̃(−q). Now we use that the creation and annihilation
operators are related to sums of the field and momentum operators similarily to quantum mechanics:

Creation and annihilation operator

a(p) =

√
ωp

2
φ̃(p) + i

1√
2ωp

π̃(p)

a†(−p) =

√
ωp

2
φ̃(p) − i

1√
2ωp

π̃(p) . (2.86)

From the commutation relations (2.84), (2.85) of φ, π we deduce that for the creation and annihilation
operators:[

a(p) , a†(q)
]

= −
i
2

√
ωp

ωq

[
φ̃(p) , π̃(−q)

]
−

i
2

√
ωp

ωq

[
φ̃(−q) , π̃(p)

]
= (2π)3 δ(p − q) , (2.87)
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and [
a(p) , a(q)

]
= 0 =

[
a†(p) , a†(q)

]
. (2.88)

This sets up the canonical quantisation in a free scalar field theory.

III.2. Hamiltonian of the free scalar field

In the 1+0-dimensional quantum mechanical example in the beginning of this section and in the classical
scalar field theory we have seen, that the Hamiltonian density can be diagonalised. In terms of quantum
mechanical annihilation and creation operators it could be rewritten in terms of the number operator. Here
we follow this derivation in the scalar quantum field theory. To that end we diagonalise the Hamiltonian
density in momentum space. We start with the kinetic term,

−

∫
d3φ(x) ∆φ(x) =

∫
d3x

d3 p
(2π)3

d3q
(2π)3 e−ix(p+q) φ̃(p) q2 φ̃(q) =

∫
d3 p

(2π)3 φ̃(p) p2 φ̃(−p) , (2.89)

where we have used that ∆e−iqx = −q2e−iqx. Analogously we get

m2
∫

d3x φ2(x) = m2
∫

d3 p
(2π)3 φ̃(p) φ̃(−p) ,

∫
d3x π2(x) =

∫
d3 p π̃(p) π̃(−p) . (2.90)

All terms are diagonal in momentum space. Note that this complete diagonalisation is specific for free
theories. Local interactions such as the φ4-term cannot be diagonalised in momentum space. In the free
case we arrive at the diagonal Hamiltonian:

Diagonal Hamiltonian

H =

∫
d3 p

(2π)3

1
2

[
π̃(p) π̃(−p) + ω2

p φ̃(p) φ̃(−p)
]

with ω2
p = p2 + m2 . (2.91)

The physics interpretation of H is best done in terms of the annihilation and creation operators a, a†.
Hence, we use (2.83) to rewrite

H =
1
2

∫
d3 p

(2π)3ωp

{
a†(p) a(p) +

1
2

(
a†(p) a†(−p) + a(p) a(−p)

)

+a†(p) a(p) −
1
2

(
a†(p) a†(−p) + a(p) a(−p)

)
+

[
a(p) , a†(p)

] }

=

∫
d3 p

(2π)3ωp a†(p) a(p) +
1
2

V
∫

d3 p
(2π)3ωp , (2.92)

where we have used (2.88) for the last equality. We also used[
a(p) , a†(p)

]
= (2π)3δ(0) =

∫
d3x eipx

∣∣∣∣∣p=0
= V , (2.93)

where V is the volume of R3. The second term in the last line of (2.92) contains two infinities. As in
physics energy differences are measured and not total energies this infinite constant can be conveniently
dropped. However, it reflects one of the many divergencies we will encounter on the way and we add a
few remarks:
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(i) The volume of R3 is an infrared infinity related to considering arbitrarily large wavelengths. It
occurs in the infinite volume limit and can be dealt with by putting the theory in a finite volume,
i.e. a box B, a sphere S 3 (good for topological considerations) or a torus T 3 (periodic box, no
artificial curvature or boundary, used in lattice formulations of QFT). All these choices lead to
finite volume factor, and all of them, and others, have been considered in QFT.

(ii) In turn, the second infinity is given by the vacuum energy density and occurs as the integral∫ d3 p
(2π)3ωp diverges. It is related to the limit of large momenta or small wave lengths and hence

is an ultraviolet infinity. It can be dealt with by regularising the momentum integral, e.g. with the
constraint p2 ≤ Λ2 with some finite ultraviolet cutoff Λ.

(iii) Although we ave argued that this constant term can be dropped as only energy differences can be
measured, it has to be considered in general: it plays a role at finite temperature or more gener-
ally for QFT with boundary conditions. The latter has an interesting and measurable application
with the Casimir effect in QED: it introduces an attractive force between conducting plates, more
generally the strength of the Casimir force and even the sign depends on the considered geometry.
Last but not least the constant term is important for QFT in curved space-time and/or coupled to
gravity, specifically but not exclusive for the cosmological constant problem.

For now we continue with our derivatiion and simply drop the term. This leads us to the diagonal
Hamiltonian as a spatial momentum integral:

Hamiltonian

H =

∫
d3 p

(2π)3 ωp a†(p) a(p) with ωp =

√
p2 + m2 . (2.94)

H is the Hamiltonian of a momentum continuum of harmonic oscillators with frequencies ωp. As a, a†

are annihilation and creation operators respectively, the combination a†(p) a(p) is simply the momentum
density of the number operator. Accordingly, H simply counts the number of particles with a given
momentum p and integrates over their energies ωp. Thus, in summary it gives the total energy of a given
state.

III.3. Fock space of scalar quantum field theory

This leads us directly to the question of the Hilbert space of the quantum field theory which we have
constructed in terms of its operators. It is given by the Fock space, which is basically a sum of a set of
Hilbert spaces of the n-particle states. The Fock space is no systematically constructed from the vacuum
state and the operator algebra given by a, a†.

(i) Vacuum & generic states: The vacuum is the state with the lowest energy, and we define

Vacuum state
H |0〉 = 0 with a(p) |0〉 = 0 and 〈0|0〉 = 1 . (2.95)

Note that it is the definition (2.95) that leads to the interpretation of a and a† as annihilation and creation
operators respectively. With (2.95) we now create all states in the Hilbert Space by applying a, a† on
the vacuum state |0〉. Indeed it is sufficient to only consider a†, as any a can be commuted through to the
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right where it finally hits the vacuum state. We also remark that a general state is given by applying a
sum of products of creation operators to the vacuum,

|f〉 =

∞∑
N=0

∫
d3 p1

(2π)3

1√
2ωp1

· · ·
d3 pN

(2π)3

1√
2ωpN

f (p1, ...,pN) a†(p1) · · · a†(pN) |0〉 , (2.96)

where f = ( f0, f1...) is the inifinite-dimensional vector of the coefficient functions fn(p1, ...,pN).

(ii) General one-particle state: In order to construct such a general state and for discussing its prop-
erties, we first consider the one-particle state with momentum p, which is proportional to a†(p)|0〉. The
normalised state is given by

One-particle state

|p〉 =

√
2ωp a†(p) |0〉 , with H |p〉 = ωp |p〉 . (2.97)

The state in (2.97) is normalised, and is an eigenstate of the Hamiltonian with the energy ωp. We are
now proving both of these properties. Let us first consider the latter property. Applying the Hamiltonian
(2.94) to the state (2.97) leads us to

H |p〉 =

∫
d3 p′

(2π)3ωp′ a†(p′) a(p′)
√

2ωp a†(p) |0〉

=

∫
d3 p′

(2π)3ωp′ a†(p′)
√

2ωp

( [
a(p′) , a†(p)

]
+ a†(p) a(p′)

)
|0〉

= ωp a†(p)
√

2ωp |0〉 = ωp |p〉 . (2.98)

In (2.98) we have used the canonical commutation relations (2.88) as well as the vacuum property a|0〉 =

0, see (2.95). The states (2.97) are orthonormal: first of all the scalar product of two states with momenta
p and q is proportional to the spatial momentum δ-function. Moreover, it is scalar and hence the factor
has to involve ωp. This leads us to the normalisation of the momentum states with (2π)3ωpδ(p − q).
Integrated over the Lorentz-invariant measure

∫
d3 p/(2π)31/(2ωp) the total normalisation is unity. With

(2.97) we arrive at

〈p|q〉 = 2
√
ωp ωq 〈0| a(p) a†(q) |0〉 = 2

√
ωp ωq 〈0|

[
a(p) , a†(q)

]
|0〉 = 2ωp (2π)3 δ(p − q) . (2.99)

and ∫
d3 p

(2π)3

1
2ωp
〈p|q〉 = 1 . (2.100)

Eq. (2.97) is also an Eigenstate for the momentum operator and the general one-partical state is given by
a weighted momentum integral of |p〉,

General one-particle state

| f 〉 =

∫
d3 p1

(2π)3

1√
2ωp1

· · ·
d3 pN

(2π)3

1√
2ωpN

f (p1, ...,pN) a†(p1) · · · a†(pN) |0〉 , (2.101)

where f(p) denotes the distribution of momenta present in the state. The norm of the general one-particle
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state is given by

〈 f | f 〉 =

∫
d3 p

(2π)3

∫
d3q

(2π)3

1√
2ωp2ωq

f∗(p) f(q) 〈0| a(p) a†(q) |0〉 =

∫
d3 p

(2π)3

1
2ωp

f∗(p) f(p) . (2.102)

If the state is normalised to unity, f ∗ f (or rather f ∗ f /(2ωp) ) is nothing but the propability distribution
of a given one-particle state in momentum space. While the momentum eigenstate (2.97) is also an
eigenstate of the Hamiltonian, the general one-particle is not due to the momentum integral involved.
We find

H | f 〉 =

∫
d3 p′

(2π)3ωp′ a†(p′) a(p′)
∫

d3 p
(2π)3

1√
2ωp

f(p) a†(p) |0〉 =

∫
d3 p

(2π)3

√
ωp

2
a†(p) f(p) |0〉 ,

(2.103)

the energy is distributed according to the momentum distribution of the state. If sandwiched with this
state this becomes even more obvious,

〈 f |H | f 〉 =

∫
d3 p

(2π)3

[
1

2ωp
f∗(p) f(p)

]
ωp , (2.104)

for normalised states | f 〉 this is nothing but the energy distribution following from the probability f∗(p) f(p).

(iii) N-particle state: The analysis done above for the one-particle state extends straightforwardly to
the n-particle state. First we note that particle momentum states are eigenstates of the Hamiltonian and
energy-momentum is additive. Assume now that we have a state |β〉 with H |β〉 = Eβ |β〉. Then a†(p) |β〉
is a state with one additional particle with momentum p and the energy Eβ + ωp:

H
(
a†(p) |β〉

)
= a†(p) H |β〉 +

[
H , a†(p)

]
|β〉 = (H + ωp)

(
a†(p) |β〉

)
. (2.105)

Accordingly, we simply have to consider N creation operators acting on the vacuum. This leads us to
N-particle momentum states:

N-particle state

|p1 · · · pN〉 =

N∏
i=1

√
2ωpi a†(pi) |0〉 , with H |p1 · · · pN〉 =

 N∑
i=1

ωpi

 |p1 · · · pN〉 , (2.106)

where the latter property follows by starting with the vacuum, recursively multiplying the creating oper-
ators and using (2.105). Note also, that the N-particle states have Bose symmetry, i.e.

|p1 · · · pi pi+1 · · · pN〉 = |p1 · · · pi+1 pi · · · pN〉 , (2.107)

as
[
a†(pi) , a†(pi+1)

]
= 0. While the energy relation in (2.106) follows concisely from (2.105), we re-

derive it with the explicit form of the state and the Hamiltonian operator for further exemplifying the use
of the commutation relation. This leads us to

H |p1 · · · pN〉 =

∫
d3 p′

(2π)3ωp′
N∏

i=1

√
2ωpi

(
a†(p′) a(p′) a†(p1) · · · a†(pN) |0〉

)
. (2.108)
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In the next step we shift all creation operators to the left and all annihilation operators to the right, which
is called normal ordering. Then we use Eq. (2.95) and the canonical commutation relations for the
creation and annihilation operators, (2.88), to simplify the equation,

a(p′)
(
a†(p1) · · · a†(pN)

)
|0〉 =

( [
a(p′) , a†(p1)

]
a†(p2) · · · a†(pN) + ...

... + a†(p1)
[
a(p′) , a†(p2)

]
a†(p3) · · · a†(pN) + ... + ...

... + a†(p1) · · · a†(pN−1)
[
a(p′) , a†(N)

] )
|0〉 . (2.109)

With (2.109) it follows that |p1 · · · pN〉 is an energy eigenstate with the energy
∑
ωpi , see (2.106). The

odering of operators of the final expression, namely all annihilation operators to the right, is called
normal ordering. We have already used it implicitly in the definition of the Hamiltonian (2.94), and it
will be discussed in more detail later.
The general N particle state is then given by a momentum integral of a distribution f (p1, ...,pN) of
momentum eigenstates similarly to (2.101):

N-particle state

| fN〉 =

∫
d3 p1

(2π)3

1√
2ωp1

· · ·
d3 pN

(2π)3

1√
2ωpN

f (p1, ...,pN) a†(p1) · · · a†(pN) |0〉 . (2.110)

This leads us directly to the definition of generic state in the Fock space of the scalar quantum field
theory as a sum of general aN-particle states for all N as defined in (2.96). We close the discussion of
the N-particle state with a remark on the generation of an (N − 1)-particle state from an N-particle state.
This is naturally achieved by applying an annihilation operator to the N-particle state, which is illustrated
with the example of N = 1 below:

Example 2-3: Annihilation operator applied to general one particle state.

a(p) | f 〉 = a(p)
∫

d3 p′

(2π)3

1√
2ωp′

f(p′) a†(p′) |0〉

=

∫
d3 p′

(2π)3

1√
2ωp′

f(p′)
[
a(p) , a†(p′)

]
|0〉

=
1√
2ωp

f(p) |0〉 (2.111)

(iv) Field operator φ and coherent states: Let us now discuss the interpretation of the field oper-
ator φ(x) in Eq. (2.80). We first remark that applying φ to the vacuum state yields a one particle state,

φ(x) |0〉 =

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−ipx + a†(p) eipx

)
|0〉 =

∫
d3 p

(2π)3

1
2ωp

eipx |p〉 . (2.112)
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Eq. (2.112) is the Fourier transformation of a momentum one-particle state, hence a position state. Test-
ing this state with a momentum one-particle state results in

〈p| φ(x) |0〉 = eipx , (2.113)

is a plane wave travelling at momentum p and reminiscent of non-relativistic QM, as 〈p|x〉 = eipx.
Applying φ to the dual (bra-vector) vacuum vector 〈0| leads to a similar conclusion for the annihilation
operator part of φ. We conclude that the field operator φ(x) creates and annihilates a particle at the spatial
position x. Moreover, states with defined particle number have a vanishing expectation value of φ. In
particular this applies to the vacuum,

〈0|φ(x)|0〉 =

∫
d3 p

(2π)3

1√
2ωp

〈0|a(p) e−ipx + a†(p) eipx|0〉 = 0 , (2.114)

with 〈0|a|0〉 = 0 = 〈0|a†|0〉. Similarly it follows, that

〈p|φ(x)|p〉 = 0
...

〈p1 · · · pN|φ(x)|p1 · · · pN〉 = 0 , (2.115)

by using

|p1 · · · pN〉 ' a†(p1) · · · a†(pN) |0〉 . (2.116)

Let us now concentrate on the annihilation part of the field. A potential eigenvector for this part is one
for the annihilation operator,

a(p) |α〉 = α(p) |α〉 , with 〈α|α〉 = 1 . (2.117)

the state is unchanged by the annihilation (detection) of a particle with momentum p and the eigenvalue
is the amplitude α(p). Eq. (2.117) defines a coherent state, heuristically one with minimal uncertainty,
hence a ’classical’ state. If the field operator is sandwiched with |α〉, this interpretation is very suggestive.
We find

〈α|φ(x)|α〉 =

∫
d3 p

(2π)3

1√
2ωp

(
e−ipx α(p) + eipx α∗(p)

)
= φcl(x) . (2.118)

We emphasise,that α(p), α∗(p) are no operators, and Eq. (2.118) is equivalent to Eq. (2.16), i.e. the
classical real scalar field φcl(x). It is left to explicit construct |α〉. Its defining property (2.117) implies
that it must be a sum of N-particle states |αN〉 that are mapped into |αN−1〉 if hit with a. This leads us to

|α〉 =
1
N(α)

∞∑
N=0

|αN〉 , with a(p) |αN〉 = α(p) |αN−1〉 , (2.119)

with |α−1〉 = 0 and a normalisation N(α). Such an N-particle state is given by

|αN〉 =
1

N!

N∏
i=1

∫ d3 pi

(2π)3

1√
2ωpi

α(pi)

 |p1 · · · pn〉 , (2.120)

and the property in (2.119) is shown with successively using

a(p) |p1 · · · pn〉 =

n∑
i=1

(2π)3
√

2ωpi |p1 · · · pi−1 pi+1 · · · pn〉 δ(p − pi) , (2.121)
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more details can be found in Appendix I. It is left to compute the normalisation N(α) necessary for
〈α|α〉 = 1 in (2.119). This computation is deferred to Appendix I. This concludes our construction of the
coherent state. The sum in (2.119) with the N-particle states |αN〉 defined in (2.120) is the exponential
series and we write conveniently

Coherent state

|α〉 =
1
N(α)

exp
(∫

d3 p
(2π)3 α(p) a†(p)

)
|0〉 , with N(α) = exp

(
1
2

∫
d3 p

(2π)3 |α(p)|2
)
.

(2.122)

The coherent states are not orthogonal which can be deduced from their scalar product,

〈β|α〉 =
1

N(α)N(β)
exp

(∫
d3 p

(2π)3 β
∗ α(p)

)
= exp

(
−

1
2

∫
d3 p

(2π)3

(
|α(p)|2 + |β(p)|2 − 2β∗ α(p)

)
, (2.123)

where we used the Baker–Campbell–Hausdorff formula

exp (A) exp (B) = exp (B) exp (A) exp ([A , B]) for [A , [A , B]] = 0 = [B , [B , A]] . (2.124)

Indeed the set of coherent states is overcomplete. For completeness it is remarked, that in quantum
mechanics (1+0 dimensional theory) we can easily show that

1
π

∫
d2α |α〉 〈α| = 1 . (2.125)

This completes our discussion of coherent states and the interpretation of the field operator.

(v) Conserved energy-momentum tensor: Let us now discuss the fate of the classical conservation
laws in the quantisation procedure. To begin with, as nothing in the derivation of the Noether theorem
made use of the nature of the field (functions or operators), the conservation laws should also hold in the
quantised theory. Indeed we have already discussed the Hamiltonian as the generator of time translations.
This is the 0-component of the conserved current Pµ =

∫
d3x T 0µ, see (2.51). Corresponding to Eq. (2.51)

we now calculate the spatial momentum operator as

Pi =

∫
d3x T 0i =

∫
d3x π ∂iφ

=

∫
d3x

{
(−i)

∫
d3 p′

(2π)3

√
ωp′

2

(
a(p′) e−ip′x − a†(p′) eip′x

)

×

∫
d3q

(2π)3

1√
2ωq

(
a(q) (−iqi) e−iqx + a†(q) iqi eiqx

)}

= −
i
2

∫
d3 p

(2π)3

(
a(p) a(−p) ip + a(p) a†(p) ip

−a†(p) a(p) (−ip) − a†(p) a†(−p) (−ip)
)
. (2.126)

where we have used the Fourier representation of the field and its canonical momentum, (2.80). The
first and last term in the momentum integral proportional to a(p) a(−p) p and a†(p) a†(−p) p vanish:
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a(p) a(−p) are even under p → −p as the operators commute, this follows similarly for a†(p) a†(−p).
Hence, the total integrands are odd under p → −p and the intergals vanish, i.e.

∫
d3 p a(p) a(−p) p = 0.

We normal order the operators (annihilation operator to the right) and arrive at

Pi =
1
2

∫
d3 p

(2π)3

(
2 a†(p) a(p) p +

[
a†(p) , a(p)

]
p
)

=
1
2

∫
d3 p

(2π)3

(
2 a†(p) a(p) p − (2π)3δ(0) p

)
. (2.127)

Analogously to the Hamiltonian in (2.93), the second term formally diverges. As for the vacuum energy
we drop this term: we only can measure the differences of momenta. This leads us to

4-momentum operator

P0 = H

(spatial momentum) P =

∫
d3x π∇φ

'

∫
d3 p

(2π)3 p a†(p) a(p) with P |p〉 = p |p〉 . (2.128)

(vi) Lorentz symmetry: We close the construction of the Fock space with discussing Lorentz symme-
try. Let U(Λ) denote the unitary Fock space representation of a Lorentz transformation Λ. Then

U(Λ) |0〉 = |0〉

U(Λ) |p〉 = |Λp〉 . (2.129)

Note, that
〈q|p〉 = 2ωp(2π)3 δ(p − q) (2.130)

is Lorentz invariant, as ∫
d3 p

(2π)3

1
2ωp

=

∫
d4 p

(2π)4 2π δ(p2 − m2) θ(p0) (2.131)

is invariant under proper orthochronous Lorentz transformations
(
detΛ = 1, Λ0

0 > 0
)
, and

∫
d3 p

(2π)3

1
2ωp

2ωp(2π)3 δ(p − q) = 1 . (2.132)

With this, we have completed the Fock space construction. Recall, that φ(x) generates a superposition
of one particle states from the vacuum (Eq. (2.113)). Further we remark, that causality is encoded in the
propagator

D(x − y) = 〈0|φ(x) φ(y)|0〉 (2.133)

and its variants. This is further discussed in chapter 3, section I. In summary we have constructed and
discussed the Hilbert space for the free real scalar field, the Fock space, in the paragraphs (i) - (vi). The
quantisation as well as the construction of the Fock space readily carries over to complex scalar field
and O(N)-theories, φ = (φ1, ..., φN). We refrain from repeating the identical steps of the construction and

25



Chapter 2. Free Scalar Field

simply quote some of the important result. The action, the field operator and its canonical momentum
are given by

S [φ] =

∫
d4x

(
∂µφ ∂

µφ∗ − m2φ φ∗
)
, with φ =

1
√

2
(φ1 + i φ2) ,

φ(x) =

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−ipx + b†(p) eipx

)
,

π(x) = ∂0φ∗(x) = −i
∫

d3 p
(2π)3

√
ωp

2

(
b(p) e−ipx − a†(p) eipx

)
, (2.134)

with the commutation relations [
φ(x) , π(y)

]
= δ(x − y) ,[

a(p) , a†(q)
]

= (2π)3 δ(p − q) ,[
b(p) , b†(q)

]
= (2π)3 δ(p − q) . (2.135)

and all other commutators vanish. Evidently, a, a† are the annihilation and creation operators for particles
while b, b† are the annihilation and creation operators for anti-particles. This can be also deduced from
the respective Noether charges (electric charge) discussed below. The Hamiltonian operator is given by

H =
1
2

∫
d3 p

(2π)3

(
π̃(p) π̃†(p) + ω2

p φ̃(p) φ̃†(p)
)
, (2.136)

and reads in the diagonal momentum representation

H =
1
2

∫
d3 p

(2π)3ωp

(
a†(p) a(p) + b†(p) b(p)

)
, (2.137)

where the integrand corresponds to the sum of the energy of particles and antiparticles. Finally, the
Noether charge operator from Eq. (2.65) is given by

Q = i
∫

d3x
(
φ∗∂t φ − (∂tφ

∗) φ
)

= i
∫

d3x
∫

d3 p
(2π)3

∫
d3q

(2π)3

1√
2ωp 2ωq(

(a†(p) eipx + b(p) e−ipx) · (−iωq a(q) e−iqx + iωq b†(q) eiqx)

−(iωp a†(p) eipx − iωp b(p) e−ipx) · (a(q) e−iqx + b†(q) eiqx
)

=

∫
d3 p

(2π)3

(
a†(p) a(p) − b†(p) b(p)

)
. (2.138)

Again one sees that particle and anti-particle nature of the opposite Noether charge carries by the a†a
and b†b parts. The ’classical’ charge in a coherent state is given by

〈α|Q|α〉 =

∫
d3 p

(2π)3

(
α∗ α(p) − β∗ β(p)

)
, (2.139)

which agrees with the classical Noether charge derived in (2.65).
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3. Perturbation Theory

Perturbation theory is a standard method in quantum field theory. It considers interaction as a perturba-
tion of the free theory. Thus, we assume λ � 1 and expand the observables, e.g. scattering amplitudes,
in order of λ. We remark, that strictly speaking it is an amplitude expansion of the field amplitude as the
coupling always comes with powers of the field. This differentiation is important for strong field physics,
e.g. electrodynamics in strong fields. There, the coupling is small, the fine structure constant α is of the
order 10−2, but perturbation theory at least has to be resummed.

