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Chapter 1. Introduction

1. Introduction

Quantum Field Theory describes the fundamental interactions of matter.

X, p $(x), 1(y)
classical mechanics classical field theory
[%.5]=in [¢0).2(v)]=in6(x—y)
quantum mechanics quantum field theory
% p $(x), (y)

It has various physical applications, such as the standard model, potentially quantum gravity, condensed
matter systems and ultracold gases. Further, modern particle physics is also described by quantum field
theories: The Higgs-boson corresponds to a scalar field, leptons and quarks are described by fermion
fields, and vector fields are used for photons, W* and Z bosons, and gluons.

Example 1: Oscillating masses / string.

- ¢(ta -x)

\/

11 il 2
Consider the lattice spacing a to become infinitesimal, hence

qi — qi-1

— 0,0
and therefore
(qi — qi-1 + qi — qi-1)
azz%' = = 2
l
Bp(t,x) = -2t x).
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Then for the action it follows,

Slq] = f dr Lq(0), a(). 1)
N 20, )2
_ afdtz(azqz) cagqm qi)
!
Si¢] = f dr f ax (@97 - F0.07).

In general dimensions the action of a scalar field ¢ can be written as

S{e]

1
f a'x (300 - (Vo7 - V(@)

where V denotes the potential and ¢ = 1.
Thus, the problem can be simply described by a bunch of (coupled) harmonic oscillators.

Example 2: Electrodynamics.

Consider a vector field A, with the action

S[A]

f A L(AL(). 8,4 (1))

where x° = r and (xi) =xfori=1,2,3.
The Lagrangian is given by

with

Y = nupnwapo_

and the flat metric

1 0 0 0
, o -1 0 o
=10 0 -1 o0

00 0 -1

In the following chapter we will discuss free scalar fields. Starting from classical field theory (section
I) we move on to symmetries and the Noether theorem (section II). Lastly, we advance from classical
theory to quantum field theory through quantisation. This requires the construction of the Fock space
(section III), which is basically a sum of a set of Hilbert spaces.
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2. Free Scalar Field

I. Classical Theory

At first we consider a real scalar field ¢(x). In particular this means, that ¢ is invariant under Poincaré
transformations (translations, rotations, boosts), namely

P(x) = P(p(x)) = ¢p(x) . 2.1
Poincaré symmetry implies, that the scalar product (x — y)? remains invariant under the transformation
P=(A,a): x> P = AX+d, (2.2)
where A denotes the Lorentz transformation with
(A"nA) =7, (2.3)
or in components
Apﬂnp(,A‘L = Nuy - 2.4)
For a composition of Poincaré transformations it holds

(Ar,a1) o (Ag,a0) = (A2, Aax +ay). (2.5)

Furthermore, for a scalar field ¢ the action is Lorentz invariant, which we will show exemplary for the
common case, where

Sl¢] = f d*x L(p(x), 0,0(x)), (2.6)
with
1
L = 30,00¢-V(9) 2.7)
1
V(g) = 5m¢2+0(¢3). (2.8)

Lorentz invariance follows from

¢ — OPAN, PP

= 0,0 (ATnA)Vp )

= 8,09"¢ (with Eq. (2.3)) (2.9)
Vig) = V(o) (2.10)
L - L (2.11)
=5 - S. (2.12)
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According to Hamilton’s principle, the variation of the action has to be zero. This can be used to derive
the equation of motion (EoM). For the case above it holds

5 f d4x(%(6¢)2—%m2¢2)

f a'x (9,0 0,08 1™ - 2950) as 508 = 60,0 DD 1"

0268

— f d*x (n‘”(’)ﬂavgﬁ + m2¢) 0¢ (using partial integration)

—fd4x6¢(82+m2)¢. (2.13)

Therefore, the scalar field must satisfy the

Klein-Gordon equation
(0> +m*) p(x) = 0, (2.14)

which is the equation of motion for a four dimensional scalar field. Hence, we obtain an expression
for the scalar field ¢ by solving Eq. (2.14). In the following the solution for 1+0 dimensional theory is
derived and subsequently generalised. 1+0 dimensional theory describes ordinary (quantum) mechanics,
as

#(1,x) - =9 =4q(), (2.15)
1+0 dim
TR N S
L= 54 = 5mq =44 (2.16)

The first two terms correspond to a harmonic oscillator and the last is an anharmonic term. The equation
of motion is then the Euler-Lagrange equation

oL oL
— —-—=0 2.17
'35 g (2.17)
It follows that
G+miq+ g’ =0. (2.18)

For A = 0 this is the differential equation of a harmonic oscillator, which is solved by a plane wave
q(t) = Age™  with K> —m?=0. (2.19)

When extending to 1+d dimensions, ¢ describes a density of coupled harmonic oscillators with the
general solution

3
$(x) = dk 1 (a(k)e—fkua*(k)e”“) with wg == VK® + m?. (2.20)

(27)3 2w
Note, that ¢ is real and satisfies Eq. (2.14). Further note, that

$Pr 1 d*k
(271)3 2wi = 2n)* (27) 6(k2 - mz) e(ko) ) 2.21)
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i.e. that this is a Lorentz invariant measure. This can be derived by using

0(g(x) — g(a)) =

1
o(x — 2.22
@ 9 (222)

where g(x) is any C! function. Then

Sk —m*) = §((K°) —K* —m?) = 6(k3 — wp)
- L (ko — wy) . (2.23)
[2wk|
It follows
d*k d*k 1
f o Qn) (k> —m») 0(k°) = @(2”) o ko = w0 (k")
&k 1

Lastly, let us consider the case of a complex scalar field

#x) = %(wx) vig), 2.25)
where ¢ and ¢, are both real scalar fields. The action is given by
S[¢] = f d*x L(8,,9), (2.26)
with
L. 9up) = b9 —m’¢’
1
= (@817 + @627 - (@} + 83). 227)
Then the general solution of Eq. (2.14) becomes
3
s = [ SE L (e e™ + g K)e™)  with wy = VK* +m?. (2.28)
(2m)3 2wk

Note, that the action is invariant under multiplication with a global phase e*. This global U(1) symmetry
implies a conserved charge, as will be discussed in the subsequent section.

Il. Noether Theorem

Noether’s theorem states, that every continuous symmetry of the action leads to a conserved current
density and a conserved charge. Let us therefore consider a infinitesimal symmetry transformation ¢,
such that

p(x) = Px) + ded(x) (2.29)

Slp)] = S[p(x) + 6ep(x)] MéS [¢(x)]. (2.30)

Eo
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This is satisfied for

L L+ed,J ), (2.31)
as an additional surface term J(¢) does not affect the action
S[¢] = f d*x L f d'x L+e f d*x 8,0"(¢), (2.32)
because the last term vanishes, if
Jlgl] =0. (2.33)
+00
This is true, if J[¢] is the total derivative of the Lagrangian. Thus, we can write
oL 0L
+ — 0ep + ——— 0,0
L B L a¢ e¢ a(aﬂ¢)ue¢
0L 0L oL
- £+ %5440 (—5 ¢)—(a _)M
ap = M\ "00.9))
0L
= + 0| == 960 | + (EoM) o
L H(a(a#@ e¢) (EoM) 69
L L+ed n. (2.34)
06
Evaluated at the EoM: %0t =A¢
0€ le=0
0L
" =0 ( A¢) . (2.35)
a0
We now define the
conserved current (for a single field)
oL
= ———Ap—J* with 9,//=0. (2.36)
7 %0, v/
The conservation law can also be expressed in terms of the
Noether charge
o) = f d*x °(,x) with Q@) =0. (2.37)
If the symmetry involves more than one field, the first term in j* needs to be replaced by a sum of terms.
1)
Consequently, the above extends to a general symmetry with r parameters as: A,¢ = (9€¢
€ le=0
conserved current (for multiple fields)
: oL . ,
]I;,l = a(a—ﬂ(pl) Ar¢i - J';l with (')ﬂ]" =0. (238)
Note, that splitting d.¢ into an infinitesimal transformation of ¢ and x, namely
0cp = 0p. ¢+ 6ex, ', (2.39)
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00X

leads to: Ax =
eads to: Ax Je,

oL 0L
3(0u9) 30,.9)
As the Physics remains invariant under a shift of the laboratory system, let us now examine the sym-

metry under translations, which corresponds to energy-momentum conservation. For this purpose we
consider an infinitesimal translation

=0 - L) - - (2.40)

+ A x” (évcﬁ

PO(x) - d(x +€) = p(x) + e“8ﬂ¢(x) + O(ez) . 2.41)
Then the Lagrangian becomes

L), 0,6(0)) > L+ DL

= L+€d1L. (2.42)
With r = v we obtain
Lo L+EdT", (2.43)
with
J=1'L. (2.44)
Then, we define the conserved current as
energy-momentum tensor (or stress-energy tensor)
T, = j, = 0,¢ oL -1,L with 9,T" =0 (2.45)
v v v (9(6,,(;5) v H 0

This indicates, that we have four conserved currents, i.e. charges
Pt = f d&Px T, (2.46)

which is referred to as the 4-momentum. The energy-density for time translations is given by the zeroth
component of the 4-momentum, namely

3. 700 _ 3 0 0L _
fd xT —fdx(((? ¢)—8(50¢) .[:)
f d3x((80¢)H—£)
fd3x7'(

PO

= H, (2.47)
with the momentum
oL
nm=——, (2.48)
0(0o9)
the Hamiltonian density
H =Tdogp — L, (2.49)
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and the Hamiltonian H.
For instance, the Hamiltonian density for the common case of a scalar field with £ = %((’)(l))2 - V(¢)is

1 1
H = 5H(x)2 + 5(Vqs)2 + V(). (2.50)
Note, that the covariance of P is not apparent, but that f d*x a(%qu) ~ d3x dx? is Lorentz invariant, as it
transforms as a scalar. Further note, that P’ generates translations:
P = f ExT% = f Sx 15, (2.51)

which yields for the real scalar field from Eq. (2.7)

P =( f d>x HV¢) . (2.52)

On the other hand the

Poisson bracket

{PLo) = -Vo
with  {¢(x), [y} = o(x-y)
and  {¢(x),6(y)} = 0. (2.53)

degenerates translations. As will be shown in the next section, quantisation promotes the Poisson brack-
ets to commutators with operators as arguments.
Further it is remarked, that the canonical energy-momentum tensor is in general not symmetric, i.e.

TH # T, due to d,,

oL . . L .
50,0)" However, it can always be symmetrised, which is an important property for
u
the coupling to gravity. An alternative definition results from the variation of the action with respect to
the metric g"”:

1 oS
Th = —_— . (2.54)
! \J—detg 08" lg=
Note, that 50(3)
d(x
=6(x-y) (2.55)
56() g

and that the full variation of the scalar field is Lorentz invariant, i.e. ¢’(x") = ¢(x) (so far we only used
¢(x) > ¢(x")). Then:

Ap = 0
Ava — npv
Fo=0 L=D. (2.56)

To conclude this section, the charge of a complex scalar field shall be discussed. Therefore we use the
field from Eq. (2.25), with the Lagrangian

L=0,00"¢" —m’po*. (2.57)
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The action is invariant under a multiplication of ¢ with a global phase (U(1) symmetry):
¢ > ¢ =cPp=¢+icd+..
b > ¢ =g = ¢ —iegt + .
L [=L
= J'=0. (2.58)

With A¢ = i¢ and A¢p™ = —i¢p we obtain the Noether current

o= mé;—ijqH 6(2“55*) Ap* (2.59)
- a((zf@ - a(%*) g’
= (@90~ @) (2.60)
and the
Noether charge of a complex scalar field
0= fd3x = ifd3x (¢*a,¢ = (a,¢*)¢). (2.61)