I. Interaction Picture

Perturbation theory in QFT is typically done in the interaction picture which is a mixture of the Heisen-
berg and Schrödinger picture known from quantum mechanics (1+0 dimensional QFT). In short, in the
interaction picture the operators evolve with the Hamiltonian of the free QFT, while the states are evolved
with the interaction Hamiltonian. For the construction we first briefly recapitulate the Heisenberg and
Schrödinger picture.
In the previous chapter, the Fock space construction was performed in the Heisenberg picture. As men-
tioned above, in the Heisenberg picture the operators evolve in time, whereas the states are stationary,

i∂t | f 〉 = 0 ,

i∂t O(t) = [O(t) , H] . (3.1)

The time evolution equation for the operator O(t) in (3.1) has the simple solution

O(t) = eiHt O e−iHt , (3.2)

with the unitary time evolution operator exp(iH t) that describes the time evolution over a time distance
t = t1 − t2. An important example is the field operator φ(x): In the discussion of the free field we only
discussed equal time commutation relations and operators at t = 0 such as φ(x). The respective argument
was the time translation invariance of the free theory. With (3.2) the time-dependent field operator φ(x)
follows with

φ(x) = eiHt φ(x) e−iHt

= eiHt
∫

d3 p
(2π)3

1√
2ωp

(
a(p) eipx + a†(p) e−ipx

)
e−iHt

=

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−i(ωpt−px) + a†(p) ei(ωpt−px)

)

=

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−ipx + a†(p) eipx

)
, (3.3)

with

eiHt a(p) e−iHt = a(p)e−iωpt , and eiHt a†(p) e−iHt = a†(p) eiωpt . (3.4)
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Eq. (3.3) is nothing but the quantised version of the time-dependent classical solution of the equation
of motion, (2.16), and the field operator in (3.3) collapses to the time-dependent classical free field if
sandwiched in a coherent state. For the derivation of (3.4) we write exp{iHt} =

∑
(1/n!) tn Hn. let us first

consider the commutator of the Hamiltonian with the annihilation operator. With H a(p)− a(p) (H −ωp)
we find

[
H , a(p)

]
=

∫
d3q

(2π)3ωq

(
a†(q)

[
a(q) , a(p)

]
+

[
a†(q) , a(p)

]
a(q)

)
= −ωp a(p) . (3.5)

where we have used the canonical commutation relations (2.88). With (3.5) we arrive at

eiHt a(p) e−iHt = a(p) ei(H−ωp)t e−iHt = a(p) e−iωpt . (3.6)

The time evolution of the creation operator follows similarily and we are led to (3.4). This closes our
brief recapitulation of the Heisenberg picture.
In the Schrödinger picture the states evolve in time and the operators are stationary,

i∂t | f (t)〉 = H | f 〉

i∂t O = 0 . (3.7)

As for the time evolution of the operators in the Heisenberg picture, the time evolution of the states in the
Schrödinger picture have a simple solution in terms of the unitary time evolution operator exp(−i H t),

| f (t)〉 = e−iHt | f 〉 . (3.8)

Hence, the time evolution operator U(t, t′) B e−iH(t−t′) either acts on the operators (Heisenberg) or
the states (Schrödinger); the expectation values are the same. This leads us to an important property,
the causality of a local Poincaré-invariant QFT: Causality is a necessary requirement of any physics
description, and has to be present in a QFT on the microscopic level. In a local QFT we have point-
like interactions, a necessary requirement for the causality of the QFT. It should be also present in the
field operator. In particular the field operator should not connect space-like regions. This leads to the
requirement [

φ(x) , φ(y)
]

= 0 for (x − y)2 < 0 . (3.9)

Eq. (3.9) entails that two measurements with a space-like distance have no impact on each other. For
proving (3.9) we consider

[
φ(x) , φ(y)

]
=

∫
d3 p

(2π)3

∫
d3q

(2π)3

1√
2ωp 2ωq

( [
a(p) , a†(q)

]
e−i(p−q)x +

[
a†(p) , a(q)

]
ei(p−q)y

)

=

∫
d3 p

(2π)3

1
2ωp

e−ip(x−y) −

∫
d3 p

(2π)3

1
2ωp

eip(x−y)

=

∫
d4 p

(2π)3 δ(p2 − m2) θ(p0) e−ip(x−y) −

∫
d4 p

(2π)3 δ(p2 − m2) θ(p0) eip(x−y) , (3.10)

with p0 =
√
~k2 + m2 ≥ 0, and using (2.17) in the last step. Now we utilise the manifest Lorentz-invariant

form of the momentum measures that in Eq. (3.10): For space-like separations ((x − y)2 < 0 there is a
Lorentz transformation with

Λ(x − y) = −(x − y) , (3.11)
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backward lightcone

x0

x1

x2 > 0Λ

x2 < 0

x2

x0

x1

x2

Λ

forward lightcone

Figure 3.1.: Lorentz transformations connect all points on a x2 = const. surface in the Minkowski di-
agram. Thus, for space-like separations we find a Lorentz transformation |Lambda with
Λ(x − y) = −(x − y), sketched in the figure on the right hand side. In turn, for time-like
separations this is not possible, see the figure on the left hand side.

see figure 3.1. Hence, for (x − y)2 < 0 we have∫
d4 p

(2π)3 δ(p2 − m2) θ(p0) eip(x−y) =

∫
d4 p

(2π)3 δ(p2 − m2) θ(p0) eip Λ(x−y)

=

∫
d4 p

(2π)3 δ(p2 − m2) θ(p0) e−ip(x−y) . (3.12)

With (3.12) the two terms in (3.10) cancel and we are led to the causality relation (3.9). Evidently,
the derivation carries over directly to complex scalar fields (or more general N copies of scalar fields,
φ = (φ1, ..., φN)), and we find [

φ(x) , φ†(y)
]

= 0 for (x − y)2 < 0 . (3.13)

In summary local interactions and the free field operators φ(x) lead to the necessary causality of the QFT
on the microscopic level. We now proceed to the interaction picture. As already mentioned above, in the
interaction picture we expand the theory in powers of interaction about the free theory, the latter being
formulated in the Heisenberg picture. In turn, the states evolve with the interaction Hamiltonian. For this
construction we decompose the Lagrangian density in a free and an interaction part

L(φ) = L0(φ) +Lint(φ) =
1
2
φ(x)

(
−∂2 − m2

)
φ(x) +Lint(φ) , (3.14)

where the interaction Lagrangian is given by the local pointlike interaction −V(φ),

Lint(φ) = −V(φ) , (3.15)

is a polynomial in φ(x) at the same space-time point x. This decomposition carries over to the Hamilto-
nian density

H(π, φ) = H0(π, φ) +Hint(φ) =
1
2
π(x)2 +

1
2
φ(x)

(
−∆ + m2

)
φ(x) +Hint(φ) , (3.16)
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where the canonical momentum solely occurs in the free part and

Hint(φ) = V(φ) . (3.17)

For the time being we restrict ourselves to the φ4-interaction:

interaction part of the Hamiltonian density

Hint(φ) = V(φ) =
λ

4!
φ(x)4 . (3.18)

Note, that the normalisation factor of 4! varies in literature. Let us add a few remarks:

(i) higher order terms are excluded by lack of renormalisability (predictivity) in four space-tim di-
mensions.

(ii) φ3 terms lack the discrete symmetry under φ→ −φ and hence are not bounded from below classi-
cally.

(iii) as the simplest interacting QFT, the φ4 theory is the ’workhorse’ of QFT.

In the interaction picture, the operators evolve in time with the free Hamiltonian

i∂t O = [O , H0]

⇒ O(t) = eiH0t O e−iH0t , (3.19)

with
H0 =

∫
d3xH0 . (3.20)

On the other hand, the states evolve with the interaction Hamiltonian

i∂t | f 〉 = Hint | f 〉 . (3.21)

Note, that

[H0 , Hint] , 0

⇒ ∂tHint , 0 i.e. Hint = Hint(t) . (3.22)

Time evolution of a state can also be expressed as

| f (t)〉 = U(t, t0) | f (t0〉 , (3.23)

where U(t, t0) is the unitary time-evolution operator. With Eq. (3.19) we find the

time evolution of U(t, t0)
i∂tU(t, t0) = Hint(t) U(t, t0) . (3.24)

We remark, that the scattering matrix is defined as

S-matrix
S = lim

t0→−∞
t→+∞

U(t, t0) . (3.25)

Strictly speaking, this means λ is adiabatically switched on and off. Thus, initial state |i〉 and final state
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t

λ

on off

Figure 3.2.: Sketch of adiabatic switch on/off of λ, i.e. interaction.

| f 〉 are given by:

|state t → −∞〉 = |i〉

|state t → +∞〉 = | f 〉 . (3.26)

Note, that for a proper treatment of the S-matrix the LSZ-formalism is used.
Next, we derive the explicit expression for U(t, t0). For this purpose, we take the infinitesimal form of
Eq. (3.21) and use it to rewrite the state | f (t)〉 iteratively:

| f (t + ∆t)〉 = | f (t)〉 − i ∆t Hint(t) | f (t)〉

=

(
1 − i ∆t Hint(t)

)
| f (t)〉

=

(
1 − i ∆t Hint(t)

) (
1 − i ∆t Hint(t − ∆t)

)
| f (t − ∆t)〉

...

=

N∏
n=0

(
1 − i ∆t Hint(t − n ∆t)

)
| f (t − N ∆t)〉 . (3.27)

Thus,

U(t + ∆t, t − N∆t) =

N∏
n=0

(
1 − i ∆t Hint(t − n ∆t)

)
. (3.28)

We expand in powers of ∆t:

U(t + ∆t, t−N∆t) = 1 + (−i)∆t
N∑

n=0

Hint(t− n ∆t) + (−i)2(∆t)2
∑
n<m

Hint(t− n ∆t) Hint(t−m ∆t) + ... . (3.29)

Note, that n < m in the second sum corresponds to the time ’on the left’ being larger than the time ’on
the right’ (time ordering). Now let ∆t → 0 with N ∆t = t − t0. Then Eq. (3.29) becomes

1 + (−i)

t∫
t0

dt′ Hint(t′) + (−i)2

t∫
t0

dt′
t′∫

t0

dt′′ Hint(t′) Hint(t′′) + ... , (3.30)
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where the first integral in the last line corresponds to the sum over n and the second integral to the sum
over m. The integral limits give an equivalent ordering to n < m.
Finally, we obtain the

time-evolution operator

U(t, t0) = T exp

−i

t∫
t0

dt′ Hint(t′)

 for t > t0 , (3.31)

with the time ordering operator

T A(t) B(t′) = A(t) B(t′) θ(t − t′) + B(t′) A(t) θ(t′ − t) . (3.32)

Example 3-4: Time ordering for the second order term of U(t, t0). This example shows, how the
time ordering operator acts on the second order term in the expansion of Eq. (3.31), yielding the second
order term of Eq. (3.30).

1
2

T

t∫
t0

dt′ Hint(t′)

t∫
t0

dt′′ Hint(t′′)

=
1
2


t∫

t0

dt′ Hint(t′)

t′∫
t0

dt′′ Hint(t′′) (t′ < t)

+

t∫
t0

dt′′ Hint(t′′)

t′′∫
t0

dt′ Hint(t′)

 (t′′ > t′)

=

t∫
t0

dt′ Hint(t′)

t′∫
t0

dt′′ Hint(t′′) . (3.33)

This works analogously for higher order terms, where n! equal terms cancel with the 1
n! factor from the

expansion.

Note, that

Hint =

∫
d3x φ4(x) ∼ a2 (a†)2 . (3.34)

Hence, the interaction Hamiltonian creates two particles and annihilates them, leading to infinite vacuum
processes 〈0|Hint|0〉.

Example 3-5: 2 to 2 scattering.

p′1

p′2

p1

p2Hint

∼ |p1 p2〉
〈
p′1 p′2

∣∣∣ ∼
at t → +∞ at t → −∞
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The S-matrix is given by
S = 1 + i T , (3.35)

where the unit matrix represents the part without scattering. For 2 to 2 scattering it is

i T f i � −i 〈0|a(p′1) a(p′2)
λ

4!

∫
d4x φ4(x) a†(p1) a†(p2)|0〉 , (3.36)

where we have already dropped the infinite constants and used the first order interaction term, only. To
explicitly compute i T f i, we use Eq. (2.88) and perform normal ordering (pull all creation operators in
Hint to the left and all annihilation operators to the right). Using Eq. (2.95) all operators then vanish and
only the terms with the commutators remain. Then we obtain

i T f i =: i M(2π)4 δ(p1 + p2 − p′1 − p′2) with i M = i λ , (3.37)

where M denotes the matrix element.
In the following, normal ordered expressions will be marked by colons, e.g.

: a(p1) a†(p2) : = a†(p2) a(p1) . (3.38)

For instance, normal ordering discards the infinite vacuum terms of the free Hamiltonian H0 in Eq. (2.92),
as

: H0 : =
1
2

∫
d3 p

(2π)3 :
1
2

a†(p) a(p) +
1
2

a(p) a†(p) :

=
1
2

∫
d3 p

(2π)3 a†(p) a(p) . (3.39)

Further, the normal ordered interaction Hamiltonian Hint already yields Eq. (3.37):

λ

4!

∫
d4x : φ(x)4 :

∼
λ

4!
: (a†)2 a2 + a† a a† a + a a† a a† + a† a2 a† + a (a†)2 a + a2 (a†)2 :

∼
λ

4
(a†)2 a2 . (3.40)

Then,

λ

4

∏
i

∫
d3qi

(2π)3

1√
2ωqi

 e−ix(q3+q4−q1−q2)
√

2ωp1′ 2ωp′2 2ωp1 2ωp2 (3.41)

· 〈0|a(p′1) a(p′2)
(
a†(q1) a†(q2) a(q3) a(q4)

)
a†(p1) a†(p2)|0〉

= 4 ·
λ

4

∏
i

∫
d3qi

(2π)3

√
2ωqi

2ωqi

 e−ix(q3+q4−q1−q2) · δ(p′1 − q1) δ(p′2 − q2) δ(p1 − q3) δ(p2 − q4)

= λ e−ix(p1+p2−p′1−p′2) , (3.42)
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with e.g.

a(q4) a†(p1) a†(p2) |0〉 =
[
a(q4) , a†(p1)

]
a†(p2) |0〉 + a†(p1) a(q4) a†(p2) |0〉

=

(
2π)3 δ(q4 − p1) a†(p2) + a†(p1)

[
a(q4) , a†(p2)

]
+ a†(p1) a†(p2) a(q4)

)
|0〉

= (2π)3
(
δ(q4 − p1) a†(p2) + δ(q4 − p2) a†(p1)

)
. (3.43)

Lastly, using
1

(2π)3

∫
d4x e−ix(p1+p2−p′1−p′2) = δ(p1 + p2 − p′1 − p′2) , (3.44)

we obtain Eq. (3.37).
The difference between interaction Hamiltonian and normal ordered interaction Hamiltonian conse-
quently gives the vacuum contributions:

Hint = : Hint : +
λ

8

∫
d4x

(∫
d3 p

(2π)3

1
2ωp

)2

+ (a† a, a a†)-terms . (3.45)

Let us now consider the interpretation of these terms:

p′2

p1

p2

p′1
−i λ · (2π)4 δ(p1 + p2 − p′1 − p′2):

interaction 4-momentum
strength conservation

−i λ

p′2

p1

p2

p′1
+

p′2

p1

p2

p′1
·

∫
d4x 2

−i λ ·
p1 p′1 p′2p2

+ (p1 ↔ p2) + (p′1 ↔ p′2)+(p1 ↔ p2, p′1 p′2)↔

〈0| a(p′1) a(p′2) a†(p1) a†(p2) |0〉

Vacuum parts:

.

Note, that for the first term

〈0|a(p′1) a(p′2) a†(p1) a†(p2)|0〉
(
1 − i λ

∫
d4x O2

)

= 〈0|a(p′1) a(p′2) a†(p1) a†(p2)|0〉
(
exp

(
−i λ

∫
d4x O2

)
+ O(λ2)

)
. (3.46)

It can be shown, that the second order term is an infinite phase, that contains all vacuum processes.
Nevertheless, as the phase/loops are infinite, the call for an appropriate treatment. Commonly one uses
regularisation and renormalisation ("theory in a box", see chapter 7).
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Next, we discuss a core ingredient of perturbation theory: the propagator.
Starting in the Heisenberg picture, we introduce the vacuum of the full theory |Ω〉, with

i∂t |Ω〉 = 0 . (3.47)

In the Heisenberg picture the operators evolve with the full Hamiltonian, i.e.

i∂tφH =
[
φH , H

]
, (3.48)

with
φH = eiHt φ(0, x) e−iHt . (3.49)

We now link this to the interaction picture, where the states evolve with Hint and

| f (t)〉I = U(t, 0) | f (0)〉I

i∂tφI =
[
φI , H0

]
. (3.50)

Hence,

φI(x) =

∫
d3 p

(2π)3

1√
2ωp

(
a(p) e−ipx + a†(p) eipx

)
p0=ωp

. (3.51)

Using, that
U(t, 0) = eiH0t e−iHt , (3.52)

it follows
φH(x) = U(0, x0) φI(x) U(x0, 0) , (3.53)

with

φH(x) | f 〉H = U(0, x0) φI(x) U(x0, 0) | f 〉H

i∂tU(x0, 0) | f 〉H = Hint U(x0, 0) | f 〉H . (3.54)

It is tempting to identify U(x0, 0) | f 〉H with the interaction picture states | f (t)〉I . At t → ±∞, λ is switched
off adiabatically, and | f 〉I tend to free in/out states. Considering, that U(0,∞) = U(∞, 0)−1, we have

〈Ω|U(0, x0) = 〈Ω|U(0,∞) U(∞, x0)

=
∑

n

〈Ω|U(0,∞) |n〉I I 〈nI |U(∞, x0)

= 〈Ω|U(0,∞) |0〉 〈0|U(∞, x0) , (3.55)

where in the last step we used, that adiabatically indicates:
∣∣∣n-particles

〉
free

U
−→

∣∣∣n-particles
〉

full. Also, it
is

U(x0, 0) |Ω〉 = U(x0,−∞) |0〉 〈0|U(−∞, 0) |Ω〉 . (3.56)

Further note, that

i∂tU(t, 0) = HI(t) U(t, 0) ,

HI(t) = Hint(t) = eiH0t Hint e−iH0t

=
λ

4!

∫
d3x φI(x)4 ,

i∂tHI = [HI , H0] . (3.57)
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Thus,

i∂tφH(x) = U(0, t) Hint(x0) φI(t) U(t, 0) − U(0, t) φI Hint(x0) U(t, 0) + ...

... + U(0, t)
[
φI(x) , Hint(t)

]
U(t, 0)

= 0 . (3.58)

We now compute the propagator

〈Ω|T φH(x)φH(y)|Ω〉

= 〈Ω|φH(x)φH(y)|Ω〉 θ(x0 − y0) + 〈Ω|φH(y)φH(x)|Ω〉 θ(y0 − x0) . (3.59)

For x0 > 0 > y0:

〈Ω|T φH(x)φH(y)|Ω〉

using Eq. (3.53) → (3.60)

= 〈Ω|U(0, x0) φI(x) U(x0, y0) φI(y) U(y0, 0)|Ω〉

= 〈0|U(∞, x0) φI(x) U(x0, y0) φI(y) U(y0,−∞)|0〉 ·
1(

〈Ω|U(0,∞) |0〉 · 〈0|U(−∞, 0) |Ω〉
)−1 ,(3.61)

where we used, that in general

U(x0, z0) = U(x0, y0) U(y0, z0) for x0 > y0 > z0 . (3.62)

This follows straightforwardly from Eq. (3.31). Note, that the dominator in Eq. (3.61) is (a product of
two) phases, i.e. | 〈Ω|U(0,∞) |0〉 | = 1. This becomes evident, when considering:

| 〈Ω|U(0, x0)| = 1 , (3.63)

as from U being unitary it follows

| 〈Ω|U(0, x0)|2 = 〈Ω|U(0, x0) U†(0, x0) |Ω〉 = 〈Ω|Ω〉 = 1 . (3.64)

And analogously
| 〈0|U(−∞, x0)|2 = 1 . (3.65)

Combining Eq. (3.64) and Eq. (3.65) yields

| 〈Ω|U(0,∞) |0〉 | = 1 . (3.66)

Hence,
〈Ω|U(0,∞) |0〉−1 = 〈Ω|U(0,∞) |0〉∗ = 〈Ω|U†(0,∞) |0〉 , (3.67)

i.e. the normalisation factor in Eq. (3.61) is a phase. Likewise to Eq. (3.55), we use the adiabaticity and
get

〈Ω|U(0,∞) |0〉−1 〈0|U(−∞, 0) |Ω〉−1

using Eq. (3.67) → = 〈0|U(∞, 0) |Ω〉 〈Ω|U(0,−∞) |0〉

= 〈0|U(∞, 0) U(0,−∞)|0〉 = 〈0|U(−∞,∞)|0〉

= 〈0|S |0〉 = 〈0|T exp
(
−i

∫
dt Hint(t)

)
|0〉 . (3.68)
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We also have for the numerator of Eq. (3.61)

〈0|U(∞, x0) φI(x) U(x0, y0) φI(y) U(y0,−∞)|0〉

= 〈0|T φI(x) φI(y) exp
(
−i

∫
dt Hint(t)

)
|0〉 . (3.69)

Finally, with φI = φ, and the analogous result for y0 > x0, we obtain for the

propagator (two-point function)

〈Ω|T φH(x) φH(y)|Ω〉 =
〈0|T φ(x) φ(y) exp

(
−i

∫
dt Hint(t)

)
|0〉

〈0|T exp
(
−i

∫
dt Hint(t)

)
|0〉

. (3.70)

This is straightforwardly extended to the

propagator (n-point function)

〈Ω|T φH(x1) · · · φH(xn)|Ω〉 =
〈0|T φ(x1) · · · φ(xn) exp

(
−i

∫
dt Hint(t)

)
|0〉

〈0|T exp
(
−i

∫
dt Hint(t)

)
|0〉

. (3.71)

Note, that the denominators in Eq. (3.70) and Eq. (3.71) are phases. For example, the linear term in λ is

−i 〈0|
∫

dt Hint|0〉 = −i λ 〈0|
∫

d4x φ(x)4|0〉 = −
i
8

∫
d4x

(∫
d3q

(2π)3

1
2ωq

)2

, (3.72)

which cancels the vacuum term in Eq. (3.45). We remark, that both, phase factor (denominator) and the
vacuum contributions in the nominator, are infinite and cancel.

II. Wick’s Theorem

We have seen, that the computation of scattering amplitudes relates to the computation of time ordered
n-point functions

〈0|T φ(x1) · · · φ(xn) ei
∫

d4y Lint(y)|0〉 , (3.73)

where
−

∫
dt Hint =

∫
dt Lint =

∫
d4y Lint(y) . (3.74)

Since the coupling is small, λ � 1 we can usually expand the exponential in powers of λ. For example
in first order we then obtain,

〈0|T φ(x1) · · · φ(xn)
m∏

i=1

Lint(yi)|0〉 =
1

(4!)m 〈0|φ(x1) · · · φ(xn) φ(xn+1) · · · φ(xn+4m)|0〉 , (3.75)

with xn+1, . . . , xn+4 = y1; · · · ; xn+4(m−1), . . . , xn+4m = ym. The only building block in Eq. (3.73) is

〈0|T φ(x1) · · · φ(xn)|0〉 . (3.76)

We stress that in this formula the important simplification is that: φ = φI is free.
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Using this feature, that φ = φI is free, we can now approach calculating the time ordered n-point func-
tions. Let us start with the example of the two-point function.
Indeed, for x0

1 > · · · > x0
n Eq. (3.76) reduces to 〈0|φ(x1) · · · φ(xn)|0〉, and we simply have to use the

canonical commutation relations, Eq. (2.88). In the next step, we use normal ordering and the vanishing
expectation value of the ordered parts. In particular we try to write,

Tφ(x1) · · · φ(xn) = : φ(x1) · · · φ(xn) : + : (n − 2) − field operators : (3.77)

+ : (n − 4) − field operators : + . . . + rest without field operators.

The trick is now that all the normal ordered parts give vanishing expectation value and we have,

〈0|Tφ(x1) · · · φ(xn)|0〉 = rest without field operators. (3.78)

For the two-point function this works as follows:
Firstly, we rewrite

φ(x) = φ+(x) + φ−(x) , (3.79)

with

φ+(x) =

∫
d3 p

(2π)3

1√
2ωp

a†(p) eipx

φ−(x) =

∫
d3 p

(2π)3

1√
2ωp

a(p) e−ipx . (3.80)

For x0 > y0 it is

T φ(x) φ(y) = φ+(x) φ+(y) + φ+(x) φ−(y) + φ−(x) φ+(y) + φ−(x) φ−(y)

= φ+(x) φ+(y) + φ+(x) φ−(y) +

(
φ+(y) φ−(x) +

[
φ−(x) , φ+(y)

] )
+ φ−(x) φ−(y) .(3.81)

Thus,

T φ(x) φ(y)
∣∣∣∣∣
x0>y0

= : φ(x) φ(y) : +
[
φ−(x) , φ+(y)

]
, (3.82)

where
: φ−(x) φ+(y) : = φ+(y) φ−(x) ∀x , (3.83)

from
: a(p) a†(q) : = a†(q) a(p) . (3.84)

The procedure for the case x0 < y0 is completely analogous. The two parts can be written in one formula
by using the θ-function.

Taking the vacuum expectation values, the normal ordered part vanishes. The time ordered propagator
for the two-point function is called

Feynman-propagator

DF(x − y) = 〈0|T φ(x)φ(y)|0〉

=
[
φ−(x) , φ+(y)

]
θ(x0 − y0) +

[
φ−(y) , φ+(x)

]
θ(y0 − x0) . (3.85)

The Feynman-propagator is the key-ingredient in (time ordered) perturbation theory. To explicitly
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calculate the Fenyman-propagator we consider[
φ−(x) , φ+(y)

]
θ(x0 − y0)

=

∫
d3q

(2π)3

∫
d3 p

(2π)3

1√
2ωp 2ωq

[
a(p) , a†(q)

]
e−i (px+qy) θ(x0 − y0)

∫
d3 p

(2π)3

1
2ωp

e−i p(x−y) θ(x0 − y0)

⇒ DF(x − y) =

∫
d3 p

(2π)3

1
2ωp

(
e−i p(x−y) θ(x0 − y0) + ei p(x−y) θ(y0 − x0)

)
. (3.86)

In the last step we have used that the case x0 < y0 can be treated analogously.
The Feynman propagator can be written as

Feynman-propagator (explicit)

DF(x − y) =

∫
d4 p

(2π)4

i
p2 − m2 + i ε

e−i p(x−y) , as ε → 0 . (3.87)

To see that this is true we use the

Residue theorem:
The contour integral of a function f (z) around a closed, counterclockwise path encircling a domain
where f (z) has a finite number of isolated singularities (poles at z = zi, i = 1, 2, . . . , n) is∮

dz f (z) = 2π i
n∑

i=1

Res( f , zi) , (3.88)

where the residue of f (z) at a simple pole zi is Res( f , zi) = lim
z→zi

(z − zi) f (z).

The integrand in Eq. (3.87) has poles at (p0)2 = ±
√

p2 + m2 − i ε, as shown in figure 3.3. We now have
to consider where we have to close the contour. For x0 − y0 > 0 the integrand grows exponentially as

+
√

p2 + m2

−
√

p2 + m2 p0

x0 − y0 < 0

x0 − y0 > 0

: close contour in upper half plane

: close contour in lower half plane

Figure 3.3.: Sketch of the poles of the integrand of Eq. (3.87) and the contour for the Residue theorem.
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we go into the upper half plane. We therefore have to close the contour in the lower half plane where the
integrand exponential is decreasing. The relevant pole is then at p0

− =
√

p2 + m2 − i ε → ωp, and thus

DF(x − y) = −

∫
d3 p

(2π)3

2π i
2π

resp0
−

(
e−i p(x−y)

p2 − m2 + i ε

)

=

∫
d3 p

(2π)3 i
e−i p(x−y)

2iωp

∣∣∣∣∣
p0=ωp

. (3.89)

This works similarly for x0 − y0 < 0. The difference is now just that we have to close the contour in the
upper half plane. The distinction of these two cases can be accounted for by a θ-function. We therefore
have the equivalence of Eq. (3.87) and Eq. (3.86).

We have parametrised the time ordered propagator in terms of commutators. On operator level we have

T φ(x) φ(y) = : φ(x) φ(y) : +
[
φ−(x) , φ+(y)

]
Θ(x0 − y0) +

[
φ−(y) , φ+(x)

]
Θ(y0 − x0) . (3.90)

This can be written as
T φ(x) φ(y) = : φ(x) φ(y) : +φ(x)φ(y) , (3.91)

with the contraction

φ(x) φ(y) =
[
φ−(x) , φ+(y)

]
Θ(x0 − y0) +

[
φ−(y) , φ+(x)

]
Θ(y0 − x0)

= DF(x − y) . (3.92)

Note, thatDF(x− y) is a c-number (and not an operator!). We use this, to generalise the time ordering to
a product of n fields. This is

Wick’s theorem
T φ(x1) · · · φ(xn) = : φ(x1) · · · φ(xn) + all contractions : , (3.93)

where

φ(x1) · · · φ(xi) · · ·φ(x j) · · · φ(xn)

= φ(x1) · · · φ(xi−1) φ(xi+1) · · · φ(x j−1) φ(x j+i) · · · φ(xn) φ(xi) φ(x j). (3.94)

The content of this notation will become clearer by an example.

Example 3-6: 4-point correlation function.

T φ(x1) · · · φ(x4) = T φ1 φ2 φ3 φ4

= : φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4

+φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4

+φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4 + φ1 φ2 φ3 φ4 : , (3.95)
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where e.g.

: φ1 φ2 φ3 φ4 : = : φ3 φ4 : φ1 φ2 = : φ3 φ4 : DF(x1 − x2) . (3.96)

Importantly we have,
〈0|: O :|0〉 = 0 . (3.97)

With this it follows

〈0|T φ(x1) · · · φ(x4)|0〉 = DF(x1 − x2)DF(x2 − x3) +DF(x1 − x3)DF(x2 − x4) (3.98)

+DF(x1 − x4)DF(x2 − x3) ,

where each term corresponds to one of the terms with two contractions in Eq. (3.95).

It remains to prove Wick’s theorem. We will do this by induction. First we show, that it holds for the
one- and two-point function:

n = 1, 2 : T φ1 = : φ1 :

T φ1 φ2 = : φ1 φ2 : +φ1 φ2 . (3.99)

Next, we assume that Wick’s theorem applies to the n-point function, i.e. T φ2 · · · φn+1. Without loss of
generality we can assume that x0

1 ≥ x0
i ∀i. (If this is not the case we can just relabel the points and the

time-ordering takes care of the rest.) Then

T φ1 · · · φn+1 (3.100)

= φ1T φ2 · · · φn+1

= φ1

(
: φ2 · · · φn+1 + all contractions :

)
=

(
φ1+

+ φ1−

) (
: φ2 · · · φn+1 + all contractions :

)
= : φ1 · · · φn+1 +

[
φ1− , φ2

]
φ3 · · · φn+1 + φ2

[
φ1− , φ3

]
φ4 · · · φn+1 + · · · + φ2 · · ·

[
φ1− , φn+1

]
:

+

(
φ1+

+ φ1−

) (
: all contractions :

)
. (3.101)

Using [
φ1− , φi

]
=

[
φ1− , φi+

]
= φ1 φi , (3.102)

and similarly as in Eq. (3.101) for (
φ1+

+ φ1−

) (
: all contractions :

)
, (3.103)

we obtain
T φ(x1) · · · φ(xn+1) = : φ(x1) · · · φ(xn+1) + all contractions : , (3.104)

which completes the induction.
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III. Feynman Rules

With Wick’s theorem (Eq. (3.93)) we write every time ordered n-point function as product of Feyn-
man propagators (Eq. (3.85)) plus the normal ordered terms. Indeed, since perturbation theory contains
only vacuum expectation values of n-point functions, Wick’s theorem reduces all those to products of
Feynman propagators.

We introduce the diagrammatical notation

DF(x1 − x2) = 〈0|T φ1 φ2|0〉 =
1 2

.

Now, let us again consider the 2-2 scattering, as it is a relevant example.
The zeroth order term in λ, i.e. the term without interaction is simply given by the expectation value of
the 4-point function:

〈0|T φ1 φ2 φ3 φ4|0〉 =

3 4

1 2
+

3 4

1 2
+

3 4

1 2

.O(λ0) :

The first order term O(λ1) is

−iλ
4!

∫
d4x 〈0|T φ1 φ2 φ3 φ4 φ φ φ φ|0〉

=
−iλ
4!

∫
d4x

[
φ1 φ φ2 φ φ3 φ φ4 φ · 4! + φ φ

(
φ1 φ φ2 φ φ3 φ4

)
· 12 + perm. (3.105)

+φ φ φ φ
(
φ1 φ2 φ3 φ4

)
· 3+ perm.

]
.

Note, that the factor 4! accounts for all possibilities to contract φ4 with φ1 · · · φ4, and the factors 12 and
3 account for permutations of the contractions, that give an identical expression. This will be discussed
further below. Diagrammatically and without the symmetry factors this writes

3 4
1 2

+

3 4

1 2

+

3 4

1 2
+ · · · +

3 4

1 2
+ · · · ,O(λ1) :

where the vertices correspond to
(
−i λ

∫
d4x

)
.

The second order term

1
2!

(
−iλ
4!

)2 ∫
d4x

∫
d4z 〈0|T φ1 φ2 φ3 φ4 φ(x)4 φ(z)4|0〉

comprises
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1
4!
· 4 · 3

O(λ2) :
1
2

+ +

3 4

1 2
...

+

1
2! · 2!

1
4! · 4!

3 4

1 2

4 3

1 2
+

... +

3 4

1 2

· · · +

1
2! · 2!

1
4! · 4!

1
8

3 4

1 2

...+ .

To determine the right prefactor for each diagram, we need to do some combinatorics: The permutations
of how to contract φ φ φ φ in Hint with the external fields gives a factor 4!, which cancels with the
denominator in −iλ

4! . This originally motivated the normalisation in Eq. (3.18). When loops are present,
we further have to account for the symmetries that result from contracting the φ4 amongst each others
in Hint. For this purpose we introduce the symmetry factor 1

S , where S corresponds to the number of
interchanging components without changing the diagram.
Now we can write down the

Feynman rules (position space)

iii)

= DF(x1 − x2)
1 2

= (−i λ)
∫

d4x

i)

ii)

multiplication with
1
S

.

(3.106)

However, there is one thing that we still have to take care of. From the first order onwards we encounter
pieces that are completely disconnected from any of the points x1, . . . , x4. They have the form of “vacuum
bubbles”. These terms contain infinities, but luckily we will see that these can be removed by a proper
normaliaztion.
Nevertheless let us first have a look at vacuum bubbles and what kind of infinities they comprise. The
simplest is actually just a closed loop of the propagator. This corresponds to the expression 〈0|T φ1 φ1|0〉.
With Eq. (3.87), we find

DF(0) =

∫
d4 p

(2π)4

i
p2 − m2 + i ε

=
1

.

This is a singularity, which will be removed by an appropriate adjustment of the computation (renor-
malisation). In particular, we note that the momentum dimension of DF(0) is two. Therefore, we argue

DF(0) = M2 + infinite . (3.107)
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However, the first such term in our perturbation theory is even worse. It is,

∼ (−i λ)
∫

d4x(DF(0))2s ∼ V4 · (∞)2. (3.108)

Luckily for now we do not have to deal with all those divergencies directly. The important step is to
realize that so far we have only calculated the numerator of the products of Heisenberg operators that we
are after. The full expression that we want is the vacuum expectation value Eq. (3.71)

〈
Ω|T φH,1 · · · φH,n|Ω

〉
B
〈0|T φ1 · · · φn exp

(
i
∫

d4x Lint
)
|0〉

〈0|T exp
(
i
∫

d4x Lint
)
|0〉

. (3.109)

For the computation we note, that each term 〈0|T φ1 · · · φn
(Lint)m

m! |0〉 can be ordered in terms of contrac-
tions between the φi and the Lint’s:

〈0|T φ1 · · · φn
(Lint)m

m!
|0〉 = 〈0|T φ1 · · · φn|0〉

1
m!
〈0|T (Lint)m|0〉 (3.110)

+ 〈0|T φ1 · · · φn Lint|0〉
1

(m − 1)!
〈0|T (Lint)m−1|0〉 + ... ,

where " " denotes all contractions, where internal fields from the interaction Hamiltonian are con-
nected to external fields (and not amongst themselves).
We use that

1
m!
〈0|T φ1 · · · φn (Lint)m|0〉

∣∣∣∣∣
O(2−Lint−contr.)

=
1

m!
〈0|T φ1 · · · φn (Lint)2|0〉 〈0|T (Lint)m−2|0〉 ·

m · (m − 1)
2

=
1
2
〈0|T φ1 · · · φn (Lint)2|0〉

1
(m − 2)!

〈0|T (Lint)m−2|0〉 , (3.111)

and that in general the combinatorics factor for l − Lint-contractions is

1
m!

(
m
l

)
=

1
m!

m!
(m − l)! l!

=
1

(m − l)! l!
. (3.112)

Then,

〈0|T φ1 · · · φn exp
(
i
∫

d4x Lint

)
|0〉 =

(
〈0|T φ1 · · · φn|0〉 +

∫
d4y1 〈0|T φ1 · · · φn Lint|0〉

+

∫
d4y1d4y2 〈0|T φ1 · · · φn (Lint)2/2|0〉 + ...

)
· 〈0|T exp

(
i
∫

d4x Lint

)
|0〉 .(3.113)

Consequently the denominator cancels all the vacuum terms. Therefore, the vacuum expectation value
is given by

〈0|T φ1 · · · φn exp
(
i
∫

d4x Lint
)
|0〉

〈0|T exp
(
i
∫

d4x Lint
)
|0〉

= 〈0|T φ1 · · · φn ei
∫

d4 x Lint |0〉 , (3.114)

which corresponds to all diagrams without "vacuum bubbles".
As most computations are carried out in momentum space, we will conclude this section, by examining
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the Fourier transforms.
The Feynman propagator becomes

DF(x1 − x2)→ DF(p) =
i

p1 − m2 + iε
(2π)4 δ4(p1 − p2) , (3.115)

and

x1 x2

→
p

.

For the vertices we write

−iλ
∫

d4x φ(x)4 = −iλ
∫ 4∏

i=1

d4 pi

(2π)4φ(pi) · (2π)4 δ4(p1 + p2 + p3 + p4) , (3.116)

where the delta-function indicates momentum conservation. Hence,

−iλ →

→

p1 p4

p2 p3

p4 = −(p1 + p2 + p3)

−iλ (2π)4 δ4 (p1 + p2 + p3 + p4)

.

For example:

p − p1 − p2
p2 p4

p1 p3
p

= (2π)4 δ4(p1 + p2 − p3 − p4)

·
∫ d4 p

(2π)4

1
p2 − m2 + iε

1
(p − p1 − p2)2 − m2 + iε

.

We now have the

Feynman rules (momentum space)

p
=

i
p2 − m2 + iε

= −iλ and p4 = −(p1 + p2 + p3) (momentum conservation)

∫ d4 p
(2π)4 for each loop

(2π)4 δ4(
∑

i pi) for
p1 pn

p1 p4

p2 p3

iii)

i)

ii)

iv)

multiplication with
1
S

.v)

(3.117)
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Example 3-7: two-point function in momentum space.

〈Ω|T φH(p1) φH(−p2)|Ω〉

=
i

p2
1 − m2 + iε

(2π)4 δ4(p1 + p2)

= (2π)4 δ4(p1 + p2)·
p1

+
1
2 p1 p2

p

+ O(λ2)
1
S

Without external propagators it is:

p1 p2

p
= −iλ

∫ d4 p
(2π)4

i
p2 − m2 + iε

= −i Π + O(λ2)

Heuristics:

.

.

p
=

i
p2 − m2 + iε

+
i

p2 − m2 + iε
i

p2 − m2 + iε
(−i Π)

=
i

p2 − m2 − Π + iε

+O(λ2)

+O(λ2) .

It follows, that we have an interacting mass m2 −Π, which is finite. In general (beyond 1-loop) it holds:

Π→ Π(p) (3.118)

The proper treatment is again provided through renormalisation and the LSZ-formalism.

IV. Cross Section

We start by considering an exemplary fixed target experiment. We first shoot a single point particle on a
target with a number density ρA and “cross sectional” area σ of objects with radius rA. For a thin target
the A particles cover a fraction of the area,

fractioncovered = ρAlAσ = probability of scattering. (3.119)

When the target is thicker, multiple scattering becomes possible and the covered fraction gives us the
average number of expected scatterings. We can therefore turn the equation around and obtain the cross
section as,

σ =
Nevents

ρAlA
=

Nevents

NA/A
, (3.120)

where NA is the number of A particles and A is the area over which they are distributed.
This can be easily generalized to a situation where we have a whole bunch of particles B being scattered
on the fixed target. Moreover, if both types of particle are not point-like the area to choose is the one
where there is any overlap, i.e. scattering happening. (For billiard balls this would actually be π(rA+rB)2.)
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A

v

bunch of particles, type B
bunch length lB
density ρB
velocity v

bunch of particles, type A
bunch length lA
density ρA
velocity 0

The cross section is defined as
σ =

Nevents

(NB · NA)/A
, (3.121)

where A is the scattering area (transverse). With a space-dependent density

(NB · NA)/A =

∫
A

d2x ρA(x) ρB(x) lA lB , (3.122)

the cross section is
σ =

Nevents

lA lB
∫

A d2x ρA(x) ρB(x)
, (3.123)

or for constant densities
σ

Nevents

lA ρA · lB ρB · A
. (3.124)

For the above example, we need to consider states, that are localised in space/momentum. Therefore, we
consider the wave packet from Eq. (2.101):∣∣∣ fp〉 =

∫
d3k

(2π)3

1
2ωk

fp(k) |k〉 , (3.125)

with fp(k) being a packet at p, e.g.

fp(k) ∼ e−(k−p)2/N Gaussian . (3.126)

Using the normalisation, it follows

1 =
〈

fp
∣∣∣ fp〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3

1
2ωk

1
2ωk′

f∗p(k′) fp(k)
〈
k′

∣∣∣k〉
=

∫
d3k

(2π)3

1
2ωk
|fp(k)|2 (see Eq. (2.102)) . (3.127)

The Gaussian is localised in k and x. Recall, that a Fourier transform of a Gaussian remains a Gaussian.
In our case, the initial state is given by

|i〉 =

∫
d3kA

(2π)3

∫
d3kB

(2π)3

1
2ωkA 2ωkB

fpA(kA) fpB(kB) |kA kB〉 , (3.128)

with
|kA kB〉 =

√
2ωkA 2ωkB a†(kA) a†(kB) |0〉 . (3.129)
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B

A

v
b

Figure 3.4.: Sketch of the impact parameter b.