As the Noether charge is conserved for fields that satisfy the equation of motion, it follows

i [ @x(60-0 040 00~ GHo)0)

EoM

using Eq. (2.14) - ifd3x (¢*(V2 —-m) ¢ — (V> —m’) ¢* ¢)

i f d3x (¢* Ap — Ap* ¢)

0 (using partial integration; no boundary terms). (2.62)

Or in momentum space (with Eq. (2.28))

&p .
0= [ SE(w@rew -Fmsw). 2.63)

In the next section we advance by performing quantisation. Then a, * and 5, 5* will become annihilation
and creation operators for particles and anti-particles, respectively.

lll. Quantisation

Quantum field theory is the field-theoretical limit of quantum mechanics. Therefore
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[¢0.1Iy)| = isx-y)

—
@)
>
Il
—_
=t

[3.91 =0="[p.p] 60,8 =0=[f0. Ny,

where /1 = 1 and ¢ = 1 on the right hand side. Note, that the expectation value <g?>(x)> needs to yield the
classical field. Again, we start from 1+0 dimensional theory and generalise subsequently. It is

S[gl = fdtL
= f dt(lqz—lwzqz) (2.64)
27 2 '
d
H = pg-L wih p=25-4
dq
S H = 1p2+la)2q2. (2.65)
2 2

Now we perform quantisation, i.e. p,q — p, §, with [§, p| := ih. We introduce creation and annihilation
operator as

q = \/lz_w(awT) (2.66)
p = —i\/g(a—aT), (2.67)
with
[a,a]” = 1

la,a] = a*, aT]

0. (2.68)

The Hamilton operator can than be written in terms of creation and annihilation operator

. 1
A= (aT a+ 5) w, (2.69)

where % w corresponds to the vacuum energy. In the Heisenberg picture the operators evolve with time,
whereas the states are stationary, i.e.

i%é(t) = [é(z), H]

O(t) = e OOy e 11 (2.70)
It follows that - .
[9(), p(0)] = e [4, p] e H' =i (2.71)

For convenience we will now drop the hat marking the operators, as we advance to 1+3 dimensional
theory.

10
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The Hamiltonian density for a real scalar field is

H = Hop-L

1 2 2

- 5(H(z, )% + 61, X)(=A + M), x)), 2.72)
with A = VZ and

_ oL 0.

o) = g =8 = b (2.73)
1 0 2 2,2

L= (0% - Vo7 -nis). 2.74)

Analogue to the 1+0 dimensional theory we obtain the

canonical commutation relations

[¢(t’ X)’ H(ta y)] 16(X - Y)

[6(2,%), (1, ¥)] (11, %), 11(7,y)] = 0. (2.75)

The field operator ¢ satisfies the EoM, as does its expectation value (¢). Note, that the free field the-
ory describes a (coupled) set of harmonic oscillators due to ¢A¢. In Fourier space this term becomes
#(—p) p* #(p). Consequently, we can diagonalise £ and 7{ in momentum space. For this purpose we
introduce creation and annihilation operator likewise to 1+0 dimensional theory:

Fp 1 —ipx |t aipx
(x) 207 —pr (a(p)e PY 4 q (p)ep)
d? . .
x) = 8@ = —if—(zﬂl)’ - /—“;" (a(p) P 4 ' (p) elpx), (2.76)

with

wp = /P* +m?. 2.77)

The Fourier transform is defined as
W) = jﬁ%émam

d4p —ipx %
o) = jkﬂgep¢w» 2.78)

11
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With the spatial Fourier transform (¢ = 0) we get the representation of the

field operator in momentum space

() = f dxe P g(x) = (a(p) + a*(—p))

I
V2wp
f dx e P* Pp(x) = —i /% (a(p) - a*(—p)), (2.79)

with the canonical commutation relations

(p)

|(p). i) f dx dy e P [g(x), TI(y)]

= f Px &y e P isx —y) =i f dPx el Prax

i) 8(p + q) (2.80)

[6p).6@] =0=[Ti(p). Ti(g)] . 2.81)

That is, TI(q) is conjugate to ¢(—q). Hence, we obtain the formulation for

creation and annihilation operator

ap) = |2 Gp)+i fi(p)

|

|
=
=
N
e

i wp - ) .
a'(-p) - ¢(p) -1 I(p). (2.82)

Note, that this is completely analogue to the harmonic oscillator in quantum mechanics. The creation
and annihilation operators obey canonical commutation relations of a density of harmonic oscillators:

-3 \/Z:Z [6p). 1)) - 5 \/Z:z |6(-a). Tip)|

@2n)* 8(p - q)

|a(p),a' (@)

using Eq. (2.80) —

la(p),a@] =0="[a'(p),da"(@)]. (2.83)

Now we can diagonalise the Hamiltonian density in momentum space:

&p g . y . .
fd3x p q e—1x(p+q) ¢(p) q2 ¢(q) (as Ae 19X — _q2e—1qx)

_ 3
f P p(x) Ap(x) 2 2n)

dp - 9 ~
f wﬂl’)l’ P(=p). . (2.84)

12
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Analogously we get

w [ @ = o [ TP 3w ip)
(2m)?
f ExIP(x) = f d*p T(p) T1(-p) .. (2.85)
This yields the
diagonal Hamiltonian
$Ep 1y - v\ .
H= f WE(H(p)H(—p)+a)[2, ¢(p)¢(—p)) with @2 = p*+m?. (2.86)

The Physics interpretation of H is best done in terms of a, a'. Hence, we use Eq. (2.79) to rewrite

1 d 1
H = 3 f (2ﬂ§’3wp[af<p)a(p>+5(a*<p>a*(—p)+a(p)a<—p))+...

4 d @) a®) - 3(d" @)’ p) + a)at-p) + 3 [a).a’ )] |

3 3
f d’p a*(p)a(p)+%vf ¢p (2.87)

Qn3 P Q3

using Eq. (2.83) —

with

. =V, (2.88)
p=

[atp).a@)] = 20760 = [ e

13
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where V is the volume of R3.