Next, we introduce the impact parameter b (see figure 3.4). For this purpose, we recall, that the momen-
tum operator P from Eq. (2.56) generates translations. Thus,

e−i P b |k〉 = e−i kb |k〉 (3.130)

With this we rewrite the

initial state (with impact parameter b)

|ib〉 =

∫
d3kA

(2π)3

∫
d3kB

(2π)3

1
2ωkA 2ωkB

fpA(kA) fpB(kB) e−ikBb |kA kB〉 . (3.131)

This shows, that the impact parameter only gives an additional phase shift.
We now want to ask for the probability for the initial state |ib〉 to scatter into a given final state. For the
moment we take the final state to be a 2-particle momentum eigenstate (this is a bit problmeatic with
regards to the normalization, but we will clarify this below).
The situation we want to consider is that we are preparing our initial state such that the wave packets are
very distant from each other in the far distant past t0 = −∞. We then need to time-evolve the situation,
and finally we measure our scattering products much much later, i.e. at t = +∞. Accordingly the
transition amplitude is given by

lim
t0→∞, t→+∞

〈
pf1 pf2

∣∣∣ U(t, t0) |ib〉 =
〈
pf1 pf2

∣∣∣ S |ib〉 , (3.132)

where we have used the time evolution operator U(t, t0) and the definition of the S-matrix from Eq. (3.25).
The probability is then given by |

〈
pf1 pf2

∣∣∣ S |ib〉 |2.
In the following we will restrict ourselves to a collision of the bunch with a single target, i.e. NA = 1.
Let us now distribute NB particles homogeneously over an area A. Then integration over the impact area
A is equal to integration over the impact parameter b and the number of events in a dense beam is

Nevents =
NB

A

∫
A

d2b |
〈
pf1 pf2

∣∣∣ S |ib〉 |2 . (3.133)

With Eq. (3.121) it follows

σ(pf1 ,pf2) =
Nevents

(NB · 1)/A
=

∫
A

d2b |
〈
pf1 pf2

∣∣∣ S |ib〉 |2 . (3.134)

In this formula we have to be a bit careful. Since we have chosen our final state particles as momentum
eigenstates, they are not properly normalizable (they can only be normalized to δ-functions. Hence, in
this somewhat naive formula the cross section does not have the proper units of area. However, more
realistic is a detection of a momentum region v f , as detectors will in practice never be aligned with the
beam. Hence, we will rather obtain something like:
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correlated
momenta

p1

p2

It follows

σ(v f ) =

∫
d3 p f1

(2π)3

1
2ωpf1

∫
d3 p f2

(2π)3

1
2ωpf2

∫
d2b |

〈
pf1 pf2

∣∣∣ S |ib〉 |2 , (3.135)

where ∫
d3 p f1

(2π)3

1
2ωpf1

∼

∫
d4 p f1

(2π)4 (2π) δ(p2
f1 − m2) (3.136)

implies that it is on-shell, i.e. that p2 = m2. Finally, we obtain the

differential cross section (for n particles)

dσ =

n∏
i=1

d3 p fi

(2π)3

1
2ωpfi

∫
d2b |

〈
pf1 · · · pfn

∣∣∣ S |ib〉 |2 . (3.137)

We assume now, that the pi are not parallel to pB, so that there is no (trivial) forward scattering. Using

S f i = 1 f i + i T f i , i T f i = i M f i (2π)4 δ4
(∑

p f i −
∑

ki
)
, (3.138)

we conclude

dσ =
∏

i

d3 p f i

(2π)3

1
2ωpi

∫
d2b

∫
d3kA

(2π)3

1
2ωkA

d3kB

(2π)3

1
2ωkB

(3.139)

·

∫ d3k′A
(2π)3

1
2ωk′A

d3k′B
(2π)3

1
2ωk′B

fpA(kA) fpB(kB) f∗pA
(k′A) f∗pB(k′B) (3.140)

·eib(k′B−kB) |M f i|
2 (2π)4 δ4

(∑
p f i −

∑
ki
)
· (2π)4 δ4

(∑
p f i −

∑
k′i
)
,

with k1 = kA, k2 = kB.
In this formula the cross section now has the right units!
To explicitly compute this, we first consider the integral over the impact parameter, as solely the phase
factor depends on b. Therefore,∫

d2b eib(k′B−kB) = (2π)2 δ2(k′B⊥ − kB⊥) . (3.141)

Next we examine the integral over the primed momenta,∫
d3k′Ad3k′B δ

4
(∑

p f i −
∑

k′i
)
δ2(k′B⊥ − kB⊥)

=

∫
d
(
kz

A

)′
d
(
kz

B

)′
δ
(∑

pz
f i −

∑(
kz

i

)′)
δ
(∑

p0
f i −

∑(
k0

i

)′)
=

∫
d
(
kz

A

)′
δ
(∑

p0
f i −

∑(
k0

i

)′)
, (3.142)
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with k′B⊥ = kB⊥ , k′A⊥ = kA⊥ ,
(
kz

B

)′
=

∑
pz

f i −
(
kz

A

)′
. Here, the integral over the transverse δ-function for

the k′B⊥ is trivial. The equality k′A⊥ = kA⊥ is due to the four dimensional δ-function. For example in the
1-direction it enforced,

p1
f ,1 + p1

f ,2 − k1
A − k1

B = p1
f ,1 + p1

f ,2 − k′,1A − k′,1B , (3.143)

Using the equality of the transverse k′B⊥ = kB⊥ we now obtain the desired equality for the A.
It follows ∫

d3k′Ad3k′B δ
4
(∑

p f i −
∑

k′i
)
δ2(k′B⊥ − kB⊥)

=

∫
d
(
kz

A

)′
δ
(∑

p0
f i −

√
(kA

′)2 + m2
A −

√
(kB′)2 + m2

B

) ∣∣∣∣∣kA/B⊥=k′A/B⊥∑
kz

i =
∑(kz

i )
′∑

k0
i =

∑(k0
i )
′

=
1∣∣∣∣∣ (kz

A)′

(k0
A)′ −

(kz
B)′

(k0
B)′

∣∣∣∣∣
kA/B=pA/B
→

1
|vA − vB|

. (3.144)

where we also used, that (k′A)2 = k2
A⊥

+
((

kz
A

)′)2
and (k′B)2 = k2

B⊥
+

(∑
pz

i −
(
kz

A

)′)2
.

As the wave packages fpA/B are located around pA/B, we can substitute k′A/B → pA/B in all prefactors.
Then we obtain

dσ =
∏

i

d3 p f i

(2π)3

1
2ωpfi

1
4p0

A p0
B |vA − vB|

·

∫
d3kA

(2π)3

∫
d3kB

(2π)3

1
2k0

A 2k0
B

∣∣∣fpA(kA)
∣∣∣2 ∣∣∣fpB(kB)

∣∣∣2
·
∣∣∣M f i

∣∣∣2 (2π)4 δ4
(∑

p f i −
∑

ki
)
. (3.145)

Again, we use the localisation to replace
∑

ki → pi = pA + pB. Further,
∫

d3k
(2π)3

1
2ωk

∣∣∣ fp(k)
∣∣∣2 = 1 and∑

p f i =
∑

p f − pi. Finally, we get the

differential cross section

dσ =
1

4p0
A p0

B |vA − vB|

∣∣∣M f i
∣∣∣2 (2π)4δ4(p f − pi)

n∏
i=1

d3 p f i

(2π)3

1
2p0

f i

. (3.146)

Note, that except for the first fraction all expressions are Lorentz invariant. The first fraction is invariant
under boosts along the beam axis. Thus, dσ is a (differential) transverse area, i.e. invariant under
boosts along the beam axis. We define the n-particle phase space factor as

dΠn B (2π)4δ4(p f − pi)
n∏

i=1

d3 p f i

(2π)3

1
2p0

f i

. (3.147)

Let us now consider the highly relativistic case. Then

|s| = (pA + pB)2 =
(
p0

A

)2
− pA

2 +
(
p0

B

)2
− pB

2 + 2 p0
A p0

B − 2 pA pB

= m2
A + m2

B + 2 p0
A p0

B − 2 pA pB � m2
A + m2

B .

⇒ 4p0
A p0

B |vA − vB| → 2s , (3.148)
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and

dσ =
1
2s

∣∣∣M f i
∣∣∣2 dΠn . (3.149)

Let us exemplarily discuss the 2-2 scattering in φ4-theory in the highly relativistic case. Then, we have
n = 2 in Eq. (3.149) and p f i = pi. It follows∫

dΠ2 =

∫
(2π)4 δ4

(
p1 + p2 − (pA + pB)

)
·

d3 p1

(2π)3

1
2p0

1

d3 p2

(2π)3

1
2p0

2

'
1

(2π)2 4p0
1 p0

2

∫
d3 p2 δ

(
p0

1 + p0
2 −
√

s
)

for (pA + pB)2 � m2
A,m

2
B . (3.150)

We compute this in the center of mass system (CMS). Therefore, we have p1 = −p2 ⇒ p0
1 = p0

2, i.e.
equal masses. We also use

d3 p2 = dΩ |p2|
2d|p2| , (3.151)

with the solid angle dΩ = dϕ sin θ dθ .
It follows, p0

1 + p0
2 −
√

s ' 2p0
2 −
√

s = 2|p2|
2 −
√

s, p0
i =
√

s/2∫
dΠ2 =

1
2

s/4
(2π)2 4p0

1 p0
2

dΩ =
1

32π2 dΩ . (3.152)

Now we use Eq. (3.37), i.e. that for classical scattering it is∣∣∣M f i
∣∣∣2 = λ2 . (3.153)

With this, we obtain the

differential cross section (2-2 scattering)

dσ
dΩ

=
1
2s

∣∣∣M f i
∣∣∣2 ∫

dΩ(p2)fixed

dΠ2 =
λ2

64π2 s
. (3.154)

Lastly, we discuss the computation of the S-matrix elements. In the 2-2 scattering example we used,
that ∣∣∣M f i

∣∣∣2 = λ2 + O(λ3) . (3.155)

We make an expansion in the Feynman diagrams:

〈p1 p2| i T |pA pB〉 =

O(λ)

+ + perm.

O(λ2)

+ + ...

O(λ3)

Computing
p1

pA

pB
p2

with
1
2

= −i Π
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gives

i
p2

A − m2 + iε
(−i Π)(−iλ) · (2π)4 δ4(pA + pB − p1 − p2)

=

 i
p2

A − m2 + iε

−1 i
p2

A − m2 + iε
(−i Π)

i
p2

A − m2 + iε
(−iλ) · δ4(pA + pB − p1 − p2)

p1
pA

pB
p2

⇒
1
2

+

p1 pA

pB
p2

= −iλ
 i

p2
A − m2 + iε

−1  i
p2

A − m2 + iε
+

i
p2

A − m2 + iε
(−i Π)

i
p2

A − m2 + iε

 · δ4(pA + pB − p1 − p2)

= −iλ
 i

p2
A − m2 + iε

−1 i
pA − (m2 + Π) + iε

· δ4(pA + pB − p1 − p2) (3.156)

=
[
−iλ δ4(pA + pB − p1 − p2)

]
−1

pA
· + O(λ3)

(bare) free inverse
propagator with pA

full propagator
with pA

pA
.

We remark, that the free inverse propagator is related to the fact, that the particle A in the initial state was
prepared as a free state, which is only true for t → −∞. The correct state should relate to full (inverse)
propagation, i.e.

pA

−1

pA

→ −1

This leads to

.

1 =
pA

−1 .
pA

·

in the above equation. Thus, we conclude, that M f i is computed by computing amputated, connected
scattering diagrams. This will be discussed further in the subsequent section.

V. LSZ-Formalism

In the last section we have seen that the crucial QFT input in the calculation of scattering cross sections
are the S-matrix elements. In the above example we have already intuited that the S-matrix elements
are directly connected to Feynman diagrams. Now we aim to put this on a more solid footing. We will
see that the S-matrix elements can be obtained with the LSZ-reduction formula, named after the three
German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
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V.1. The spectral function and the Källén-Lehmann representation of the propagator

In the previous section we have seen, that the naive preparation of our in-state lead to a product of the
free inverse propagator with the full propagator in our scattering amplitudes (Eq. (3.156)). We have
encountered a similar problem with vacuum bubbles before. In this section we shall see that

φH(t → ∓∞)→ Z1/2 φin/out (weak op. equivalence) , (3.157)

with Z ≤ 1. So far, we have implicitly assumed Z = 1. In the following we determine Z by computing
the two-point function and subsequent generalisation to the n-point function. We begin with the vacuum
expectation value of the two-point function

〈φH(x) φH(y)〉 = 〈Ω|φH(x) φH(y)|Ω〉

(3.158)

In a next step we want to insert a suitable factor of 1. For this we choose |λ,p〉H as eigenstates of H, i.e.

H |λ,p〉 = Eλ |λ,p〉 (3.159)

and
P |λ,p〉 = pλ |λ,p〉 , (3.160)

with E2
λ − p2

λ = m2
λ fixed (on-shell). The idea for the next steps is to integrate over all states (on-shell)

with different masses to obtain the representation of the two-point function, which then will be off-shell.
The fixed states |λ,p〉 with fixed mλ are connected by boosts.

E

p

lightcone

m
one-part. state

E2 − p2 = m2
bound states

scattering spectrum/

multi-part. continuum

Note, that for the vacuum state it is
Eλ = 0 : |Ω〉 , (3.161)

and
〈Ω|φ(x)|Ω〉 = 0 . (3.162)

As in quantum mechanics the sum over all energy eigenstates gives us the unit operator, i.e.

1 = |Ω〉 〈Ω| +

∫∑
λ

∫
d3 p

(2π)3

1
2Eλ(p)

|λ,p〉 〈λ,p| . (3.163)

We use, that with P̂ = (H,P) we have

φH(x) = eiP̂x φH(0) e−iP̂x . (3.164)
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ρ(p2)

p2m2

mass of particle
pole of propagator

(2m)2

· · ·

continuum of
multiparticle states

bound states
(resonances)

Figure 3.5.: Sketch of the spectral function.

Then we get, (x0 ≥ y0)

〈φH(x) φH(y)〉 =

∫∑
λ

∫
d3 p

(2π)3

1
2Eλ(p)

∣∣∣ 〈Ω| φH(0) |λ,p〉
∣∣∣2 · e−i pλ(x−y). (3.165)

We can now use the same trick of introducing an extra integration over p0 that we used in our derivation
of the Feynman propagator. Again the pole prescription that corresponds to the θ-functions that give us
the time-ordering are included by an appropriate iε.

〈φH(x) φH(y)〉 =

∫∑
λ

∫
d4 p

(2π)4

1
p2 − m2

λ + iε
e−i p(x−y) ·

∣∣∣ 〈Ω| φH(0) |λ,p〉
∣∣∣2 . (3.166)

Using the same steps for x0 ≤ y0, we obtain in summary the

Källén-Lehmann spectral representation

〈T φH(x) φH(y)〉 =

∞∫
0

dM2

2π
ρ(M2)DF(x − y; M2) , (3.167)

with the

spectral function

ρ(p2) =

∫∑
λ

(2π) δ(p2 − m2
λ)

∣∣∣ 〈Ω| φH(0) |λ〉
∣∣∣2 . (3.168)

The spectral function is depicted in figure 3.5 and has the representation

ρ(p2) = Z · 2π δ(p2 − m2) + θ(p2 − m2
1) + · · · , (3.169)

where m2
1 denotes the mass in the first residue. Hence,

〈T φ(x) φ(y)〉 = ZDF(x − y; m2) +

∞∫
m2

1

dM2

2π
ρ(M2)DF(x − y; M2) . (3.170)
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Note, thatDF(x − y; M2) carries the one-particle pole of φ.
To relate this to φin, we consider one-particle states |λ1〉 in |λ〉 〈λ|:

ρ ∼

∫∑
one-part.
statesλ1

e−ipλ(x−y)
∣∣∣ 〈Ω| φ(0) |λ1〉

∣∣∣2 , (3.171)

with, U = U(−∞, 0) ∣∣∣ 〈Ω| φ(0) |λ1〉
∣∣∣2 =

∣∣∣ 〈Ω|U−1 U φU−1 U |λ1〉
∣∣∣2

=
∣∣∣ I 〈0| φH(−∞) |λ1〉I

∣∣∣2
=

∣∣∣ I 〈0|Z1/2 φin |λ1〉I

∣∣∣2
= Z . (3.172)

Let us now determine Z. For this purpose, we consider the not time ordered expectation value 〈φ(x) φ(y)〉.
ThenDF in Eq. (3.170) is substituted by the not time ordered propagator D. Note also, that[

∂

∂y0

〈[
φ(x) , φ(y)

]〉]
x0=y0

=
〈[
φ(x) , Π(y)

]
x0=y0

〉
= i δ3(x − y) (3.173)

and [
∂

∂y0

(
D(x − y) − D(y − x)

)]
x0=y0

= i δ3(x − y) . (3.174)

Next, we integrate over space, i.e. evaluate
∫

d3x
〈[
φ(x) , Π(y)

]
x0=y0

〉
. With Eq. (3.170) and Eq. (3.173)

we obtain

1 = Z +

∞∫
m2

1

dM2

2π
ρ(M2) (3.175)

and, as the integral term is larger than zero,

0 ≤ Z ≤ 1 . (3.176)

Note, that Z = 1 in free theory and Z < 1 in interacting theory. Also note, that 1 − Z accounts for the
overlap of φ |Ω〉 with multi-particle states and that in the limit t → ∓∞:

φ(x)→ Z1/2 φin/out (weak op. equivalence) . (3.177)

In momentum space the spectral representation reads,

DF(p2) =

∫
d4x exp(ipx)〈Ω|TφH(x)φH(0)|Ω〉 (3.178)

=

∞∫
0

dM2

2π
ρ(M2)

i
p2 − M2 + iε

.
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Close to the mass shell, i.e. p2 − m2 = 0, the propagator is dominated by the one particle state,

DF(p2 → m2) '
i Z

p2 − m2 + iε
(3.179)

(
=

∫
d4x eipx 〈T φ(x)φ(0)〉

)
.

This can be easily seen by splitting the integral in Eq. (3.167) into a part from 0 to m2
1 and one from m2

1
to∞,

DF(p2) =

m2
1∫

0

dM2

2π
ρ(M2)

i
p2 − M2 + iε

+

∞∫
m2

1

dM2

2π
ρ(M2)

i
p2 − M2 + iε

. (3.180)

The first part gives Eq. (3.179) whereas the second is finite in the limit p2 → m2.
Indeed from this spectral representatiom we can obtain an interesting general result for the decay of the
propagator at large space-like momenta (or even better do it in Euclidean space p2 → −p2

E),

∣∣∣∣∣∣∣ lim
p2

E→∞
p2

EDF

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∞∫

0

dM2

2π
p2

E

p2
E + M2

ρ(M2)

∣∣∣∣∣∣∣∣∣ ≥
q2

0∫
0

dM2

2π
p2

E

p2
E + M2

ρ(M2) (3.181)

≥

q2
0∫

0

dM2

2π
p2

E

p2
E + q2

0

ρ(M2)

≥

q2
0∫

0

dM2

2π
p2

E

2q2
0

≥ A for p2
E ≥ q2

0.

Here, we have used that ρ(M2) ≥ 0. Physically this tells us that the propagator cannot drop faster than
1/p2

E . This is to some degree a problem. We have already seen that loop integrals are often divergent. One
way to make them more convergent would be to have a situation where the propagator drops faster than
1/p2

E , e.g. as 1/p4
E or even exponentially. However, as we have just seen this is forbidden by Eq. (3.181).

That said, there are some caveats that have to go along with this. The above naive manipulations are only
guaranteed to be correct if the integral converges. This is far from a trivial requirement. For example
we have already encountered divergences in quantum field theory, so some care is needed. Moreover,
there could also be more complicated theories, where the spectral function grows, e.g. exponentially. For
example string theory (or at least toy models of it) can exhibit such a feature.
Note, m2 is not simply the mass parameter m2

0 in the Lagrangian. It is really the physical mass/energy of
the one-particle state

V.2. The LSZ reduction formula

Now we will derive the LSZ-reduction formula. For this purpose we extend the analysis of the two-
point function to an n-point function. The latter will be related to the S-matrix elements. As in Eq. (3.179)
we evaluate the Fourier transform∫

d4x eipx 〈T φ(x) φ(x2) · · · φ(xn)〉 . (3.182)
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With T+ > x0
2, ..., x

0
n and T− < x0

2, ..., x
0
n, we split

∫
dx0 eip0 x0

=


T−∫
−∞

+

T+∫
T−

+

+∞∫
T+

 dx0 eip0 x0
, (3.183)

where the first and the third integral give poles and the second one is finite. It follows

∫
d4x eipx 〈T φ(x) φ(x2) · · · φ(xn)〉 =

∞∫
T+

d4x eipx 〈φ(x)T φ(x2) · · · φ(xn)〉 +


T−∫
−∞

+

T+∫
T−

 · · · (3.184)

=

∞∫
T+

d4x eipx
∫∑
λ

∫
d3q

(2π)3

1
2ωq

· 〈φ(x)|λ,q〉 〈λ,q|T φ2 · · · φn〉 + · · · .

Using 〈φ(x)|λ,p〉 = 〈Ω| φ(0) |λ〉 e−iqx:

∞∫
T+

∫∑
λ

∫
d3q

(2π)3

1
2ωq

dx0 ei(p0−q0+iε)x0
〈Ω| φ(0) |λ〉 〈λ,q|T φ2 · · · φn〉 · (2π)3 δ3(p − q)

=

∫∑ 1
2ωp

i ei(p0−ωp+iε)T+

p0 − ωp + iε
〈Ω| φ(0) |λ〉 〈λ,p|φ2 · · · φn〉 . (3.185)

Focussing on the one particle pole. For p0 → ωp: (using Källén-Lehmann)

lim
p0→ωp

+∞∫
T+

d4x eipx 〈T φ(x) φ(x2) · · · φ(xn)〉 =
i Z1/2

p2 − m2 + iε
〈p|T φ(x2) · · · φ(xn)〉 + finite . (3.186)

Analogously we find for the
∫ T−
−∞

-term:

lim
p0→−ωp

T−∫
−∞

d4x eipx
〈(

T φ(x2) · · · φ(xn)
)
φ(x)

〉
=

i Z1/2

p2 − m2 + iε
〈T φ(x2) · · · φ(xn)|−p〉 + finite . (3.187)

As mentioned before, the last term
∫ T+

T−
· · · is finite as the integration interval has a finite length (compact).

We remark, that the above analysis can be repeated iteratively for all φ(xi). Strictly speaking, one should
separate the fields spacially:

∫
d4x eipx →

∫
d3k

(2π)3 eipx fp(k).
Importantly, states |p〉 are at time t → −∞ and states 〈p| are at time t → +∞, and that after iteration we
have

−∞ 〈p1 · · · pn|k1 · · · km〉+∞ = 〈p1 · · · pn| S |k1 · · · km〉 . (3.188)
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With this we obtain the

LSZ-reduction formula

〈p1 · · · pn| S |k1 · · · km〉

∣∣∣∣∣
on-shell

=

∫ n∏
i=1

d4xi eipi xi

m∏
j=1

d4yi e−ik jy j

n∏
i=1

(
∂2

xi
+ m2

) m∏
j=1

(
∂2

yi
+ m2

)
·Z(n+m)/2 〈T φ(x1) · · · φ(xn) φ(y1) · · · φ(yn)〉 , (3.189)

where on-shell means p2 = m2 being the physical mass pole and not the mass parameter m2
0 in the

Lagrangian.

This entails for the S-matrix elements with Eq. (3.189)

〈p1 · · · pn| S |k1 · · · km〉

∣∣∣∣∣
on-shell

= Z(n+m)/2 amput.

pnp1

kmk1

(3.190)

Concluding, we remark: Z is called wave function (or field strength) renormalisation, as it multiplies the
field. Note that 〈

T Z−1/2 φ(x) Z−1/2 φ(y)
〉

p2→m2 = DF(x − y; m2) (3.191)

i.e. Z renormalises the field. With this we also see, that

Z(n+m)/2 〈T φ(p1) · · · φ(km)〉amput.

� Z(n+m)/2
∏

i

p2
i + m2

Z1/2

∏
j

k2
j + m2

Z1/2 〈T φ(p1) · · · φ(km)〉

=
∏

i

(p2
i + m2)

∏
j

(k2
j + m2)

〈
T Z−1/2 φ(p1) · · · Z−1/2 φ(km)

〉
, (3.192)

where
〈
T Z−1/2 φ(p1) · · · Z−1/2 φ(km)

〉
is just the expectation value of the renormalised fields.

Let us now consider the structure of 〈T φ1 · · · φn〉.