The second term in Eq. (2.87) comprises two infinities. Firstly, the volume of R3, which is referred
to as "infra-red infinity". This can be dealt with, by putting the theory in a finite volume, i.e. a box.
Then the volume factor is finite and one advances by taking the limit for V — oco. The second infinity
is given by the vacuum energy density, as f (‘1237")’3(1)}, diverges. This is called "ultraviolet infinity". We
justify to drop this term, by arguing that no absolute energy can be defined, and only energy differences
are important. It does, however, play a role at finite temperature or when regarding QFT coupled to
gravity ("cosmological constant problem") and in QFT with boundary conditions (Casimir effect in QED:
attractive force between conducting plates). Finally, we have the

3
H= [ Shopd@ap it o= e, (289

Hamiltonian

H is the Hamiltonian of a momentum continuum of harmonic oscillators with frequencies wyp. The
interpretation of a, a' is that of annihilation and creation operator, respectively.

Next, we construct the Fock space, which is basically a sum of a set of Hilbert spaces. We normalise
energy differences from the vacuum/ground state to zero, i.e. we define the

vacuum state
H|0)=0 with a@P)|0)=0 and (0[0)=1. (2.90)

All states are generated by applying a, a' on the vacuum state |0). Therefore,

d3 ’
f G @ ) a®) 2wy’ ®)10)

3
f TP oy @) 2wp([a(p’>,a*‘<p>]+a1‘<p)a(p’>)|0>

H |p)

(2m)3
= wpd (p)4/2wp10) = wp Ip) . (2.91)
We obtain the
one-particle state (with specific momentum)
Hip) = wplp)  with [p)= \2wpa’(p)(0) . (2.92)
Note, that
(P'lp) = 2v@poy Ola@)a'(p) o)

2@y @y (O] [a),a' ()] 10)

2wp 21 S(p - p'), (2.93)

14



Chapter 2. Free Scalar Field

which implies, that one-particle states with different momenta are orthogonal. Now we include all dif-
ferent momenta that the state can have, to derive the

general one-particle state

f(p)a'(p)10) , (2.94)

n- [ Lp
~J e} o,

where f(p) denotes the amplitude, i.e. the distribution of momenta present in the state. Itis

_ d3l9, o ’ d3p 1 +
Hip = [ Ghovdeae) [ o =PI

d3
_ (2;)’3 \/% a'(p) £(p) 0)

d3 P d3q

1
@} J @n)} g2,

&p 1
Wﬂ £ (p) f(p) . (2.95)

15 £*(p) f(q) (Ol a(p) a"(q) 0)

Let us now extend this to the N-particle state:

d3p’ . .
Hipy---pN) = f (2753%/a*(p’)a(p’)zN”«/iwpl---pra'(pl)---a'(pN>|0>. (2.96)

In the next step we shift all creation operators to the left and all annihilation operators to the right,
which is called normal ordering. Then we use Eq. (2.90) and the commutation relations to simplify the
equation. Using

a®) (@' @o)--a"ew)) 100 = ([a),a"@0] @’ P20 r) + .
o+ a'(py) [a(p).a’(p2)] a'(p3)---a’(pw) + ... + ..

w4d' (pr)---d' (pn-1) [a(p), a' () ) 0y, 2.97)

this leads to the

N-particle state
N
Hip1---pN) = (Z wpi] 1o+ PN) - (2.98)

i=1

Note, that the states have Bose symmetry, i.e. that

[P1- - PiPi+1 - PN) = [P1- - Pi+1Pi- " PN) » (2.99)

as [aT pi), a’ (pi+1)] = 0. Further note, that the particle states are eigenstates of the Hamiltonian and that
the energy-momentum is additive. Therefore, if we have a state |5) with H |3) = Eg|B), a’(p)|B) is a state

15
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with one additional particle with momentum p and

H(d®1B) = @ HE) + [H.a®)]6)

H + op) (' ®)18) ).

(2.100)

Example 3: Annihilation operator applied to general one particle state.

ap) )

a( >f 0Ly at o) 0)
P e a4

d3 ’ 1
- i fp") [a(p), ' (p")]10)

@} Ry

f(p)10)

1
A /pr

(2.101)

Knowing all this, the interpretation of the field operator ¢(x) (Eq. (2.76)) is, that it creates and annihi-
lates a particle at position x. Therefore, states with defined particle number have a vanishing expectation

value of ¢, e.g.
1

_ d3p —ipx T ipx _
(Olp(x)[0) = f np N Ola(p) e +a'(p)e™|0) = 0,

with
{0lal0y = 0 = {0|a’|0) .

In the same manner it follows, that

Il
=

(plp(x)[p)

(P1- - PNIAX)IP1 - - PN) 0,

by using
1 px) =a'(pp) - a’ (PN)10) .
Further, applying ¢ to the vacuum state yields
d¢p 1
(27)3 v 2wp
d*p

— _ - 4ipx
2wy S P

$(x)[0)

(a®) e+ a" @) €™} 0)

which is basically a particle and a plane wave. Thus,

(0] (x) |p) = e'P*,

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

16
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is a plane wave travelling at momentum p and reminiscent of non-relativistic QM, as (x|p) = e iPx,
As stated before, classical theory should result from the expectation value. For this purpose we introduce
the coherent state |«) as

a(p)le) = a(p)la) , (2.108)
with
dp 1
21 \2wp
Note, that here a(p), @*(p) are no operators, and Eq. (2.109) is equivalent to Eq. (2.20), i.e. the classical
real scalar field. As |a) is a eigenstate of the annihilation operator, it remains unchanged by annihilation

(detection) of a particle with momentum p. Hence, it must be a superposition of one-particle states. We
make the following ansatz

|a)—#ii°° Epi 1 o0l ipr -0 oo
N St L Q1Y 2 p)|IP1- Pn) » '

(X)) = (e—ip" a(p) + e a*(p)) . (2.109)

with

n
aP)[p1---Pu) = ) (27)° \[2wp, [P1-+-Pict Pis1 - Pn) 6P = Pi). (2.111)
i=1

and the normalisation N («) such that
(ala) = 1. (2.112)

The explicit calculation of (a|a) is quite technical and provided in appendix I. As result, we get

_ 1 dBP 2
N(a) =exp (5 f 20 la(p)] ) . (2.113)
Finally, we get the
coherent state
|>—L (fd3p ()T())I0> (2.114)
a) = N(a)exp 203 a(p)a'(p . .