Example 3-8: n=2.
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+ · · ·+

+

= ++ + + · · ·

O(λ) O(λ2)

=

1PI: one-particle irreducible

cannot be split by cutting one line

1PI 1PI 1PI
+ · · ·+

Π(p):
1PI

=
i

p2 − m2
0 + iε

+
i

p2 − m2
0 + iε

(
− i Π(p)

) i
p2 − m2

0 + iε
+ · · ·

=
i

p2 −
(
m2

0 + Π(p)
)

+ iε
(3.193)

with
i

p2 −
(
m2

0 + Π(p)
)

+ iε
p2→m2

−→

i Z
p2 − m2 + iε

(3.194)

Example 3-9: n=4.

= amput.

And in general:

n

amput.
=

n
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4. Fermions

I. Fields and Lorentz Invariance

So far we have discussed the quantisation of a scalar field, i.e. particles with spin zero (Higgs boson).
The scalar field is invariant under Lorentz transformations:

φ(x) Λ
−→ φ′(x′) = φ(x) , (4.1)

with
xµ → (x′)µ = Λ

µ
ν xν (4.2)

and φ′(x) = φ(Λ−1 x). However, for vector fields we have

Aµ(x) → Λ
µ
ν Aν(x)

(A′)µ(x) = Λ
µ
ν Aν(Λ−1 x) , (4.3)

and for Tensor fields (e.g. the fieldstrength in QED, QCD, week):

Fµν(x) → Λ
µ
ρ Λν

σ Fρσ(x) . (4.4)

Note, that the graviton is an example for a particle with spin two.
In the following we will present some mathematical background on group theory, as it is important to
understand the properties of fermions. In general we can write

φi(x) → R(Λ)i
j φ

j(x) , (4.5)

with the general index i, e.g. i = {}, µ, µν, . . . and the representation R. The representation is chosen
accordingly to the field, i.e.

scalar: R(Λ) = 1 trivial representation

vector: R(Λ) = Λ fundamental representation

(2nd rank) tensor: R(Λ) =
(
Λ
µ
ρ Λν

σ

)
tensor representation . (4.6)

Let G denote a group. Then, the representation R : G → R(G) has the properties:

R(1) = 1 ,

R(g · h) = R(g) · R(h) . (4.7)

For instance, for rotations in R3, i.e. the SO(3) group we have

trivial rep: R(Λ) = 1 Λ ∈ SO(3)

fundamental rep: R(Λ) = Λ Lie group . (4.8)
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A useful property of Lie groups is, that we can write every element in terms of an exponential

Λ = eiωJ , (4.9)

where ω is a vector and J is a Lie-algebra with the generators Ji. Let us consider for example the case of
the fundamental, i.e. matrix representation. In this case we have three generators,

J1 =

 0 0 0
0 0 i
0 −i 0

 J2 =

 0 0 −i
0 0 0
i 0 0

 J3 =

 0 i 0
−i 0 0
0 0 0

 (4.10)

Let us now consider the direction
ω = (0, 0, α). (4.11)

Inserting this we have

exp(iωJ) = exp
(
iαJ3

)
(4.12)

= exp

α
 0 −1 0

1 0 0
0 0 0




=

 1 0 0
0 1 0
0 0 0

 + α

 0 −1 0
1 0 0
0 0 0

 +
α2

2

 0 −1 0
1 0 0
0 0 0


2

+ . . .

=

 1 0 0
0 1 0
0 0 0

 + α

 0 −1 0
1 0 0
0 0 0

 +
α2

2

 −1 0 0
0 −1 0
0 0 0


2

+ . . .

=

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 0


This corresponds to a rotation around the three-axis. An important property of the generators J are the
commutation relations. In the case of our SO(3) example they can be checked to be,

[Ji, J j] = iεi jkJk. (4.13)

However, there are also other representations. For example if we consider functions on the three coordi-
nates rotations around the axis xi are generated by,

Ji = −iεi jk x j∂k

= −
1
2
εi jkJ jk , J jk = −i

(
x j∂k − xk∂ j

)
. (4.14)

You probably have checked already in quantum mechanics that these, too fulfill the commutation rela-
tions Eq. (4.13). Note, that this is for instance used in quantum mechanics in the n-dimensional repre-
sentation of spins with n = 2s + 1.

As this chapter is about fermions, we now consider the situation with spin 1/2. Then, we have the
generators σi

2 , with [
σi

2
,
σ j

2

]
= iεi jk σ

k

2
, (4.15)
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where σi are the Pauli matrices (spinor representation)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.16)

We remark, that the Lie algebra provides local information about the Lie group (tangential space). We
will now present two important examples.

Example 4-10: SO(3) and SU(2)' S3. Lie algebra:[
ta , tb

]
= iεabc tc . (4.17)

As the Lie group is a differentiable manifold, the SU(2) is the double covering of SO(3)' RP3, which is
visualised in figure 4.1

tangential space
SU(2)

at the identity
1

algebra:
group

Figure 4.1.: Schematic representation of the SU(2) and the Lie algebra.

Example 4-11: SO(1,3) and SL (2,C). Consider the infinitesimal Lorentz transformation Λ ε SO(1,3):

Λ ν
µ = δ νµ + i T ν

µ . (4.18)

From
Λ ν
µ Λ σ

ρ ηνσ = ηµρ (4.19)

follows: (
δ νµ + i T ν

µ

) (
δ σρ + i T σ

ρ

)
ηνσ = ηµρ + O(T 2)

⇒ Tµρ + Tρµ = 0 . (4.20)

We conclude, that T has 16−4
2 = 6 free parts, of which three are given by boosts and the other three by the

generators M

T ν
µ =

ωρσ

2

(
Mρσ

) ν
µ
, (4.21)

with [
Mµν , Mρσ] = i

(
ηνρ Mµσ − ηµρ Mνσ − ηνσ Mµρ + ηµσ Mνρ) . (4.22)
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Eq. (4.22) is the Lie algebra of SO(1,3) rotations. To see this, we extend the SO(3)-generators of rota-
tions, Ji j in Eq. (4.14) to boosts (J0i) and find

Jµν = i
(
xµ∂ν − xν∂µ

)
, (4.23)

which satisfy Eq. (4.22). To find general representations, we also look for M, that satisfy Eq. (4.22). For
the fundamental representation we obtain for example(

Mµν)
ρσ = i

(
δ
µ
ρ δ

ν
σ − δ

µ
σ δ

ν
ρ

)
. (4.24)

Thus, boosts and rotations are given by

Ji =
1
2
εi jk M jk rotations

Ki = M0i boosts . (4.25)

Example 4-12: Boosts along x1-axis.

Λ
µ
ν =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 , γ =
1

√
1 − v2

=
(
eiw K1

)µ
ν
, (4.26)

with the rapidity w = artanh v
2 and the generator

i(K1)µν =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 . (4.27)

The generators in Eq. (4.25) make the structure of the Lorentz group apparent, as we can now formulate
the Lie-algebra in terms of J and K [

Ji , J j
]

= iεi jk Jk

[
Ki , K j

]
= −iεi jk Jk

[
Ji , K j

]
= iεi jk Kk . (4.28)

We remark, that SU(2) and SL(2,C) with the generators (Ji + iKi, Ji − iKi) are the universal covering
groups of SO(3) and SO(1,3), respectively. Note: For a universal covering group G̃ of G it holds:

′simply connected group G̃ ⊇ G′ . (4.29)
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II. Spinor Fields

In section I we have discussed the mathematical structure of the Lorentz group. Let us now use these
concepts to describe spinor fields. For this purpose we combine boosts Ki and rotations Ji into

Ni
+ =

1
2

(
Ji + i Ki

)
Ni
− =

1
2

(
Ji − i Ki

)
. (4.30)

The N+’s and N−’s have the SO(3) i.e. SU(2) Lie-algebra:[
Ni
± , N j

±

]
= i εi jk Nk

± [Ni
+,N

j
−] = 0. (4.31)

Hence, we can formulate a two-dimensional spin 1/2 representation:

left-handed: ΛL = exp
(

i
2
σi (wi − i vi)

)

right-handed: ΛR = exp
{

i
2
σi (wi + i vi)

}
, (4.32)

where wi and vi denote rotations and boosts, respectively and ΛL, ΛR ∈ SL(2,C)1. Note, that under
parity transformations (

x0, x
)

P
−→

(
x0,−x

)
⇒ J P

−→ J pseudo-vector

⇒ K P
−→ −K vector . (4.33)

To determine, how ΛL/R act on coordinates, we define

x̂ = xµσµ , (4.34)

with (
σµ

)
=

(
σ0, σ1, σ2, σ3

)
, σ0 = 12×2 , (4.35)

and the Pauli matrices σ1,2,3. Then:

x̂ =

(
x0 − x3 x1 + i x2
x1 − i x2 x0 + x3

)
, (4.36)

and
det x̂ = xµxµ . (4.37)

Note, that Lorentz transformations leave the determinant unchanged

x̂′ = ΛL x̂ Λ
†

L with det x̂′ = det x̂ , (4.38)

as det Λ
(†)
L = 1.

1universal covering group of the Lorentz group
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Example 4-13: Boosts along 3-direction. Let us consider the transformation where only v3 is non-
vanishing.

ΛL = exp
[ i
2
σ3(−iv3)

]
(4.39)

= exp
[
v3σ

3

2

]
=

(
1 0
0 1

)
+

v3

2

(
1 0
0 −1

)
+

1
2

(
(v3

2

)2
(

1 0
0 1

)
+ . . .

=

(
exp(v3/2) 0

0 exp(−v3/2)

)
=

(
a 0
0 a−1

)
We can now calculate the transformed field,

x̂′ = ΛL x̂Λ
†

L (4.40)

=

(
a 0
0 a−1

) (
x0 − x3 x1 + ix2
x1 − ix2 x0 + x3

) (
a 0
0 a−1

)
=

(
a 0
0 a−1

) (
a(x0 − x3) a−1(x1 + ix2)
a(x1 + ix2) a−1(x0 + x3)

)
=

(
a2(x0 − x3) x1 + ix2

x1 − ix2 a−2(x0 + x3)

)
.

At this point it is clear that the coordinates x1 and x2 remain unchanged under this transformation as
befits a boost along the x3-axis. Moreover we can extract,

x′0 =
1
2

(a2 + a−2)x0 −
1
2

(a2 − a−2)x3 (4.41)

and

x′3 =
1
2

(a2 + a−2)x3 −
1
2

(a2 − a−2)x0 (4.42)

Identifying

γ =
1
2

(a2 + a−2), γv =
1
2

(a2 − a−2) (4.43)

we have the standard form for a Lorentz boost along the x3-axis.

We remark, that ΛL and −ΛL give the same x̂′ (double covering). Further

Λ
†

L/R = Λ−1
R/L , (4.44)

and σ maps L→ R. Also note, that σµ transforms as a vector.

We can now try to formulate the field equations for a two-component spinor that have the right transfor-
mation properties under Lorentz transformations,

DLΨL = 0 , (4.45)
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where ΨL is the left-handed Weyl spinor. Under Lorentz transformation, it holds

ΨL(x) Λ
−→ ΛLΨL(x)

DLΨL(x) Λ
−→ D′LΛLΨL(x) = ΛRDLΨL(x)

⇒ D′L = ΛRDLΛ
†

R , as Λ
†

R = Λ−1
L , (4.46)

with DL = i σ̄µ∂µ and σ̄ =
(
σ0,−~σ

)
. Analogously, this holds for the right-handed Weyl spinor, with

DR = iσµ∂µ, which yields the

Weyl equations

i σ̄µ∂µ ΨL = 0

iσµ∂µ ΨR = 0 , (4.47)

which form the equations of motion of two-component spinors. Note, that the Weyl equations (4.47) do
not have parity invariance.
Let us now connect Eq. (4.47) to the Klein-Gordon equation (2.11):

σµ∂µ
(
σ̄ν∂ν ΨL = 0

)
=

1
2

[
σµσ̄ν + σνσ̄µ

]
∂µ∂ν ΨL = ηµν ∂µ∂ν ΨL

⇒ ∂µ∂
µ ΨL = ∂2 ΨL = 0 , (4.48)

where we used that
1
2

[σ0σ0 + σ0σ0] =
1
2

[1 · 1 + 1 · 1] = 1 (4.49)

1
2

[σ0σ̄i + σiσ̄0] =
1
2

[1(−σi) + σi1] = 0

1
2

[σiσ̄ j + σ jσ̄i] =
1
2

[σi(−σ j) + σ j(−σi)] = −
1
2

[σiσ j + σ jσi] = −1.

Similarly, one shows ∂2 ΨR = 0, which implies, that the Weyl spinors also satisfy the massless Klein-
Gorden equation.

When writing down the derivative term we have seen that DLΨL transforms as a right handed spinor.
We therefore cannot simply add a term ∼ ΨL, which of course transforms as a left-handed field, to the
equation of motion in order to obtain a mass term. Moreover, we may want to demand parity invariance
(this is not always true in the Standard Model, but it holds in QED).
To achieve this we have to combine left- and right-handed spinors. This gives the Dirac spinor

ΨD =

(
ΨL

ΨR

)
, (4.50)

which basically partitions space into the space of left- and right-handed spinors. Then, DL maps left- to
right-handed spinors and DR maps right- to left-handed spinors. Now we combine the Weyl-operators
DL/R (

0 DR

DL 0

) (
ΨL

ΨR

)
= i γµ∂µ ΨD , (4.51)
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with the matrix γµ (chiral representation)

γµ =

(
0 σµ

σ̄µ 0

)
. (4.52)

The γ matrices are Lorentz invariant and have the desired parity invariance. Further they satisfy the

Clifford algebra {
γµ , γν

}
= 2ηµν . (4.53)

To perform Lorentz transformations, we now define the four-dimensional spin 1/2 representation of Λ:

Λ1/2 =

(
ΛL 0
0 ΛR

)
, (4.54)

with

ΨD
Λ
−→ Λ1/2 ΨD =

(
ΛLΨL

ΛRΨR

)
i γµ∂µ ΨD

Λ
−→ Λ1/2 i γµ∂µ Λ−1

1/2 Λ1/2 ΨD = Λ1/2 i γµ∂µ ΨD . (4.55)

With Ψ = ΨD, we can formulate the

Dirac equation (
i /∂ − m

)
Ψ = 0 , (4.56)

with the short notation
/w B γµwµ . (4.57)

Note, that the Dirac spinor satisfies the massive Klein-Gordon-equation (2.11):(
−i γµ∂µ − m

) (
i γν∂ν − m

)
Ψ =

(
γµ γν∂µ∂ν + m2

)
Ψ

=

(
1
2

{
γµ , γν

}
∂µ∂ν + m2

)
Ψ =

(
1
2

(
2ηµν

)
∂µ∂ν + m2

)
Ψ

⇒
(
∂µ∂

µ + m2
)

Ψ = 0 . (4.58)

In the following, we consider the Lagrangian and the Hamiltonian of the spinor field. The Lagrangian
transforms as a Lorentz scalar ∼

(
i/∂ − m

)
Ψ

L = Ψ̄
(
i/∂ − m

)
Ψ

Λ
−→ Ψ̄′Λ1/2

(
i/∂ − m

)
Ψ

. (4.59)

Therefore we have to have,
Ψ̄′ = Ψ̄Λ−1

1/2 , (4.60)
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as the Lagrangian is Lorentz invariant. We will show below that for this to be the case we can use,

Ψ̄ = Ψ†γ0 , (4.61)

which is called Dirac conjugate, with

Ψ̄′ = Ψ†Λ
†

1/2γ
0 = Ψ†γ0γ0Λ

†

1/2γ
0

Eq. (4.76) → = Ψ̄Λ−1
1/2 . (4.62)

The equation of motion is given by the Dirac equation (4.56)

∂L

∂Ψ̄
= 0 =

(
i/∂ − m

)
Ψ

∂L

∂Ψ
− ∂µ

∂L

∂(∂µΨ)
= 0 = Ψ̄

(
i
←−
/∂ − m

)
, (4.63)

with the short notation f
←−
∂µ = −∂µ f . Then the Hamiltonian density is given by

H = ΠΨΨ̇ − L = i Ψ̄γ0Ψ̇ − L

= Ψ†γ0
(
i~γ ~∂ + m

)
Ψ , (4.64)

where ~γ ~∂ = γi∂i = γi ∂
∂xi .

We still have to demonstrate,
Ψ̄′ = Ψ̄Λ−1

1/2. (4.65)

In principle we could directly verify this by using our formula for the γ-matrices as well as the Lorentz
transformation, Eq. (4.54). However, let us do it in a way that tells us a few more details on the spinoir
representation of the Lorentz group.
We can check by direct computation that the spin-representations of the generators M (Eq. (4.21)) is
given by,

S µν =
i
4

[
γµ , γν

]
, (4.66)

with

[
γµ , γν

]
=

(
σµσ̄ν − σνσ̄µ 0

0 σ̄µσν − σ̄νσµ

)
σσ̄ : L→ L

σ̄σ : R→ R (4.67)

Accordingly the block-diagonal structure that we have between L and R is explicit.
Note, that (see Eq. (4.25))

KiL = S 0iL = −i
σi

2
= i

σ̄i

2

JiL =
1
2
εi jk S jk = −

i
2
εi jk

[σ j

2
,
σk

2

]
= −

i
2
εi jk

(
i ε jkl

σl

2

)
=
σi

2
. (4.68)
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Analogously, it follows

KiR = i
σi

2

JiR =
σi

2
, (4.69)

and hence

Λ1/2 = ei
wµν

2 S µν

=

(
ΛL 0
0 ΛR

)
, (4.70)

with (see Eq. (4.32))

ΛL = exp
(
i
σi

2
(wi − i vi)

)

ΛR = exp
(
i
σi

2
(wi + i vi)

)
, (4.71)

and w0i = vi, wi j = εi jk wk. This fully agrees with our earlier result on the L and R representation of the
Lorentz group.

Next, let us find the inverse of Λ1/2. γ0 is hermitian, i.e.(
γ0

)2
= 14×4,

(
γ0

)†
= γ0 . (4.72)

On the other hand, γi is anti-hermitian:(
γi

)2
= −14×4,

(
γi

)†
= −γi . (4.73)

Note, that these properties are representation independent. From Eq. (4.52) (i.e. choosing chiral repre-
sentation) it also follows

γ0
(
γi

)†
γ0 = γi , (4.74)

and we conclude
γ0 (

S µν)† γ0 = S µν . (4.75)

Thus, the inverse Lorentz transformation for the four-dimensional spin 1/2 representation is given by

γ0Λ
†

1/2γ
0 = Λ−1

1/2 . (4.76)

Let us now discuss some invariants and general properties. The derivations above made use of a
specific representation of our spinors in left- and right-handed Weyl spinors. In particular for massive
Dirac fermions, this is not the best adapted representation. The γ’s and Ψ’s can be rotated with unitary
transformations U, without changing the Lagrangian in Eq. (4.60). Thus a different representation can
be obtained by

γ → U† γU . (4.77)
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This leaves the Clifford algebra unchanged. When transforming the generators S µν → U† S µν U we have
to find a way, to project on the left- and right-handed eigenspaces. For this purpose we define

γ5 = i γ0γ1γ2γ3 , (4.78)

with properties

γ2
5 = 1 → eigenvalues ± 1{

γ5 , γ
µ} = 0[

S µν , γ5
]

= 0 → S µν, y5 can be diagonalised at the same time . (4.79)

Note, that in chiral representation γ5 =

(
−1 0
0 1

)
. Consequently, we find the

projection operators on L/R spaces

PL/R =
1 ∓ γ5

2
, (4.80)

with P2
L/R = PL/R and PL + PR = 1. Hence,

PL/R Ψ = ΨL/R . (4.81)

Next, we discuss Dirac matrices and Dirac field bilinears. So far we found that Ψ̄ is a Lorentz scalar.
One easily finds, that Ψ̄ γµ Ψ is a 4-vector. Using γµ → Λ

µ
νγ

ν, we find a basis of sixteen 4 × 4 matrices,
defined as antisymmetric combinations of γ-matrices:

1 scalar 1 of these
γµ vector 4 of these[
γµ , γν

]
B γ[µγν] tensor 6 of these

γ[µγνγρ] pseudo-vector 4 of these
γ5 pseudo-scalar 1 of these

16 total

The prefix pseudo indicates, that these quantities transform usual under continuous Lorentz transforma-
tions, but with an additional sign change under parity transformations.
We can now look for symmetries of the Lagrangian.

Ψ→ eiαΨ ⇒ Ψ̄→ Ψ̄e−iα

Ψ→ e+iγ5αΨ ⇒ Ψ̄→ Ψ̄e+iγ5α for m = 0. (4.82)

While the first is a symmetry for the full Dirac Lagrangian, the second is only a symmetry if the mass is
vanishing.
From this we obtain two conserved currents out of Dirac field bilinears, namely

jµ = Ψ̄ γµ Ψ and jµ5 = Ψ̄ γµγ5Ψ . (4.83)
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These are conserved as

∂µ
(
Ψ̄ γµ Ψ

) ∣∣∣∣∣
EOM

= i m Ψ̄ Ψ − i m Ψ̄ Ψ = 0

∂µ
(
Ψ̄ γµγ5 Ψ

)
= 2i m Ψ̄ γ5 Ψ

∣∣∣∣∣
m=0

= 0 . (4.84)

Note again, that the axial current jµ5 is only conserved for m = 0 (chiral symmetry).
Importantly note that,

j0 = Ψ̄γ0Ψ = Ψ†Ψ. (4.85)

We will now find solutions of the Dirac equation. As Ψ(x) satisfies the Klein-Gorden equation (2.11).
In our quantisation procedure these will then be the functions multiplying our creation and annihilation
operators.
We write

Ψ(x) = u(p) e−ipx , (4.86)

with u(p) being a vector and p2 = m2. Thus,

e−ipx (
i/∂ − m

)
Ψ(x) =

(
/p − m

)
u(p) = 0 . (4.87)

Similarly, with
Ψ(x) = v(p)eipx (4.88)

we find (
/p + m

)
v(p) = 0 , (4.89)

for p2 = m2.
Let us now simplify the equations of motion by going to the rest frame coordinate system. the Dirac
equation then simplifies,

p = (p0, 0)

m
(
γ0 − 1

)
u(p) = 0 . (4.90)

With the chiral representation, we have

(
γ0 − 1

)
=

(
−12×2 12×2
12×2 −12×2

)
. (4.91)

However, for the purpose of finding solutions and in particular discussing the non-relativistic limit a
different representation of the Dirac matrices is useful. As already transforming matrices with a unitary
matrix as

γ′ = U†γU (4.92)

the γ′ fulfil the same anti-commutation relations as the original γ in such they are also a suitable repre-
sentation of the Dirac algebra.
When investigating the solutions to the equations of motion a different, the so-called Dirac representation,
is handy. This can be obtained by using,

U =

(
1 −1
1 1

)
. (4.93)
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We then have,

γ0 =

(
12×2 0

0 −12×2

)
, γi =

(
0 σi

−σi 0

)

⇒
(
γ0 − 1

)
= 2

(
0 0
0 −12×2

)
. (4.94)

With this, we find

us(p0) =
√

2m
(
χs

0

)

vs(p0) =
√

2m
(

0
ε χs

)
, (4.95)

with s = 1/2,−1/2, χ1/2 =

(
1
0

)
, χ−1/2 =

(
0
1

)
and the metric in spinor space ε =

(
0 1
−1 0

)
. Note, that

ε−1σε = σ̄.