Note, that the scalar product is

(@) = exp(-3 f &y (|cx(p>|2 + o' (p)* — 20" a(p)
2J @2n)3
S (2.115)
 N@N(@)’ '
where we used a special case of the Baker—Campbell-Hausdorff formula
exp (A) exp (B) = exp (B)exp (A)exp ([A, B]) for [A,[A,B]]=0=[B,[B,A]l. (2.116)

This implies, that coherent states are not orthogonal. For completeness it is remarked, that in quantum
mechanics (1+0 dimensional theory) it is

%fd%z lay(a| = 1. (2.117)
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Chapter 2. Free Scalar Field

Quantisation also applies to the conserved energy-momentum tensor. Corresponding to Eq. (2.46) we
calculate the spatial momentum operator as

fd3x T0i=fd3x o'
3 d3 ' ip’x T\ AP X
fdx( )f(z )31/ ap) e P — af(p')e )+

d3q

1
20} J2wg

Pi

(a(@ i) e ™™ + a"(@ig )

. a3
- f ﬁ(a(ma(—p)ipw(p)d(p) ip- ..

= d'(P)ap) (=ip) - @' (§)a'(-p) (=ip). (2.118)

Using that a(p) a(—p) p is symmetric under p — —p we see, that the first and last term in the integral
vanish, because f d*p a(p) a(—p) p = 0. With ordered operators we get

3
P = % f (;17];3(2a*(p)a(p)bfp+[aT(p),a(p)] p)

1 d&p
=3 f (Zﬂ)3(20T(p)a(p)bfp—(27r)36(0)p). (2.119)

Analogously to Eq. (2.88) the second term formally diverges. We justify dropping it by arguing, that
again only differences in momenta are important and no absolute momentum can be defined. Finally, we
obtain the

4-momentum operator

P° = H

fd3x Ve

d3
f (2ﬂl;3paT(p)a(p) with Plp) =plp) . (2.120)

(spatial momentum) P

R

Lastly, we discuss Lorentz symmetry in the Fock space. Let U(A) denote the unitary Fock space
representation of a Lorentz transformation A. Then

UN)0)y = [0)
UANIp) = |Ap). (2.121)
Note, that
(qlp) = 2wp(2m)* 5(p - q) (2.122)
is Lorentz invariant, as \
dp 1 d*p s a0
= 2 8(p> — m?) 6 2.123
@ 20y~ J Gyt 0P T m)EPD) (2.123)

18



Chapter 2. Free Scalar Field

is invariant under proper orthochronous Lorentz transformations (detA =1, AO0 > 0), and

d3p 1 3 B
fmz—wp 2wp2n)’ 6(p-q) = 1. (2.124)

With this, we have completed the Fock space construction. Recall, that ¢(x) generates a superposition
of one particle states from the vacuum (Eq. (2.107)). Further we remark, that causality is encoded in the
propagator

D(x —y) = (0lp(x) ¢()|0) (2.125)

and its variants. This is further discussed in chapter 3, section I. To finish, we consider the quantisation
for complex scalar fields. We have

1
S[g] f d'x (up 09" P9 9) with ¢ = 51 +io)

\/_

_ &p 1 SIPX |t rny aiDX
H(x) = IW\/Z—TP(CZ(I))G PXip (p)ep)

. d3p W, . :
0 P ipx ¥ ipx
[x) = 9¢"(x)=-i 207 1/— (b(p)e —a'(p)e ) (2.126)

with the commutation relations

[¢(x), I(y)]

o(x—y)

lap).d'@]| = @m*sp-q

[b@).0' @] = @m*sp-q

(2.127)
Note, that the other commutators vanish. The Hamiltonian
= — _— W .
2 2n) II(p) IT" (p p (P p
becomes the operator
H 1dep(Jf() ()+bT( ) b( )) (2.129)
== a a , .
2 2n) p)a(p P) b(p
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Chapter 2. Free Scalar Field

where the integrand corresponds to the sum of the energy of particles and antiparticles.
The Noether charge from Eq. (2.61) is then given by

Q

i [ #x(0a.0-06)9)

ifd3x d*p d’q 1

Q3 J @} \wplwg

e ((aT(p) eP* + b(p) e P¥) - (—iwq a(q) e +iwg b (q) ') — ...

oo = (iwp a’ (p) eP* — iwp b(p) e P¥) - (a(q) e + b'(q) eiq")

¥

d3
o («'®a®) - 5@ biw). (2.130)

and

_(&py, \
(@l Qla) = f W(“ a(p) - B B(p)). (2.131)
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Chapter 3. Perturbation Theory

3. Perturbation Theory

Perturbation theory is a standard method in quantum field theory. It considers interaction as a perturba-
tion of the free theory. Thus, we assume A < 1 and expand the observables, e.g. scattering amplitudes,
in order of A.

l. Interaction Picture

Introductory to this section, Heisenberg and Schrodinger picture are recapitulated, as they are commonly
used in the 1+0 dimensional theory (QM). Subsequently the interaction picture is discussed, in which
both, operators and states, evolve in time.