We can now simply do a Lorentz boost. However, we need to do this in the Dirac basis,

ΛD = U†ΛchiralU
1
2

(
ΛL + ΛR ΛR − ΛL

ΛR − ΛL ΛL + ΛR

)
(4.96)

With this we obtain,

general solutions of the Dirac equation

us(p) =
1
√

2m

/p + m√
p0 + m

us(p0) =

√
p0 + m

 χs
~σ ~p

p0+m χs


vs(p) =

1
√

2m

/p − m√
p0 + m

vs(p0) = −

√
p0 + m

 ~σ ~p
p0+m ε χs

ε χs

 , . (4.97)

We will now introduce some relations between the solutions. We have

ūr(p) us(p) = 2mδrs

v̄r(p) vs(p) = −2mδrs (4.98)

ūr(p) vs(p) = 0 = v̄r(p) us(p) (4.99)∑
s

us(p)ξ ūs(p)ξ̄ = (/p + m)ξξ̄

∑
s

vs(p)ξ v̄s(p)ξ̄ = (/p − m)ξξ̄, . (4.100)
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The calculation to Eq. (4.98) goes as follows:

ūr(p) us(p) = u†r (p0)
(/p + m) γ0 (/p + m)

p0 + m
us(p0)

γ0γ†γ0 = γ → = u†r (p0) γ0 (/p + m)(/p + m)
p0 + m

us(p0)

u†r (p0)=ur(p0),
ur(p0)γ0γi us(p0)=0

→ = ur(p0) γ0 p2 + m2 + 2p0mγ0

p0 + m
us(p0)

γ0 us(p0) = us(p0) → = 2ur(p0) γ0 m(p0 + m)
p0 + m

us(p0)

= 2mδrs , (4.101)

and analogously for v̄r vs. Eq. (4.99) follows from (/p − m)(/p + m) = 0 and Eq. (4.100) is proven by
showing it at the basis us(p), vs(p), i.e.∑

s

us(p) ūs(p) ur(p) =
∑

s

us(p) 2mδrs

= 2m ur(p) =
2m(/p + m)√

p0 + m
ur(p0) =

(/p + m)2√
p0 + m

ur(p0)

= (/p + m) ur(p) (4.102)∑
s

us(p) ūs(p) vr(p) = 0 = (/p + m) vr(p) , (4.103)

and similarly for
∑

s vs(p) v̄s(p).

III. Quantisation

First, we try to quantise fermions similarly to scalars (bosons), as performed in section III. In analogy to
Eq. (2.134), we have the

general solution to the Dirac equation

Ψ(x) =

∫
d3 p

(2π)3

1√
2p0

∑
s

[
e−ipx as(p) us(p) + e+ipx b†s(p) vs(p)

]
, with p0 =

√
p2 + m2 .

(4.104)

The Hamiltonian follows from Eq. (4.64)

H =

∫
d3xH =

∫
d3x Ψ†(x) γ0

(
i~γ ~∂ + m

)
Ψ(x)

=

∫
d3 p

(2π)3

2p0

2p0 p0
∑

s

[
a†s(p) as(p) − bs(p) b†s(p)

]
. (4.105)

73



Chapter 4. Fermions

Note the "−" sign instead of the "+" in Eq. (2.137) in the last line! Here, we have used Eq. (4.98) and(
~γ p + m

)
u(p) =

(
− (/p − m) + γ0 p0

)
u(p)

= γ0 p0 u(p)(
−~γ p + m

)
v(p) = −γ0 p0 v(p) , (4.106)

where the "−" in the last line corresponds to the "−" in Eq. (4.105). If we now suggest commuting
operators, e.g.

bs b†s = b†s bs + c-number ,

this would imply that
H '

∫
d3 p

(2π)3 p0
∑

s

[
a†s(p) as(p) − b†s(p) bs(p)

]
,

.

The minus sign is a problem, because it would create a Hamiltonian that is unbounded from below.

Therefore, we suggest
bs b†s = −b†s bs + c-number . (4.107)

Further, demanding [
Ψ(x) , i Ψ†(y)

]
= i δ(x − y) , (4.108)

implies [
as(p) , a†r (q)

]
= (2π)3 δ(p − q) δsr

= −
[
bs(p) , b†r (q)

]
. (4.109)

Again, note the additional "−" int the last line, which rescues causality, but does not cure the issue with
the minus sign in the Hamiltonian! Hence, we define the

anti-commutation relations of creation and annihilation operator (for fermions){
as(p) , a†r (q)

}
= (2π)3 δsr δ(p − q){

bs(p) , b†r (q)
}

= (2π)3 δsr δ(p − q) . (4.110)

Note, that the anti-commutators of a-a, b-b, b-a(†) vanish and in particular as(p) as(p) = a2
s = 0 (Grass-

mann variables). It follow the

anti-commutation relations of field operators (for fermions){
Ψξ(x) , Ψ

†

ξ′(y)
}

= δξξ′ δ(x − y){
Ψξ(x) , Ψξ′(y)

}
= 0 =

{
Ψ
†

ξ(x) , Ψ
†

ξ′(y)
}
. (4.111)

Similarly to section III, we will now construct the Fock space. Again, we define a vacuum state |0〉
(compare to Eq. (2.95)), with √

2wp as(p) |0〉 = 0 =

√
2wp bs(p) |0〉 . (4.112)
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The one-particle states are given by

|p, s〉 =

√
2wp a†s(p) |0〉 , (4.113)

and
√

2wp b†s(p) |0〉 for anti-particles. The states are normalised to

〈q, r|p, s〉 = (2π)3 2p0 δrs δ(p − q) . (4.114)

Note, that the states are antisymmetric, as e.g. for two-particle states:

∼ a†s(p) a†r (q) |0〉 = − a†r (q) a†s(p) |0〉 . (4.115)

In particular, it is
a†r (p) a†r (p) |0〉 = 0 , (4.116)

which mirrors the Fermi-exclusion principle. Next, we consider continuous symmetries. Again, we
define the 4-momentum operator (compare to Eq. (2.128)):

P0 =

∫
d3 p

(2π)3 p0
∑

s

[
a†s(p) as(p) + b†s(p) bs(p)

]
, p0 = E > 0

= H

Pi =

∫
d3 p

(2π)3 pi
∑

s

[
a†s(p) as(p) + b†s(p) bs(p)

]
. (4.117)

Ψ is a complex field and the Lagrangian is invariant under Ψ → eieα Ψ, Ψ̄ → Ψ̄ e−ieα, as shown in
Eq. (4.82). This leads to conserved currents and similarly to Eq. (2.65), we can formulate the

Noether charge (for fermions)

Q =

∫
d3x j0 = e

∫
d3x Ψ†(x) Ψ(x) = e

∫
d3x Ψ̄(x) γ0 Ψ(x)

' e
∫

d3 p
(2π)3

∑
s

[
a†s(p) as(p) − b†s(p) bs(p)

]
, (4.118)

where e is the elementary charge, and
(
a†s(p) as(p)

)
,
(
b†s(p) bs(p)

)
correspond to a fermion with charge e

and an anti-fermion with charge −e, respectively.
This actually also solves a small oddity that we ignored earlier on. In terms of ordinary fields the Noether
charge density Ψ̄γ0Ψ = Ψ†Ψ ≥ 0. This makes sense if we have only one type of particle and this carries
only one type of charge. We can then only have either total positive or total negative charge (one can
multiply the Noether current which is particle number by the positive or negative charge). If we now
allow ourselves antiparticles we can naturally have both positive and negative charges for one type of
field which describes both of them in a unified way.

Interlude: Grassmann numbers
In the case of the scalar field the classical field theory could be obtained by setting the commutators
to zero (as in quantum mechanics). However, for the fermion field we now have decided to use anti-
commutators. Setting those to zero tells us that the spinors still anti-commute. Therefore they are
not classical functions with ordinary complex values. Instead, they are so-called anti-commuting or
Grassmann numbers.
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Let us introduce them by giving rules for calculating with them. If we have two Grassmann numbers θ
and η we have,

θη = −ηθ. (4.119)

This implements their anti-commuting nature.
Grassmann numbers can be multiplied (and added to) ordinary complex numbers (this makes it an alge-
bra),

A + Bθ + Cη (4.120)

Two such numbers can be multiplied together, e.g.

(A1 +B1θ+C1η)(A2 +B2θ+C2η) = A1A2 +(B1A2 +A1B2)θ+(C1A2 +A1C2)η+(B1C2−C1B2)θη. (4.121)

Here, we have used that due to the anti-commuting nature we have,

θ2 = η2 = 0. (4.122)

In general we can also have functions of Grassmann numbers. Due to the vanishing of the second powers
they are at most linear in the Grassmann variable,

f (θ) = A + Bθ. (4.123)

We can also take derivatives with respect to Grassmann variables. Because of the linearity of the func-
tions there is the obvious definition,

d
dθ

f (θ) = B. (4.124)

Similarly requiring that the integral is shift invariant under θ → θ + η suggests the definition,∫
dθ f (θ) =

∫
dθ(A + Bθ) =

∫
dθ((A + Bη) + Bθ) = B. (4.125)

Integration does the same as differentiation!
For multiple Grassmann variables this can be easily generalized, e.g.∫

dθ
∫

dη ηθ = 1. (4.126)

Note, that one has to be very careful of the order of integration because every swap in the order corre-
sponds to adding a minus sign.
We can also introduce complex Grassmann variables (to deal with something like the complex Dirac
spinor fields). This essentially adds a Hermitean conjugation, where again we have to be slightly careful
about the order and the corresponding sign.

(θη)? = η?θ? = −θ?η?. (4.127)

Just as in the case of ordinary complex numbers we can separate the complex Grassmann numbers into
two real ones,

θ =
θ1 + iθ2
√

2
, θ? =

θ1 − iθ2
√

2
. (4.128)

This is consistent with the above definition of complex conjugation,

(θ?θ) =
1
2

(θ1θ1 + iθ2θ1 − iθ1θ2 + θ2θ2) = iθ2θ1 (4.129)

and
(θ?θ) = θ?θ = −iθ1θ2 = iθ2θ1. (4.130)
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Integration can be similarly defined,∫
dθ?dθ f (θ, θ?) =

∫
dθ?dθ(A + Bθ + Cθ? + Dθθ?) = D. (4.131)

Differentiation is again analogous.
This concludes our brief interlude.

Let us now calculate the propagator. Therefore we first consider

〈0|Ψξ(x) Ψ̄ξ′(y) |0〉 =

∫
d3 p

(2π)3

1
2p0

∑
s

(us)ξ (ūs)ξ′

 e−ip(x−y)

〈0|Ψξ(x) Ψ̄ξ′(y) |0〉 =

∫
d3 p

(2π)3

1
2p0 (/p + m)ξξ′ e−ip(x−y)

=
(
i/∂x + m

)
ξξ′

∫
d3 p

(2π)3

1
2p0 e−ip(x−y) (4.132)

and

〈0| Ψ̄ξ′(y) Ψξ(x) |0〉 = −
(
i/∂x + m

)
ξξ′

∫
d3 p

(2π)3

1
2p0 e−ip(y−x) . (4.133)

Note, that the two integrals correspond to the scalar propagator (see Eq. (3.86)) without the θ-function
from time ordering. Also note the global minus sign in Eq. (4.133), which implies that the order of Ψ(x),
Ψ̄(y) is important (which was not the case for the scalar field)! With time ordering we find in analogy to
Eq. (3.87) the

Feynman-propagator (for fermions)

S F(x − y) = 〈0|T Ψξ(x) Ψ̄ξ′(y) |0〉

=

∫
d4 p

(2π)4

i (/p + m)ξξ′

p2 − m2 + iε
e−ip(x−y) , (4.134)

with time ordering

T Ψ(x)Ψ̄(y) = θ(x0 − y0) Ψ(x) Ψ̄(y) − θ(y0 − x0) Ψ̄(y) Ψ(x)

= −T Ψ̄(y) Ψ(x) (4.135)

Again, note the relative minus sign, when comparing to Eq. (3.32).
We can now formulate the Feynman rules for fermions. We can directly take over the results for the
scalar theory (section III- V), but we have to take care of the anti-symmetry of fermions. We have already
introduced

T Ψ Ψ̄ = −T Ψ̄ Ψ .

Accordingly, if we define contractions as in the scalar theory, it follows

Ψ(x) Ψ̄(y) = 〈0|T Ψ(x) Ψ̄(y) |0〉

= S F(x − y)

= −Ψ̄(y) Ψ(x) . (4.136)
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Then
· · ·Ψ Ψn Ψ̄m Ψ̄ · · · = (−1)n+m · · ·Ψ Ψ̄ Ψn Ψ̄m . (4.137)

Also it holds for normal ordering:

: a a† : = − : a† a : = −a† a

⇒ : Ψ1 · · ·ΨnΨn+1 · · · : = − : Ψ1 · · ·Ψn+1Ψn · · · :

⇒ : Ψ1 · · ·ΨnΨ̄n+1 · · · : = − : Ψ1 · · · Ψ̄n+1Ψn · · · : (4.138)

Similarly to Eq. (3.93), we obtain

Wick’s theorem (for fermions)

T Ψ(x1) · · ·Ψ(xn) Ψ̄(xn+1) · · · Ψ̄(xn+m) = : Ψ(x1) · · ·Ψ(xn) Ψ̄(xn+1) · · · Ψ̄(xn+m) + all contractions : .
(4.139)

In the following, let us discuss the simplest interacting theory with fermions. Then we have a La-
grangian of the form

L = Lscalar +LDirac +LI , (4.140)

with the interaction Lagrangian of the Yukawa theory

LI = −h Ψ̄ φΨ , (4.141)

where h is the Yukawa coupling. We obtain

φ : φ φ =

=
i(/p + mΨ)

p2 − m2
Ψ

+ iε

=
i

p2 − m2
φ + iεp

Propagators:

=
i

p2 − m2
φ + iε

Ψ : Ψ Ψ̄ =

Vertex:

p

= −i h

(4.142)

External leg contraction:

φ |p〉 := 1 =: 〈p| φ

Ψ(x)
∣∣∣∣∣
annihilation

|p, s〉 =

∫
d3q

(2π)3

√
2p0

2q0

∑
r

[
e−iqx ur(q) ar(q) a†s(p) |0〉

]

=

∫
d3q

(2π)3

√
2p0

2q0

∑
r

[
e−iqx ur(q)

{
ar(q) , a†s(p)

}
|0〉

]
= e−ipx us(p) . (4.143)

We drop the phase in Eq. (4.143) and find:
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Ψ |p, s〉 B us(p) =

Analogously:

p

〈p, s| Ψ̄ B ūs(p) =

p

Anti-fermions:

= Ψ̄ |k, s〉 B v̄s(k)

k

=

b†s(k) |0〉

= 〈k, s|Ψ B vs(k)

k

Loops: e.g.
p p

(vacuum polarisation)

〈q|
(
φ Ψ̄ Ψ

) (
φ Ψ̄ Ψ

)
|p〉 ∼ − 〈q| φ

(
Ψ Ψ̄ Ψ Ψ̄

)
φ |p〉 . (4.144)

Consequently, closed fermionic loops lead to minus signs! The calculations for loop integrals and Dirac
traces goes as follows. Consider

p p
−ih −ih

k + p

k

.

Then:

−(−i h)2
∫

d4x
∫

d4y 〈q| φx Ψxξ Ψ̄yη Ψyη Ψ̄xξ φy |p〉 . (4.145)

Evidently, (4.145) contains a dirac trace,

Ψxξ Ψ̄yη Ψyη Ψ̄xξ = S Fξη(x − y) S Fηξ (y − x) = trDirac

[
S F(x − y) S F(y − x)

]
. (4.146)

It follows

−(−i h)2
∫

d4x
∫

d4y 〈q| φx Ψxξ Ψ̄yη Ψyη Ψ̄xξ φy |p〉 = −h2
∫

d4k
(2π)4 tr

 k/ + mΨ

k2 − m2
Ψ

+ i ε
k/ + p/ + mΨ

(k + p)2 − m2
Ψ

+ i ε

 .
(4.147)
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Let us summarise the

Feynman rules (in momentum space, for Yukawa theory)

p

and p2 = −(p1 + p3) (momentum conservation)

∫ d4 p
(2π)4 for each loop

(2π)4 δ4(
∑

i pi) for

p1 pn

p1

p2
p3

iii)

i)

ii)

iv)

=
i(/p + mΨ)

p2 − m2
Ψ

+ iε

=
i

p2 − m2
φ + iε

= −i h

p

(−) for each fermion loop

.

(4.148)

When comparing to Eq. (3.117), we note, that there is no symmetry factor in Eq. (4.148), asLI is built-up
from 3 different fields. Also, now the direction of the fermion line is important. Along fermion lines
Dirac indices are contracted, e.g.

p p p p
ξξ′

' (−i h)3

 i (/p + mΨ)

p2 − m2
Ψ

+ iε


ξξ′

(−i h)
 i (/p + mΨ)

p2 − m2
Ψ

+ iε


ηξ′

.

=

Ψ̄ φ
[ (

Ψ Ψ̄
)
φ

(
Ψ Ψ̄

) ]
ξξ′
φΨ

Example 4-14: scattering process.

p

p′ k′

k p

p′ k′

k

+

⇒ i M = (−i h)2

ū(p′) u(p)
1

(p − p′)2 − m2
φ

ū(k′) u(k) − ū(p′) u(k)
1

(p − k)2 − m2
φ

ū(k′) u(p)

 . (4.149)
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Example 4-15: QED: couple electron Ψe to photon Aµ. The interaction Lagrangian is then contracted
with a vector Aµ

LI = e Ψ̄ Aµ γµ Ψ . (4.150)

Then
LQED = Lphoton +LDirac +LI , (4.151)

with
LDirac +LI = Ψ̄

(
i /D − m

)
Ψ , (4.152)

where
Dµ = ∂µ − i e Aµ (4.153)

For the vertices it is

γ

e+

e−
= i e

To explicitly compute expressions as the above, we need the photon propagator. This will be subject to
the subsequent chapter, in particular section II.
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5. Gauge Fields

I. Gauge Symmetry

Consider the Dirac theory of e+, e−

LD = Ψ̄(x)
(
i /∂ − m

)
Ψ(x) , (5.1)

or complex scalar theory
Lφ = ∂µφ ∂µφ

∗ − m2 φφ∗ − V
(
φφ∗

)
. (5.2)

The Lagrangians in Eq. (5.1) and Eq. (5.2) are invariant under global U(1)-rotations, namely

Ψ → eiα Ψ, Ψ̄→ Ψ̄ e−iα

φ → eiα φ, φ∗ → φ∗ e−iα , (5.3)

which corresponds to a global rotation in field space. Let us require the invariance of the theory under
local rotations (gauge symmetry), e.g.

Ψ(x)→ eiα(x) Ψ(x) . (5.4)

We see, that LD is not invariant, as

LD → LD − Ψ̄(/∂ α)Ψ

= LD − ∂µα jµ , (5.5)

with
jµ = Ψ̄ γµ Ψ . (5.6)

Hence, if we add a term Aµ jµ to LD, and demand invariance, it follows

LD + Aµ jµ → LD − ∂µα jµ + A′µ jµ

!
= LD + Aµ jµ

⇒ Aµ(x) → Aµ(x) + ∂µα(x) . (5.7)

Also note, that L is a Lorentz scalar:

Aµ Λ
−→ Λ

µ
νAν , (5.8)

as Aµ jµ transforms as a scalar. Next, we write the invariant action

LD = Ψ̄
(
i /D − m

)
Ψ , (5.9)

with the covariant derivative
Dµ = ∂µ − iAµ . (5.10)
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Aµ is also called a connection (German: "Zusammenhang"). It induces covariant transformation proper-
ties for Dµ:

Dµ → eiα(x) Dµ e−iα(x) = ∂µ − iAµ − i∂µα = ∂µ − iA′µ

⇒ DµΨ → eiα(x) Dµ e−iα(x) eiα(x) Ψ = eiα(x) DµΨ (transforms homog. as the field Ψ) , (5.11)

as well as Dµφ→ eiα(x) Dµφ. Similarly, we get that

Lφ = Dµφ
(
Dµφ

)∗
− m2 φφ∗ − V

(
φφ∗

)
(5.12)

is invariant under

φ(x) → eiα(x) φ(x)

Aµ → Aµ + ∂µα . (5.13)

To examine the dynamics of the gauge field Aµ, we start by constructing gauge-invariant scalar quantities
from Aµ. This is easily done from Dµ, which transforms covariantly:[

Dµ , Dν

]
= −i

(
∂µAν − ∂νAµ

)
= −i Fµν , (5.14)

with Fµν = ∂µAν − ∂νAµ, or Fµν = i
[
Dµ , Dν

]
. As shown in Eq. (5.8), Aµ transforms as a vector. Thus

Fµν → Λ
ρ
µ Λ σ

ν Fρσ (5.15)

transforms as tensor. Fµν can be interpreted as field strength, or curvature. Fµν is gauge invariant:

Fµν → i
[
e−iα Dµ eiα , e−iα Dν eiα

]
= i e−iα

[
Dµ , Dν

]
eiα = i e−iα

(
−i Fµν

)
eiα

= Fµν . (5.16)

In summary this means, that Fµν is gauge invariant, but is a Lorentz tensor. Thus, FµνFµν is gauge
invariant and a Lorentz scalar. Therefore, a gauge invariant Lagrangian can be written as

LQED = −
1

4e2 FµνFµν +LD . (5.17)

We re-parametrise Aµ → eAµ, with the electric charge e and obtain

LQED = −
1
4

FµνFµν + Ψ̄
(
i /D − m

)
Ψ , (5.18)

with
Dµ = ∂µ − i eAµ . (5.19)

Note, that this construction also goes through for

Ψ → U Ψ, for U ∈ SU(N)

Dµ → U Dµ U−1

FµνFµν →

N2−1∑
a=1

(
Fµν

)a (
Fµν)a , (5.20)

with
Fµν =

i
e

[
Dµ , Dν

]
∼

[
Aµ , Aν

]
. (5.21)

We remark, that we have quantum chromodynamics for N = 3 and weak interaction for N = 2.
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II. Quantisation

To quantise gauge fields, we concentrate on the pure gauge field Lagrangian

LA = −
1
4

FµνFµν with Fµν = ∂µAν − ∂νAµ . (5.22)

The equation of motion is

∂µ
∂Lµ

∂µAµ
= ∂µFµν =

(
∂µ∂

µηνσ − ∂ν∂σ
)

Aσ = 0 , (5.23)

with the current ∂µFµν = Jν. Eq. (5.23) reflects a redundancy of the gauge field Aµ, because the EOM is
invariant under

Aµ → Aµ + e∂µα

∂µFµν + e
(
∂µ∂

µηνσ − ∂ν∂σ
)
∂σα = ∂µFµν + 0 , (5.24)

since

∂µ∂
µηνσ∂σα − ∂

ν∂σ∂σα = ∂2∂να − ∂2∂να = 0(
∂µ∂

µηνσ − ∂ν∂σ
)
∂σ =̂ 0 . (5.25)

In momentum space this writes (
p2ηνσ − pνpσ

)
pσ =̂ 0 , (5.26)

where the term in the brackets is the transverse part, which we will discuss later in the section. Eq. (5.23)
and Eq. (5.24) already entail, that Aµ cannot have canonical commutation relations! But what about the
canonical momentum Πµ:

Πµ =
∂L

∂(∂0Aµ)
= −

1
4

∂

∂(∂0Aµ)

(
FρσFγδη

σδηργ
)

= −
1
2

Fρση
σδηργ

∂Fγδ

∂(∂0Aµ)

= Fµ0 . (5.27)

In particular, it is

Π0 =̂ 0 , (5.28)

which also reflects the redundancy. We remove the redundancy by fixing the gauge, e.g. with a Lorentz-
or covariant gauge

∂µAµ = 0 . (5.29)

For these Aµ we can write

LA = −
1
4

FµνFµν −
1
2ε

(
∂µAµ

)2

= −
1
4

FµνFµν , (5.30)

84



Chapter 5. Gauge Fields

or

S [A] =
1
2

∫
d4x Aµ

(
∂ρ∂

ρηµν −

(
1 −

1
ξ

)
∂µ∂ν

)
Aν . (5.31)

We split the gauge field in transverse and longitudinal parts

Aµ = (A⊥)µ + (AL)µ , (5.32)

with

∂µ (A⊥)µ = 0(
∂µ∂

µηνσ − ∂ν∂σ
)

(AL)ν = 0 . (5.33)

It follows, that (
∂µ∂

µηνσ − ∂ν∂σ
)

(A⊥)ν =
1
ξ
∂σ∂νAνL

= 0 , (5.34)

because the left-hand side is solely transverse, and the right-hand side solely longitudinal. The EOM is
given by

∂µFµν = −
1
ξ
∂ν

(
∂µAµ

)
= 0 . (5.35)

Note, that
(
∂ρ∂

ρηµν −
(
1 − 1

ξ

)
∂ν∂σ

)
is invertible, and specifically simple for ξ = 1 (Feynman gauge

∂µ∂
µηνσ). With Eq. (5.29) we obtain the

EOM for the Lorentz gauge

∂ρ∂
ρAν = 0 , (5.36)

which is similar to the Klein-Gordon equation (Eq. (2.11)). Eq. (5.36) suggests a quantised field

Aµ(x) =

∫
d3k

(2π)3

1
√

2k0

(
e−ikx aµ(k) + eikx a†µ(k)

)
, (5.37)

with the commutation relations

[
aµ(k) , a†ν(k

′)
]

= −ηµν (2π)3δ(k − k′)[
aµ(k) , aν(k′)

]
= 0 =

[
a†µ(k) , a†ν(k

′)
]
. (5.38)

Note, that the η in the first equation is necessary for Lorentz-symmetry. However, Eq. (5.37) and
Eq. (5.38) are not compatible with Eq. (5.29), as

∂µAµ =

∫
d3k

(2π)3

−i
√

2k0

(
e−ikx kµ aµ(k) + eikx kµ

(
a†

)µ
(k)

)
!
= 0 . (5.39)
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This entails, that kµaµ(k) !
= 0, because if Eq. (5.39) fails, the EOM is not satisfied

∂µFµν = −∂ν∂µAν . (5.40)

However,

kµ
[
aµ(k) , a†ν(k

′)
]

= −kν (2π)3δ(k − k′)

, 0 . (5.41)

Indeed one can show, that it is not possible to quantise the gauge field Aµ with canonical commutation
relations and ∂µAµ = 0, or other gauge conditions; If using Aµ in Eq. (5.37) and Eq. (5.38), the gauge
∂µAµ has to be implemented on the states! We will target this problem later in this section, but prior to
this, we construct the Fock space F based on Eq. (5.37) and Eq. (5.38). We define the vacuum state |0〉
with

〈0|0〉 = 1 . (5.42)

One-particle states are given by √
2k0 a†µ(k) |0〉 , (5.43)

with norm √
2k02 (k′)0 〈0| aν(k′) a†µ(k) |0〉 = −ηµν (2π)3 2k0 δ(k − k′) . (5.44)

Thus, we have positive norm states for µ = ν = i, and negative norm states for µ = ν = 0. Consequently,
F is not the physical Hilbert space H , as it does not allow for probability interpretation. We remark,
that ηµν → ηµν does not solve the problem of negative norm states (leave aside the wrong commutators[
Ai , Πi

]
). But separating the positive norm subspace of F , will solve all problems of quantisation. This

is the Gupta-Bleuler quantisation. We demand, that the EOM is satisfied on

physical states 〈
physical states′

∣∣∣ ∂µFµν
∣∣∣physical states

〉 !
= 0 , (5.45)

that is, its matrix elements vanish. Eq. (5.45) is satisfied for

kµaµ(k)
∣∣∣physical states

〉
= 0 , (5.46)
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which is trivially satisfied on the vacuum. The above suggests to rewrite Aµ in Eq. (5.37) as

field operator (Lorentz gauge)

Aµ(x) =

∫
d3k

(2π)3

1
√

2k0

3∑
λ=0

(
αλ(k) ελµ(k) e−ikx + α†λ(k)

(
ελµ

)∗
(k) eikx

)
, (5.47)

where the ελµ introduce unitary rotations1 from aµ to aλ with

ελµ(k) ελ
′µ∗(k) = ηλλ

′

ελµ(k) ε∗λν(k) = ηµν . (5.48)

Hence, we write the "new" operators α as linear combination of the "old" operators a:

αλ(k) = aµ(k)ε µλ (k) . (5.49)

Now, we choose our coordinate system without loss of generality, such that k·ε0 = k0 = k·ε3 and k·εi = 0,
for i = 1, 2. The ε’s are also called polarisation vectors. Eq. (5.46) now reads with α± = 1√

2
(α0 ± α3)

α+

∣∣∣physical states
〉

= 0 , (5.50)

with α0 + α3 ' kµaµ. In the frame with (kµ) =
(
k0, 0, 0, k0

)
we have(

ελ
)
µ

= δλµ . (5.51)

The α’s have the same commutation relations as the a’s, as we have used unitary rotations (see also
Eq. (5.48) and Eq. (5.49)). It follows, with i = 1, 2:[

αi(k) , α†i (k′)
]

= (2π)3 δ(k − k′)[
α+(k) , α†−(k′)

]
= −(2π)3 δ(k − k′)[

α±(k) , α(†)
± (k′)

]
= 0 =

[
α±(k) , α(†)

i (k′)
]
. (5.52)

Let us now examine the physical Hilbert spaceH . It is the physical subspace Fphys ⊂ F with

|Ψ〉 ∈ Fphys ⇒ α+ |Ψ〉 = 0 . (5.53)

It follows
|Ψ〉 ∈ Fphys ⇒ α†i |Ψ〉 ∈ Fphys, for i = 1, 2 , (5.54)

with
α+ α

†

i |Ψ〉 = α†i α+ |Ψ〉 = 0 . (5.55)

1unitary rotations keep the canonical commutation relations
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Also
a†+ |Ψ〉 ∈ Fphys , (5.56)

with
α+ α

†
+ |Ψ〉 = α†+ α+ |Ψ〉 = 0. (5.57)

This indicates, that everything, that commutes with α+, is in the physical subspace. Therefore

α†− |Ψ〉 < Fphys , (5.58)

since

α+ α
†
− |Ψ〉 = α†− α+ |Ψ〉 +

[
α+ , α

†
−

]
|Ψ〉

=
[
α+ , α

†
−

]
|Ψ〉 ∼ |Ψ〉 , 0 . (5.59)

We conclude, that

Fphys = span
[(

a†+
)n+

(
a†1

)n1
(
a†2

)n2
|0〉

]
. (5.60)

Fphys contains only states with semi-positive norm

〈Ψ|Ψ〉 ≥ 0 . (5.61)

Indeed, it is

‖α†+ |Ψ〉 ‖
2 = 〈Ψ|α+ α

†
+ |Ψ〉

= 〈Ψ|α†+ α+ |Ψ〉 = 0 , (5.62)

and
‖
(
α†1

)n1
(
α†2

)n2
|0〉 ‖ > 0 , (5.63)

with
[
α†i , αi

]
= +(2π)3 2k0δ. If we identify two states |Ψ1〉 , |Ψ2〉 with ‖ |Ψ1〉 − |Ψ2〉 ‖ = 0, every matrix

element of an operator O
(
α(†)

i , α(†)
+

)
vanishes, and 〈Ψ| O (|Ψ1〉 − |Ψ2〉) vanishes. This means, that we

define the physical Hilbert space as the space of equivalence classes

H = Fphys/∼ , (5.64)

with |Ψ1〉 ∼ |Ψ2〉 for ‖ |Ψ1〉 − |Ψ2〉 ‖ = 0. For |Ψ〉 ∈ H , we have

〈Ψ|Ψ〉 > 0, for |Ψ〉 , 0

α+ |Ψ〉 = 0 , (5.65)

and hence the EOMs are satisfied, since〈
Ψ′

∣∣∣ ∂µFµν |Ψ〉 =
〈
Ψ′

∣∣∣ ∂ν∂µAµ |Ψ〉 = 0 . (5.66)
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We can now introduce the Feynman rules for gauge fields. For the propagator we find, for x0 > y0

〈0| Aµ(x) Aν(y) |0〉 = 〈0|
∫

d3k
(2π)3

1
√

2k0

∫
d3k′

(2π)3

1√
2 (k′)0

e−ikx+ik′y
[
aµ(k) , a†ν(k

′)
]
|0〉

= 〈0|
∫

d3k
(2π)3

1
√

2k0

∫
d3k′

(2π)3

1√
2 (k′)0

e−ikx+ik′y (2π)3 δ(k − k′) |0〉

= −ηµν

∫
d3k

(2π)3

1
2k0 e−ik(x−y) , (5.67)

where similar to Eq. (4.133) the last integral corresponds to the scalar propagatorDF(x− y) (Eq. (3.86)).
With analogous arguments we find the

Feynman-propagator (for gauge fields)

〈0|T Aµ(x) Aν(y) |0〉 = −ηµνDF(x − y) , (5.68)

or

k
µ ν = −

i ηµν
k2 + iε

.

Initial and final states are given by

|k, ε〉 =
√

2k0 α†(k) |0〉 . (5.69)

Note, that α† = ε∗µ
(
a†

)µ
(Eq. (5.49)). Hence, we have

Aµ
∣∣∣∣∣
annihil.

|k, ε〉 =

∫
d3k′

(2π)3

√
2k0

2 (k′)0 eik′x aµ(k′)α†(k′) |0〉

(drop phase) → ' ε∗µ(k) . (5.70)

That is

A |k, ε〉 B ε∗

〈k, ε| A = ε . (5.71)

At the vertices we have:
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= −i e γµ

LI = e Ψ̄ /A Ψ :

LI = Dµφ (Dµφ)∗ − ∂µφ ∂µφ∗ :

a)

b)

= −i e
(
pµ + p′µ

)
,

p

p′

p

p′
k′, ν

k, µ
= 2i e2 ηµν .

(5.72)

Let us next discuss gauge independence and Feynman rules. We can add a longitudinal part to the
field Aµ, without changing the physics:

Aµ → Aµ + α∂µ
1

∂ρ∂ρ
∂νAν , (5.73)

or in the Lagrangian

LA = −
1
4

FµνFµν −
1
2ξ

(
∂µAµ

)2
. (5.74)

Then the propagator is

k

µ ν = −i
(
ηµν

k2 + iε
− (1 − ξ)

kµ kν
(k2 + iε)2

)〈0|T AµAν |0〉 (k)

=

= −
i

k2 + iε

(
ηµν − (1 − ξ)

kµ kν
k2 + iε

)
.

(5.75)

The equation of motion in Fourier space with the Lagrangian in Eq. (5.74) is(
k2ηµν −

(
1 −

1
ξ

)
kµkν

)
Aν(k) = 0 . (5.76)

Note, that for ξ = 1 we have the Feynman gauge, ξ = 0 the Landau gauge and for ξ = ∞ the unitary
gauge. When considering the scattering amplitudes, ξ drops out. E.g.:

γ

e+

e−
' 〈0|T AµAν |0〉 (k) v̄(p + k) γµ u(p) .

k p + k
p

This only holds on-shell, i.e. internal Feynman diagrams are ξ dependent. We have used, that:

ξ kµ kν v̄(p + k) γµ u(p) = ξ kν v̄(p + k) /k u(p)

Eq. (4.87) → = ξ kν v̄(p + k) (/k + /p − /p) u(p)

Eq. (4.87) → = ξ kν v̄(p + k) (/k + /p − m) u(p) . (5.77)

90



Chapter 5. Gauge Fields

We now look at gauge invariant observables, for example E and B-fields. We have

Ei = −F0i = −
(
∂0Ai − ∂iA0

)
Bi = εi jkF jk . (5.78)

Using Eq. (5.47) they read

E =

∫
d3k

(2π)3

1
2k0 ik0

[ (
a −

k
k0 a0

)
e−ikx −

(
a† −

k
k0 a†0

)
eikx

]

=

∫
d3k

(2π)3

1
2k0 ik0

[
(ε1 α1 + ε2 α2) e−ikx −

(
ε1 α

†

1 + ε2 α
†

2

)
eikx

]

−

∫
d3k

(2π)3

1
2k0 ik0

[ k
k0 α+ e−ikx −

k
k0 α

†
+ eikx

]
, (5.79)

with the physical polarisations ε1,2.
Analogously, we find

Bi(x) = εi jl
∫

d3k
(2π)3

1
√

2k0
ik j

[ (
εl

1 α1 + εl
2 α2

)
e−ikx −

(
εl

1 α
†

1 + εl
2 α
†

2

)
eikx

]
. (5.80)

(We note that l is summed over despite the fact that it appears three times in the expression.)
It follows that only α1,2 and α+ appear in E and B. Sandwiched between physical states |Ψ〉 ∈ H , α+

drops out. The Hamiltonian reads, with Πi = Ei

H =

∫
d3x

[
Π (∂0A − ∇A0) +

1
4

FµνFµν
]

=

∫
d3x

[1
2

(
E2 + B2

)
+ ∇ (E A0)

]

∇E = 0 → =
1
2

∫
d3x

(
E2 + B2

)
, (5.81)

where we have used

∇E =

(
−∂0∂iAi +

(
∂i
)2

A0
)

∂µAµ = 0 → =

[
−

(
∂0

)2
+

(
∂i
)2

]
A0 = 0 . (5.82)

We insert the E-B-field operators Eq. (5.79) and Eq. (5.80) and arrive at

P0 = H '
1
2

∫
d3k

(2π)3

k0

2k0 k0
2∑

i=1

(
αi α

†

i + α†i αi
)

'

∫
d3k

(2π)3

k0

2k0 k0
2∑

i=1

α†i (k)αi(k) , (5.83)
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where we have dropped the α+-terms in the first line, and the vacuum terms in the second line. Similarly,
we get for P

P =

∫
d3x E × B

'

∫
d3k

(2π)3 k
2∑

i=1

α†i (k)αi(k) , (5.84)

where we have dropped the vacuum terms.
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6. QED

In this chapter we discuss Quantum Electro Dynamics (QED) as an application. We use the following
notation:

Dirac fields electrons, positrons: e−, e+ Ψe

Leptons myons: µ−, µ+ Ψµ

tau: τ−, τ+ Ψτ

Gauge field photons: γ Aµ

Note, that the photon is the gauge boson of the U(1)-symmetry, with the Noether charge being the electric
charge (see chapter 5).

I. Action and Feynman rules

The action is a sum of the Dirac actions of e, µ, τ and the gauge field action of the photon (see Eq. (5.18))

S QED[A,Ψe,Ψµ,Ψτ] = S D[A,Ψe] + S D[A,Ψµ] + S D[A,Ψτ] + S A[A] + S g f [A] , (6.1)

with the Dirac actions

S D[A,Ψe,µ,τ] =

∫
d4x Ψ̄e,µ,τ

(
i /D − me,µ,τ

)
Ψe,µ,τ, with Dµ = ∂µ − ieAµ , (6.2)

and the gauge field action

S A[A] = −
1
4

∫
d4x FµνFµν, with Fµν = ∂µAν − ∂νAµ . (6.3)

The gauge fixing term S g f [A] in the covariant gauge is

S g f [A] = −
1
2ξ

∫
d4x

(
∂µAµ

)2
, (6.4)

with the gauge fixing parameter ξ. The gauge transformations are

Ψ(x) → eiα(x) Ψ(x) = Ψα(x)

Aµ(x) → Aµ(x) +
1
e
∂µα(x) = Aαµ(x) , (6.5)

with

S QED[Aα,Ψα] = S QED[A,Ψ] +
1
ξ

1
e

∫
d4x ∂µAµ∂ρ∂ρα , (6.6)

where

Ψ =

Ψe

Ψµ

Ψτ

 . (6.7)
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Next, we consider the Feynman rules. It is

S QED = S free + S I , (6.8)

with
S free = S A[A] + S g f [A] +

∫
d4x Ψ̄(i/∂ − m)Ψ , (6.9)

and
S I = e

∫
d4x Ψ̄ /AΨ . (6.10)

We remark, that any other coupling of leptons and photon introduces dimension-full couplings to the
theory, e.g. spin-coupling

e
Λ

Ψ̄σµν Ψ Fµν Ψ , (6.11)

where Λ carries momentum dimension one. Such a term makes the theory non-renormalisable. We
obtain the propagators for
Leptons (Eq. (4.142)):

= i
 /p + mΨ

p2 − m2
Ψ

+ iε


ηη′p

η η′

and photon (Eq. (5.75)):

k

µ ν = −
i

k2 + iε

(
ηµν − (1 − ξ)

kµ kν
k2 + iε

)
.

At the vertices it holds (see Eq. (5.72)

= −i e (γµ)ηη′ .
η

η′
µ

(6.12)

Note, that here the sign is irrelevant, as Aµ → −Aµ. Eq. (6.12) has been deduced simply by analogy to
the derivation of the scalar self-interaction. Further, we have

incoming lepton: outgoing lepton:
= u(p) = ū(p)

incoming anti-lepton: outgoing anti-lepton:
= v̄(p) = v(p)

p

p p

p

incoming photon: outgoing photon:

= εµ(k) = ε∗µ(k) .
k

µ

k
µ

(6.13)

See also Eq. (4.143) ff. and recall the minus sign for fermion loops.
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II. Elementary Processes

This section deals with elementary processes. Consider

i) Compton scattering: e− γ → e− γ

ii) Elastic e− e−-scattering:

iii) Pain-annihilation/creation: e+ e− → γ γ

iv) Bhaba-scattering: e+ e− → e+ e−

+

+

+ + · · ·

tree level
processes

v) light-by-light scattering: (non-linear electrodynamics)

vi) Landé factor (gyromagnetic ratio):

+ · · · =

effective four photon vertex

i /D − me → i /D − me +
∆g
2

e
4me

σµνFµν , ∆g =
α

π
, α =

e2

4π

loop
effects

Let us compute an example of a tree level process in detail.

Example 6-16: electron-positron annihilation into muon-antimuon pair (e+ e− → µ+µ−). We
choose this example, because there exists only a single Feynman diagram for this process, namely:
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e−

e+

µ−

µ+

p1

p2

p3

p4

As we look at the highly relativistic case of 2-2 scattering we can use Eq. (3.154):

dσ =
1
2s

∣∣∣M f i
∣∣∣2 ∫

dΠ2 , (6.14)

with ∫
dΠ2 =

1
2

s/4
(2π)2 4p0

3 p0
4

dΩ , s = (p1 + p2)2 . (6.15)

We find
|M|2 =

1
2

∑
r

1
2

∑
r′

∑
s,s′
|M(r, r′, s, s′)|2 , (6.16)

where we computed the average by summing over r, r′ and summed over all possible splits s, s,′. The
scattering amplitude is read off by the Feynman rules:

iM = ūµs(p3)
(
i e γρ

)
vµs′ (p4)

[
ηρσ

s

]
v̄er′ (p2) (i e γσ) uer (p1) , (6.17)

where the term in square brackets corresponds to the (on-shell) propagator. Therefore, the gauge fixing
parameter ξ drops out (see Eq. (5.77)). The terms in front of and behind the propagator correspond to
right- and left-hand side in the diagram, respectively. It follows that

|M|2 =
e4

4s2 (Tµ)αβ (Te)αβ , (6.18)

with

(Tµ)αβ =
∑
s,s′

ūµs(p3) (i e γα) vµs′ (p4) ·
[
ūµs(p3)

(
i e γβ

)
vµs′ (p4)

]∗

(Te)αβ =
∑
r,r′

v̄er′ (p2)
(
i e γα

)
uer (p1) ·

[
v̄er′ (p2)

(
i e γβ

)
uer (p1)

]∗
. (6.19)

We use Eq. (4.100), i.e. ∑
s

uµs(p3) ūµs(p3) = (/p3 + mµ)

∑
s

vµs′ (p4) v̄µs′ (p4) = (/p4 − mµ) , (6.20)

to compute ∑
s.s′

ūµs(p3) γα
[
vµs′ (p4) v̄µs′ (p4)

]
γ∗β uµs(p3) = tr

(
/p3 + mµ

)
γα

(
/p4 − mµ

)
γβ , (6.21)

with [
ūs(p)γαvs′(q)

]∗
= v†s′(q) γ0γ0 γ†α γ

0γ0 ū†s(p) , γ0γ0 = 1

= v̄s′(q) γα us(p) . (6.22)
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As we consider the highly relativistic limit, we drop mµ, me. Then

(Tµ)αβ = tr
(
/p3 + mµ

)
γα

(
/p4 − mµ

)
γβ

tr γ2n+1 = 0 → = tr /p3γα/p4γβ + tr γαγβ m2
µ . (6.23)

We use

tr γργσ =
1
2

tr
{
γρ , γσ

}
=

1
2

tr
(
2ηρσ

)
= 2ηρσ

tr γργσγαγβ = 2ηρσ tr γαγβ − tr γσγργαγβ = 8ηρσηαβ − tr γσγργαγβ

= · · · = 4
(
ηρσηαβ − ηραηβσ + ηρβηασ

)
, (6.24)

and obtain

(Tµ)αβ = 4
(
p3α p4β + p3β p4α − ηαβp3 p4

)
− 4ηαβm2

µ

s � m2
µ → ' 4

(
p3α p4β + p3β p4α − ηαβ(p3 p4)

)
. (6.25)

Similarly, we get
(Te)αβ ' 4

(
pα1 pβ2 + pβ1 pα2 − η

αβ(p1 p2)
)
, (6.26)

and arrive at

|M|2 =
e4

4s2 ·2 ·16
[
(p1 · p4)(p2 · p3)+(p1 · p3)(p2 · p4)

]
=

8e4

s2 ·

[
(p1 · p4)(p2 · p3)+(p1 · p3)(p2 · p4)

]
. (6.27)

In summary, and after inserting Eq. (6.27) in Eq. (6.14), we find

dσ
dΩ

=
2α2

p0
3 p0

4s

[
(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)

]
, α =

e2

4π
. (6.28)

Note, that this expression depends on the scattering angle ϑ. Furthermore, s = (p1 + p2)2, t = (p1 − p3)2

and u = (p1 − p4)2 are called Mandelstam variables.

e− e+

µ−

µ+

p1 p2

p3

p4

ϑ
p1

p2

p3

p4

s-channel

t-channel

u-channel

The scattering angle is given by
cosϑ =

p1p3

|p1||p3|
. (6.29)

In the highly relativistic limit, it holds

p1 · p3 = p0
1 p0

3 − p1p3 '
1
4

s −
1
4

s cosϑ =
1
4

s(1 − cosϑ) = p2 · p4

p1 · p4 =
1
4

s(1 + cosϑ) = p2 · p3

⇒ (p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4) =
1
16

s2
(
2 + 2 cos2 ϑ

)
=

1
8

s2
(
1 + cos2 ϑ

)
. (6.30)
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The final result for |M|2 is

|M|2 = e4
(
1 + cos2ϑ

)
= 16π2α2

(
1 + cos2ϑ

)
, α =

e2

2π
. (6.31)

If we compare Eq. (6.31) with that for scalar 2-2 scattering (Eq. (3.37)), |M|2 = λ2, we see, that for
fermions the scattering angle is important, whereas for scalar fields it is not. Inserting Eq. (6.31) in
Eq. (6.14) and using 4p0

3 p0
4 ' s yields the cross section

dσ
dΩ

=
α2

4s
(1 + cosϑ) . (6.32)

Again, compare this to the cross section of scalar 2-2 scattering (Eq. (3.154)), i.e. dσ
dΩ

= 1
(4π)2

λ2

4π .