In the previous chapter, the Fock space construction was performed in the Heisenberg picture. In the
Heisenberg picture the operators evolve in time, whereas the states are stationary:

io|fy = 0

i0,00) = [0, H], (3.1)
with

O®n) = el e 1 (3.2)

Indeed, the field operator ¢(x) follows from

o) = eMpme

. 43 1 . . . ,
e1Ht 14 (Cl(p) elPX 4 ,f (p) eﬂpx) elet

20} 2wy

3
P
d? 1 . .
- ﬁ Jz—T(a(p) e P 4 4f (p) e"”‘) : (3.3)
P
with
eth a(p) e—th — a(p)e—iwpt . (34)
Eq. (3.4) follows from:
Ha(p) — a(p) (H — wp), (3.5)
with
1 d
H=3 f (27:)’3 wpa'(p)a(p). (3.6)
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Chapter 3. Perturbation Theory

Now we use, that

d’q
[H.a(p)] = f |a" (@) a(@), a(p)]

Q2rp

d’q ¥ ¥
_ f s (a"@ la(@), a®)] + [a" @, aw)] aw)

using Eq. (2.83) — = —wpa(p), (3.7
to find
el ap)e ' = a(p)elH-wn) o it
= a(p)e . (3.8)
Similarly one shows
e a’(p)e ' = 4T (p)elr’ . (3.9)

A different approach is the Schrodinger picture, where the states evolve in time and the operators are
stationary:

i0,|f) = HIf)
i0,0 = 0, (3.10)
with |
lf(0)y = e | f) (3.11)

Hence, the time evolution operator U(t,t') = e (1) ejther acts on the operators (Heisenberg) or the
states (Schrodinger).
At this point we remark, that causality is encoded in the operator ¢(x). To show this, we consider

d*p d’q 1

QP J) @} \oprag

. ( |la(p). a" (@] P9 + [a" (p), a(q)] ei“’"’)")

[#(x), 6]

3 3
d’p Le—ip(x—y) _ d_pLeip(x—y)

(27)3 2wy (27)3 2wy

d* p
(2n)3

using Eq. (2.21) — S(p* —mP) o(p®y e PE) —
d*p

= | G 5(p* — m?) 6(p°) P> (3.12)

We now take into account, that both terms in Eq. (3.12) are Lorentz invariant measures. Further we use,
that for space-like separation ((x — y)> < 0 a Lorentz transformation with

Alx—y)=—-(x-y) (3.13)
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Chapter 3. Perturbation Theory

/
///

/

/>0

forward lightcone

2

Figure 3.1.: A Lorentz transformation can connect arbitrary points on a x° = const. surface in the
Minkowski diagram. Thus, a Lorentz transformation for space-like separations with
A(x —y) = —(x — y) exists, which is demonstrated on the right hand side of the sketch.
The left hand side shows, that this is not possible for time-like separations.

exists (see figure 3.1). Hence,

d'p 5 o0 ip-
5 _ 0 ip(x—y)
[ 5 0% =Py o)

f d*p 5( pz —m?) 9(po) RINES))
(2m)3

4
f TP 52 = m2) 60" e 7 for (x—y? <0. (3.14)
(2n)3

Using this in Eq. (3.12) yields for a real scalar field
[6(x),6()] =0 for (x—y)?*<0. (3.15)

This implies, that the order of observations or measurements with a space-like relationship do not
impact each other. Analogously, for complex scalar field we find

[¢(0. 6" =0 for (x-y)?<o0. (3.16)

In the interaction picture now both, operators and states, evolve in time. We decompose the Lagrangian
density in a free and an interaction part

L@ = Lo@) + Lin(e)
1
= 50 (=97 =) 60 + Lin(®). 3.17)
where
Lin(#) = -V(9) (3.18)
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Chapter 3. Perturbation Theory

is a polynomial in ¢. The same follows for the Hamiltonian density

HAL$) = Ho(IL ¢) + Hin($)
1 1
= 1@ + 5000 (A +m’) $x) + Hin(®). (3.19)
where
Hind(#) = V(9). (3.20)
Commonly, one defines the
interaction part of the Hamiltonian density
1 4
Hin(¢) = V(¢) = 77 ()" (3.21)

Note, that the normalisation factor of 4! can differ in literature. This definition can be justified, by
considering, that the quadratic term of ¢ is already included in the free field. The next higher polynomial,
¢3, would spoil the symmetry ¢ — —¢. Also higher terms than ¢* can be excluded in 143 dimensional
theory, due to renormalisability. Thus, ¢*-theory is the "working horse" of quantum field theory. In the

interaction picture, the operators evolve in time with the free Hamiltonian

i0,0 = [O,Hy]
=01 = efrQe it (3.22)
with
Hy = f BxHy. (3.23)
On the other hand, the states evolve with the interaction Hamiltonian
10/1f) = Hine 1) - (3.24)
Note, that
[Ho, Hindd # 0
= O Hine # 0 ie. Hin = Hine(?). (3.25)
Time evolution of a state can also be expressed as
lf(0) = U, 10) 1f(t0) (3.26)
where U(t, tp) is the unitary time-evolution operator. With Eq. (3.22) we find the
time evolution of U(t, ty)
10,U(t, t9) = Hin(t) U(t, 10) . (3.27)
We remark, that the scattering matrix is defined as
S-matrix
S = tOl_i)rzloo U(t, 1) . (3.28)
f—+00

Strictly speaking, this means A is adiabatically switched on and off. Thus, initial state |{) and final state
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Chapter 3. Perturbation Theory

yElIR

on ff

Figure 3.2.: Sketch of adiabatic switch on/off of 4, i.e. interaction.

|f) are given by:

|state t — —c0) = |i)

|state t — +co0) = |f). (3.29)

Note, that for a proper treatment of the S-matrix the LSZ-formalism is used.
Next, we derive the explicit expression for U(t, #g). For this purpose, we take the infinitesimal form of
Eq. (3.24) and use it to rewrite the state |f(¢)) iteratively:

lf(t+AD) = |f(0)—iAt Hin (1) |f(0))
= (1-180Hi(®) 170
- (1 - iAtHim(t)) (1 C A H (- At)) Lf(t = ADY)
N
= I (1 i Af Hi(t - n At)) f(t = NAD) . (3.30)
n=0
Thus,
N
Ut + AL, — NAD) = ]_[(1 —iAtHim(t—nAt)). 3.31)
n=0

We expand in powers of At:

N
Ut + At,t = NAY) = 1+ (=D)At Z Hi(t — n Af) + ...
n=0

o F (D)2 (AD? Z Hine(t = n Af) Hine(t — m A1) + ... (3.32)

n<m

Note, that n < m in the second sum corresponds to the time “on the left’ being larger than the time ’on
the right’ (time ordering). Now let At — 0 with N At = ¢t — fy. Then Eq. (3.32) becomes

t
1 +(—i)fdt’ Hin (&) + ...
)

t t
vt (—i)2 fdt' fdt" Hin(®) Hy &) + ..., (3.33)
o 1o

25



Chapter 3. Perturbation Theory

where the first integral in the last line corresponds to the sum over # and the second integral to the sum
over m. The integral limits give an equivalent ordering to n < m.
Finally, we obtain the

time-evolution operator

t
U(t, 1) = T exp|—i f dt’ Hyp(£)| for t>1, (3.34)

fo

with the time ordering operator

TA®B{)=A@®)B{)0(t—-1)+ BE)A®) O —1). (3.35)

Example 4: Time ordering for the second order term of U(t, t).

This example shows, how the time ordering operator acts on the second order term in the expansion of
Eq. (3.34), yielding the second order term of Eq. (3.33).

t t

1
3 f dr’ Hin(1") f dr” Hin (1)
Iy

1o

t t
= f dr’ Hyy(t) f dtf’ Hy () +... (¢ <1)
o

fo

| =

t tN
ot f dt” Hine(t") f dt’ Hn ()| ' >1)
1) 1o

t

t/
= f dr’ Hin (1) f dr” Hin(1"). (3.36)
fo

To

This works analogously for higher order terms, where n! equal terms cancel with the % factor from the
expansion.

Note, that
Hiy = f d*x ¢*(x) ~ a® (a")?. (3.37)

Hence, the interaction Hamiltonian creates two particles and annihilates them, leading to infinite vacuum
processes (0|Hin|0).

Example 5: 2 to 2 scattering.
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Chapter 3. Perturbation Theory

Pi
’ pl
<p1 p2| ~ ~ [p1p2)
att — +oo p’2 Hine P> att — —oo
The S-matrix is given by
S=1+iT, (3.38)

where the unity matrix represents the part without scattering. For 2 to 2 scattering it is

A
i Ty = =i Ola(Py) a(py) 75 f d*x ¢*(x)a' (p1) a’ (p2)I0) , (3.39)

where we have already dropped the infinite constants and used the first order interaction term, only. To
explicitly compute 1 7'¢;, we use Eq. (2.83) and perform normal ordering (pull all creation operators in
Hiy to the left and all annihilation operators to the right). Using Eq. (2.90) all operators then vanish and
only the terms with the commutators remain. Then we obtain

1Ty = iMQr)* 6(p1 +pa—p} - py) with iM=i4, (3.40)

where M denotes the matrix element.
In the following, normal ordered expressions will be marked by colons, e.g.

ca(pr)a(p2) : = da'(p2) a(pr) . (3.41)

For instance, normal ordering discards the infinite vacuum terms of the free Hamiltonian Hy in
Eq. (2.87), as

1 dp 1
2J @n)3 2

1
a'(p)a(p) + 5 a®) a'(p):
1 d&p .
- 3 f Sz ) a(p). (3.42)

Further, the normal ordered interaction Hamiltonian Hj, already yields Eq. (3.40):

A
) d*x :¢(x)4 :
~ : (aT)Za2 +dad’a+aa aa + ...

+d' d?a +a (aT)2 a+a’ (an)2 :

~f@a. (3.43)
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Then,
d qi —ix(q3+q4—q1—q2)
: 2wy, 20y 2 2 -
(n f (271_)3 zwq ] € J wpl a)pz wpl pr
- Ola)) a(e) (' (@) ' (a2) a(a3) a@e) | a' P @ (B2)0)
— 4 l_[f &g qu, e X3 tqu—qi—q2) |
4 ; 2n)3
.- 6(p] — q1) (P — q2) 5(P1 — q3) 6(P2 — q4)
1 e—ix(p1+p2—p'1 -p3) , (3.44)

with e.g.

a(qs)a’(p1) a’(p2) 0)

|a(qa).a"(p1)] @' (p2)10) + a'(p1) a(qs) a" (p2) 0)

(20 6t@s = 1)’ (b2) + @' (p1) [a(a). @' B2)] + 0" (B1) ' (2) () 0)

<2n>3(6(q4 —poa’(p2) + 6(qs - p2) a*(pl)) . (3.45)
Lastly, using
[t a4 pa - g - g, (3.46)

we obtain Eq. (3.40).

The difference between interaction Hamiltonian and normal ordered interaction Hamiltonian
consequently gives the vacuum contributions:

2 &Ep 1Y
Hy=: Hyy : +§ fd“x ( )3 ﬂ) + (aT a,aaT)—terms. (3.47)

Let us now consider the interpretation of these terms:

P p, . ’ ’
: >< /1 : —id - @n)ta(pi+p2-pl - Py
P2 P, i i

interaction 4-momentum
strength conservation
Vacuum parts: %
’ 4 /
P p] P P
- - 4 2
—id + X ' Jdx
P> p/2 P2 T p,z

(0l a(p}) a(py) a’(py) a' (p2)10)

—id — R +  (p1© p2) + (P} © py)+(p1 © pa, pie Py
P P ’

P> pz
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Note, that for the first term

<0|a<p’1>a(p’2>a*<p1)a*<pz)|0>(1 —ia f dx 02)

= (Ola(py) a(p}) a’ (p1) a’ (p2)0) (exp(—u f d*x 02)+0<12>).

(3.48)

It can be shown, that the second order term is an infinite phase, that contains all vacuum processes.
Nevertheless, as the phase/loops are infinite, the call for an appropriate treatment. Commonly one uses

regularisation and renormalisation ("theory in a box", see chapter 7).