We remark, that the intermediate virtual photon was chosen in the Feynman gauge, i.e. ξ = 1. However,
we have shown in Eq. (5.77), that any choice of ξ leads to the same result, in particular ξ = 0. Further,
in the high energy limit also (p1 − p2)µv̄(p2) γµ u(p1) ∼me

≈ 0. Only the physical polarisations ε1 and ε2
play a role, ε3 drops out (see Eq. (5.48)). This argument also applies to ū(p3) γν v(p4). In summary we
have

ū(p3) γν v(p4) (p3/4)ν ≈ 0

v̄(p2) γµ u(p1) (p1/2)µ ≈ 0 . (6.33)

So if p3,4 are orthogonal to the beam axis, defined by p1/2, the related polarisation ε1 or ε2 also ’drops
out of the game’. In this case, α = π/2, only one polarisation contributes to the scattering, for α = 0,
both. Lastly, note, that in the highly relativistic case and for α = π/2:

"
→

"
.
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7. Renormalisation

As we have seen in the previous chapters, loop diagrams are divergent. In this chapter we discuss
renormalisation, a mathematical approach, to cancel singularities from the integrals.

I. φ4-theory

In φ4-theory the action is given by (see Eq. (3.18))

S [φ] = −
1
2

∫
d4x φ0

(
∂2 + m2

0

)
φ0 −

λ0

4!

∫
d4x φ4

0 , (7.1)

with bare fields φ0 and parameters/couplings m2
0 and λ0. We write

φ0 = Z1/2
φ φ

m2
0 = Zm m2

λ0 = Zλ λ , (7.2)

with renormalised or physical fields φ, parameters m2, λ and multiplicative renormalisations Zφ, Zm, Zλ.
The Z’s are expanded in powers of λ:

Z = 1 + δZ , δZ = δZ1λ + δZ2λ
2 + . . . , (7.3)

where the first part corresponds to classical theory and δZ to quantum corrections. Recalling the LSZ-
formalism we use Eq. (3.169) with fields φ0

〈T φ0 φ0〉 (p)
∣∣∣
pole =

iZ
p2 − m2

phys

+ finite = Zφ 〈T φ φ〉
∣∣∣
pole . (7.4)

We demand Zφ = Z, which implies

〈T φ φ〉
∣∣∣
pole =

i
p2 − m2 + finite . (7.5)

Here, we have implicitly fixed Zφ such that m2 = m2
phys, i.e. p2 = m2. Eq. (7.4) and Eq. (7.5) can be cast

into

renormalisation conditions (1-2) [
〈T φφ〉 (p)

]−1

p2=m2

!
= 0

∂p2

[
〈T φφ〉 (p)

]−1

p2=m2

!
= 1 . (7.6)

This fixes the constants Zφ and Zm. More generally, we fix 〈T φφ〉 at some scale p2 = µ2, where µ is
called renormalisation scale. The coupling renormalisation Zλ is fixed, by fixing the amputated four-point
function:

99



Chapter 7. Renormalisation

s
p4

p2 p3

p1
t = −i λ .

s=t=u=m2

!

If we write this in terms of the Green function (using Eq. (7.5)), we obtain the third

renormalisation condition (3)∏
i

[
〈T φ φ〉 (pi)

]−1
· 〈T φ(p1) · · · φ(p4)〉

∣∣∣∣∣
s=t=u=m2

= −i λ , (7.7)

where λ = λphys
∣∣∣
symmetric point. The renormalisation conditions Eq. (7.6) and Eq. (7.7) fix the map

between the bare quantities φ0, m0, λ0 to the renormalised (finite) quantities φ, m, λ. The finiteness of
correlation functions of the renormalised fields φ follows from the finiteness of Eq. (7.6) and Eq. (7.7).
Hence, the Z’s have to cancel the loop divergences. Thus, the Z’s carry the singularities. Note, that in
(perturbatively) renormalisable theories, it is sufficient to introduce the Z’s (and similar quantities) for
getting a manifestly finite theory. The freedom of (re)-normalising fields and couplings also encodes, that
Green functions are not by themselves physical observables. For example, we could have renormalised
the theory at some other momentum scale p2 = µ2 with the renormalisation conditions, with

λ = λphys
∣∣∣
p2=µ2

m2 = m2
phys

∣∣∣
p2=µ2 . (7.8)

Physics is invariant under changing µ, which is expressed in the

renormalisation group equation

µ
d

dµ
(phys. observables) = 0 . (7.9)

Note, that the renormalisation conditions encode the reparametrisation invariance of the theory and
the insensitivity of physics to the specific renormalisation scheme. µ is called renormalisation group
(RG) scale. We remark, that the generator of the RG is µ d

dµ , and the RG is a one-parameter, Abelian semi
group (see QFT II).
Let us now formulate the Feynman rules in terms of renormalised quantities (where we have dropped
the iε):
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φ

Propagator:

Vertex:

= −i Zλ Z2
φ λ = −i λ+

φ
−1

= Zφ
p2 − Zm m2

i
=

[
i

p2 − m2

]−1

−

where

,

= (−i)
[
(1 − Zφ) p2 − (1 − Zφ Zm) m2

]
.

< 1

where = i λ (1 − Z2
φ Zλ) .

,

Note, that , are called counter terms. Zφ, Zm, Zλ cancel singularities, that are proportional
to p2, m2 and λ, respectively. Next, we examine renormalisation at one loops. First, we consider the
mass correction (see Eq. (3.193)).

= + 1
2 + O(λ2)

=
i

p2 − m2 +
i

p2 − m2

[
− i Π(p)

] i
p2 − m2 + . . . ,

with self-energy:

−i Π(p) = +1
2

+= 1
2 i (1 − Zφ) p2 + i (1 − Zφ Zm) m2 .

finiteFor the loop diagram, we have:

= −i λ
∫

d4q
(2π)4

i
q2 − m2 .

Consequently, the self-energy is

−i Π(p) = −
i λ
2

∫
d4q

(2π)4

i
q2 − m2 − i (1 − Zφ) p2 + i (1 − Zφ Zm) m2 . (7.10)

Note, that
p p

has no dependence on the external momentum p. Therefore, Zφ
∣∣∣
1-loop = 1. Further,

it is
−1

p2=m2

= 0 .
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+
√

p2 + m2

−
√

p2 + m2 (qM)0

rotate by
avoiding the poles

integration contour

i (qE)0

Figure 7.1.: Recall the iε of time-ordering: 1
q2−m2+i ε . The rotated Euclidean contour runs i(qE)0 from −i∞

to +i∞, or (qE)0 from −∞ to +∞. As this rotation does not swipe the poles, the integration
stays the same.

The renormalisation condition in Eq. (7.6) implies

⇒ Π(p)
∣∣∣
1-loop=̂0 . (7.11)

We conclude, that

1 − Zm =
1
2
λ

m2

∫
d4q

(2π)4

i
q2 − m2 . (7.12)

It remains to compute ∫
d4q

(2π)4

i
q2 − m2 + iε

, (7.13)

where we have to encounter two problems, namely that the integrand diverges on-shell (q2 = m2), and
that the integral diverges for q2 → ∞. The diverging integrand can be resolved with Wick rotation. For
this, we rescale momentum in Minkowski space to Euclidean space as shown in figure 7.1. Then

(qM)0 = i (qE)0

(ηE)µν = −1 → ⇒ (qM)µ(qM)µ = −(qE)µ(qE)µ = −(qE)µ(qE)µ

⇒

∫
R4

d4qM = i
∫
R4

d4qE

⇒

∫
d4qM

(2π)4

i
q2

M − m2
=

∫
d4qE

(2π)4

i
q2

E + m2
. (7.14)

The divergent integral for q2 → ∞ is dealt with by regularisation. Consider for example a momentum
cut-off Λ: ∫

R4

d4q
(2π)4 →

∫
q2≤Λ2

d4q
(2π)4 . (7.15)
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Then

∫
q2≤Λ2

d4q
(2π)4

1
q2 + m2 =

Λ∫
0

dq
(2π)4 q3

∫
dΩ

1
q2 + m2 =

1
8π2

Λ∫
0

dq
q3

q2 + m2

=
1

16π2

[
Λ2 + m2 ln

m2

Λ2 + m2

]
. (7.16)

Another example is dimensional regularisation. We rewrite the four-dimensional integral as∫
d4q

(2π)4

1
q2 + m2 =

[ (
µ̄2

) 4−d
2

∫
ddq

(2π)d

] 1
q2 + m2

=
Ωd

(2π)d

(
µ̄2

) 4−d
2

∞∫
0

dq qd−1 1
q2 + m2 , (7.17)

with the angular volume Ωd. Note, that the term in square brackets in the first line has dimension 4 due
to the scaling factor in front of the d-dimensional integral. For d < 2 the integral in the last line is finite,
and we can compute Eq. (7.17), and then analytically extend the result. We use

∫
dΩd

(2π)d :
√
πd =

(∫
dx e−x2

)d

=

∫
dd x e−x2

, x =


x1
...

xd


=

∫
dΩd

∞∫
0

dx xd−1 e−x2
=

1
2

∫
dΩd Γ

(
d
2

)
, (7.18)

where we have used an integral representation of the Γ-function: Γ[t] =
∫ ∞

0 ds st−1 exp{−s} with s = x2

and ds = dx2 = 2dx x. This leads us to

Ωd =
2π

d
2

Γ
(

d
2

) , (7.19)

and hence

∞∫
0

dq qd−1 1(
q2 + m2)n =

1
2

Γ
(

d
2

)
Γ
(
n − d

2

)
Γ(n)

(
1

m2

)n− d
2

(7.20)

⇒

∞∫
0

ddq
(2π)d

1(
q2 + m2)n =

1
(4π)d/2

Γ
(
n − d

2

)
Γ(n)

(
1

m2

)n− d
2

. (7.21)

With this, we obtain

(
µ̄2

) 4−d
2

∫
ddq

(2π)d

1
q2 + m2 =

1

(4π)
d
2

Γ

(
1 −

d
2

)
m2

(
µ̄2

m2

)2

−
d
2
. (7.22)
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Then, for d = 4 − 2ε with ε → 0, this is

(
µ̄2

)ε ∫ ddq
(2π)d

1
q2 + m2 =

m2

16π2

[
1
ε

+ γ − 1 + ln 4π − ln
m2

µ̄2

]
, (7.23)

with

Γ(−1 + ε) =
1

−1 + ε
Γ(ε) ← xΓ(x) = Γ(x + 1)

= −
1
ε

+ γ − 1 + O(ε) , (7.24)

and the Euler-Mascheroni constant γ = 0.577 . . . . This allows us to determine Zm
∣∣∣
1-loop. With cut-off

regularisation (Eq. (7.16)) we get

Zm = 1 −
1
2

1
16π2λ

Λ2

m2 + ln
1

1 + Λ2

m2

 . (7.25)

And with dimensional regularisation (Eq. (7.24)) we obtain

Zm = 1 −
1
2

1
16π2λ

(
−

1
ε

+ γ − 1 + ln 4π − ln
m2

µ̄2

)
. (7.26)

Note, that in Eq. (7.25) and Eq. (7.26) the term 1
16π2λ is the expansion coefficient in φ4-theory. The

equivalence between these equations is best seen with: ln 1
1+ Λ2

m2

= ln m2

Λ2 + ln 1
1+ m2

Λ

.

Finally, in both cases at one loop we have

=
i

p2 − m2 + O(λ2) .

(7.27)

Next, we have to consider the coupling correction

+ O
(
λ3

)
=

+ + . . . + + O
(
λ3

)
=

1
2

1
2

+
1
2

+
1
2

+

λ

+ + . . . + + O
(
λ3

)
=

1
2

λ

i λ (1 − Zλ)

= 0 (µ = 0)

Zφ
∣∣∣
1-loop = 1→

104



Chapter 7. Renormalisation

The renormalisation condition for t = s = u = 0, i.e. µ2 = 0 becomes

1 − Zλ =
3λ
2

∫
d4q

(2π)4

i
(q2 − m2)2 . (7.28)

Using Wick rotation (Eq. (7.21)) with dimensional regularisation (n = 2, 2 − d
2 = ε), we compute

−
3λ
2
µ2

∫
ddq

(2π)d

1
(q2 + m2)2 = −

3λ
2

1

(4π)
d
2

Γ(ε)
Γ(2)

(
m2

µ2

)−ε

= −
3λ
2

1
16π2

(
1
ε
− γ + ln 4π − ln

m2

µ2

)
, (7.29)

where in the last line, we used the expansion: Γ(ε) = 1
ε − γ + O(ε) . In summary, we state, that (at

renormalisation group scale µ2 = 0)

Zλ = 1 +
3
2

λ

16π2

(
1
ε
− γ + ln 4π − ln

m2

µ2

)
. (7.30)

With Zφ = 1 our theory is consistent at one loop. Also, it is renormalisable at one loop. We remark, that
the renormalised correlation functions 〈φ(p1) φ(p2)〉1-loop, 〈φ(p1) · · · φ(p4)〉1-loop are finite, but depend
on the renormalisation scale µ. Higher correlation functions at one loop are finite from the onset, e.g. the
six-point function, as at pi = 0:

〈φ0(p1) · · · φ0(p6)〉1-loop ∼ λ
3
∫

d4q
(2π)4

1
(q2 + m2)3 , (7.31)

is finite. Note, that a singularity in 〈φ0(p1) · · · φ0(p6)〉1-loop would be disastrous, because there is no
counter term for it. Hence, perturbative renormalisability (in φ4-theory) implies, that all correlation
functions to all orders in perturbation theory are finite, by adjusting Zφ, Zm, Zλ. Also note, that ’Physics’
does not depend on the renormalisation scheme, which yields the

renormalisation group invariance

µ
d

dµ
observable = 0 . (7.32)

Moreover, it does not depend on the cut-off scale

Λ
d

dΛ
observable = 0 . (7.33)

Evidently, the bare quantities know nothing of the renormalisation point. Hence

µ
d

dµ
φ0 = µ

d
dµ

m0 = µ
d

dµ
λ0 = 0 . (7.34)

It follows, that

µ
dφ
dµ

1
φ

= −
1
2
µ

dZφ
dµ

1
Zφ

= −γφ

µ
dλ
dµ

1
λ

= −µ
dZλ
dµ

1
Zλ

= βλ

µ
dm2

dµ
1

m2 = −µ
dZm

dµ
1

Zm
= γm , (7.35)
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ppmax

Landau pole

λphys

perturbation
theory

non-perturbative

λ̄

p̄

Figure 7.2.: Sketch of the running coupling.

which are also referred to as beta-functions. In turn, the renormalised quantities are insensitive to the
cut-off. Hence

Λ
d

dΛ
φ = Λ

d
dΛ

m = Λ
d

dΛ
λ = 0 . (7.36)

Therefore, Λ and µ scaling are (asymptotically) directly related. Lastly, we discuss renormalised and
running coupling. The renormalised coupling is not the physical coupling, as it runs with µ (see
Eq. (7.35)):

µ
d

dµ
ln λ = β . (7.37)

In our one loop case, we have

β(µ) = −µ
d ln Zλ

dµ
=

3
16π2λ . (7.38)

Note, that at µ = 0 this is also equal to −m d ln Zλ
dm . Our renormalisation condition, however, fixed λ = λphys

at the momentum scale µ. Hence,

p
d

dp
λphys(p) ' µ

d
dµ
λ
∣∣∣
µ=p . (7.39)

We can integrate this equation at one loop and get

λphys(p) =
λ̄

1 + 3λ̄
16π2 ln p̄

p

. (7.40)

This is linked to the triviality of φ4-theory: λphys(p) < ∞ for all p. It follows, that

λphys=̂0 . (7.41)

Note, that this has to be proven non-perturbatively (see figure 7.2). This is subject to QFT II, though.

II. QED

We have shown, how to renormalise scalar fields in the previous section. In this section, we will do the
same for QED. For this purpose consider the action of QED (Eq. (6.1)), only with an electron:

S QED[A, ψ] =

∫
d4x ψ̄0 (i /D − m0)ψ0 −

1
4

∫
d4x Fµν(A0)Fµν(A0) −

1
ξ0

∫
d4x

(
∂µAµ0

)2
, (7.42)

106



Chapter 7. Renormalisation

with Dµ = ∂µ − ie0A0µ and ψ0 = ψ0e. The action is gauge invariant under

A0µ → A0µ +
1
e0
∂µα

ψ0 → e−iα ψ0 , (7.43)

of the bare fields A0µ and ψ0 (see Eq. (6.5)). We introduce renormalised fields and parameters:

A0µ = Z
1
2
A Aµ

ψ0 = Z
1
2
ψ ψ

e0 = Ze e

m0 = Zm m [ξ0 = Zξ ξ] . (7.44)

It can be shown, that gauge symmetry enforces the relation

µ
d

dµ

(
Z

1
2
A Ze

)
= 0 , (7.45)

that is, µ d
dµ (e Aµ) = 0. This and similar relations for correlation functions are called Ward-Takahashi

identities or Slavnov-Taylor identities and will be subject of QFT II and QCD, respectively. Here, we
proceed with a heuristic argument for Eq. (7.45). Firstly, physical gauge invariance should apply to
renormalised quantities, so the covariant derivative should read

Dµ = ∂µ − i e Aµ . (7.46)

This implies Eq. (7.45). Secondly, we have gauge-fixed the bar, classical action (Eq. (7.42)). The
previous argument only holds if this simple additive structure holds also on quantum level. To that end
we evaluate 〈

S QED[Aα, ψα] − S QED[A, ψ]
〉 ∣∣∣
O(α) = −

1
ξ

∫
d4x

〈
∂ρAρ

〉
∂ρ∂

ρα = 0 , (7.47)

due to the gauge fixing ∂ρAρ = 0. We conclude, that for general linear gauge fixings Eq. (7.45) holds,
and

Zξ = ZA . (7.48)

In turn, for non-linear gauge fixings and for non-Abelian gauge theories (strong and weak forces)
Eq. (7.45) fails.
We will now present the Feynman rules in terms of renormalised quantities (see Eq. (6.12) ff.). For the
propagators we find:
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p

−1

=
1
i

Zψ(/p − Zmm) =

i /p + m2

p2 − m2

−1

−

= −i (1 − Zφ) /p + i (1 − ZφZm) m .

k

−1

= i ZA

[
k2 ηµν − kµkν

(
1 −

1
ZAξ

)]

=

[
−

i
k2

(
ηµν − (1 − ξ)

kµkν
k2

) ]−1
−

= −i (1 − ZA)(k2 ηµν − kµkν) .

µν

only transversal modes
get renormalised

where:

where:

,

,

(7.49)

For the vertices we get:

γ = i Zφ Z
1
2
A Ze e = i e γµ + ,

where:
= −i e γµ

(
1 − Zψ Z

1
2
A ,Ze

)
.

(7.50)
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A. Complementary Calculations

I. Coherent states

Here we provide some more details for the computations relevant for the discussion of the coherent state
|α〉 in Section III.3 . We start with the ansatz given in Section III

|α〉 =
1
N(α)

∞∑
n=0

1
n!

∞∏
i=1

∫ d3 pi

(2π)3

1√
2ωpi

α(pi)

 |p1 · · · pn〉 , (A.1)

with

a(p) |p1 · · · pn〉 =

n∑
i=1

(2π)3
√

2ωpi |p1 · · · pi−1 pi+1 · · · pn〉 δ(p − pi) . (A.2)

From Eq. (A.2) and with normal ordering (Eq. (2.109)) it follows

1
n!

a(p)
(∫

d3 p′

(2π)3 α(p′) a†(p′)
)n

|0〉

=
1
n!

nα(p)
(∫

d3 p′

(2π)3 α(p′) a†(p′)
)n−1

|0〉

= α(p)
1

(n − 1)!

(∫
d3 p′

(2π)3 α(p′) a†(p′)
)n−1

|0〉 (A.3)

and similarly

〈0|
1
n!

(∫
d3 p′

(2π)3 α
∗(p′) a(p′)

)n

a†(p)

= 〈0|
1

(n − 1)!

(∫
d3 p′

(2π)3 α
∗(p′) a(p′)

)n−1

α∗(p) . (A.4)

Now we can calculate

〈α|α〉 =
1

N2(α)

∞∑
n=0

(
1
n!

)2 ∫ ∞∏
i=1

 d3 pi

(2π)3

d3 p′i
(2π)3 α

∗(pi)α(p′i)
 · ...

... · 〈0|a(p1) · · · a(pn) a†(p′n) · · · a†(p′1)|0〉

. (A.5)
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With

〈0|a(p1) · · · a(pn) a†(p′n) · · · a†(p′1)|0〉

= 〈0|a(p1) · · ·
( [

a(pn) , a†(p′n)
]

+ a†(p′n) a(pn)
)
· · · a†(p′1)|0〉

= (2π)3 δ(pn − p′n) 〈0|a(p1) · · · a(pn−1) a†(p′n−1) · · · a†(p′1)|0〉 + ...

... + 〈0|a(p1) · · · a(pn−1) a†(p′n) a(pn) a†(p′n−1) · · · a†(p′1)|0〉

... (continue normal ordering)

= (2π)3
n∑

i=1

〈0|a(p1) · · · a(pn−1) a†(p′n) · · · â†(p′i) · · · a
†(p′1)|0〉 · δ(pn − p′i) , (A.6)

where
â†(p′i) = 1 . (A.7)

Finally we get

〈α|α〉 =
1

N2(α)

∞∑
n=0

1
n!

1
(n − 1)!

∫
d3 pn

(2π)3α
∗(pn)α(pn) · ...

... ·

∫ n−1∏
i=1

 d3 pi

(2π)3

d3 p′i
(2π)3 α

∗(pi)α(p′i)
 〈0|a(p1) · · · a(pn−1) a†(p′n−1) · · · a†(p′1)|0〉

... (continue normal ordering)

=
1

N2(α)

∞∑
n=0

1
n!

( ∫ d3 p
(2π)3α

∗(p)α(p)
)n

=
1

N2(α)
exp

(∫
d3 p

(2π)3 |α(p)|2
)

⇒ N(α) = exp
(
1
2

∫
d3 p

(2π)3 |α(p)|2
)
. (A.8)
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