Next, we discuss a core ingredient of perturbation theory: the propagator.

Starting in the Heisenberg picture, we introduce the vacuum of the full theory |2}, with

10,1Q2) = 0.
In the Heisenberg picture the operators evolve with the full Hamiltonian, i.e.

ial¢H = [¢H’H] ’

with _ .
¢H — e—lHl ¢(0’ X) e1[‘1[ .

We now link this to the interaction picture, where the states evolve with Hjy; and

/@) = U@O0)[f(0),

10,91 = [¢1,Ho] .
Hence, X

_ dp 1 —ipx | T ipx
¢](X) - f (27'[')3 m(“([’)e P +a (P)ep )poza)p .
Using, that
U(t, O) — eiH()l e—iH[ ,
it follows
dr(x) = U(0,x°) ¢1(x) U(X",0),

with

o)1)y U(0,x%) ¢1(x) UK, 0) | /)y

i8,U(x°,0) 1)y Hin UG, 0)1f)y -

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

It is tempting to identify U x2,0)[f) y with the interaction picture states |f(¢));. Att — oo, Ais switched
off adiabatically, and |f); tend to free in/out states. Considering, that U(0, c0) = U(co, 0)~!, we have

(QIU(0, x°) (QU(0, 00) U(oo, x°)

D (QIU,00) Iny; 1 (Ul (e0,x")

n

(QU(0, 00)]0) (0] U(e0, x°)

3.57)
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where in the last step we used, that adiabatically indicates: 'n—partu:les)free — |n—partlcles)fuu. Also, it
is

U(°,0)1Q) = U(x?, —0)10) (0] U(~c0,0) [2) . (3.58)
Further note, that
i0,U(t,0) = H(t)U(z,0),
Hi(r) = &M Hy, e !

4 3 4
a0 d"x ¢1(x)",

i0:H; [Hy, Hp] . (3.59)

Thus,

i0,¢1(x) U(0, t) Hin(x*) ¢;(1) U(2,0) — U(0, 1) ¢; Hing(x*) U(2,0) + ...
.+ U0, 1) [¢1(x), Hine(1)] U(2,0)
= 0. (3.60)
We now compute the propagator
QT ¢u(x)pu(I2)
= (Qpr()PrMIQ) 0(x° =) + (Qlpn(NPr(0)IQ) 6° - x°). (3.61)

For x° > 0 > y":

QIT ¢r(x)pn()IE2)

using Bq. (3.55) — (QIU0, x) ¢1(x) UG, y°) ¢1(») UG, 0)|2)

(01U (00, %) ¢1(x) UG, y°) 1) U, =00)[0) - ...

1
: —, (3.62)
(<0| U(0, ) |Q) - 0] U(~c0,0) |Q>)
where we used, that in general
U, =0y U % for x0>y">20. (3.63)

This follows straightforwardly from Eq. (3.34). Note, that the dominator in Eq. (3.62) is (a product of
two) phases, i.e. | (Q| U(0, o) |0) | = 1. This becomes evident, when considering:

(QUUO, 2] =1, (3.64)
as from U being unitary it follows

KQIU, x")? = (Q U, xX*) UT(0, %) |Q) = (QIQ) = 1. (3.65)
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And analogously
1€0] U(=c0, ") = 1. (3.66)

Combining Eq. (3.65) and Eq. (3.66) yields
[{QIU(0,00)|0)| = 1. (3.67)

Hence,
(Q U0, 00) [0y~ = (Q| U(0, 0) [0y = (Q| U (0, 0)0) , (3.68)

i.e. the normalisation factor in Eq. (3.62) is a phase. Likewise to Eq. (3.57), we use the adiabaticity and
get

(QU(0,00)[0)~" (0] U(—c0,0) Q)"

using Eq. (3.68) — (01 U(,0) |2) Q| U(0, —c0) |0)

(01U (0, 0) U(0, =00)|0) = (O[T (=00, c0|0)

(0IS10) = (O|T exp (—i f dr Him(t))|0> . (3.69)
We also have for the numerator of Eq. (3.62)
O1U (00, x°) ¢1(x) U, y") 1(y) U, =00)[0)
= (O|T ¢;(x) p1(y)exp (—i fdt Him(t))|0> . (3.70)

Finally, with ¢; = ¢, and the analogous result for y° > x°, we obtain for the

propagator (two-point function)

(OIT ¢:(0) 1) exp (=i [ dt Hint(1))I0)

QIT ¢ (x) pu(IQ) = : (3.71)
(OIT exp (=i [ df Hini(1))I0)
This is straightforwardly extended to the
propagator (n-point function)
(OIT ¢r(x1) -+ pr(xn) exp (=i [ dr Him()I0)
(QIT ¢ (x1) - - du(xn)IQ) = : (3.72)
(OIT exp (=i [ dr Hin(9)0)

Note, that the denominators in Eq. (3.71) and Eq. (3.72) are phases. For example, the linear term in A is

. . . . i #qg 1YV
i (0| f dt Hig0) = —i 40| f d*x g(0}0) = —2 f d*x ( (27035) , (3.73)
q

which cancels the vacuum term in Eq. (3.47). We remark, that both, phase factor (denominator) and the
vacuum contributions in the nominator, are infinite and cancel.
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Il. Wick’s Theorem

We have seen, that the computation of scattering amplitudes relates to the computation of time ordered
n-point functions

OIT ¢(x1)- -~ p(xy) & &Y Lm0y (3.74)

_ f dt Hi = f df Lin = f d'y L), (3.75)

and the coupling 4 < 1. Since

where

= 1
OIT ¢(x1) - - - P(xn) l_[ Lin(y)I0) = @ Olp(x1) - - - d(xn) P(xn41) -+ * P(Xn4m)10) (3.76)
i=1 :
With Xp41, ..., Xn+d = Y157 3 Xntd(m=1)» - - - » Xn+dm = Ym, the only building block in Eq. (3.74) is
OIT ¢(x1) - -+ P(x,)[0) . (3.77)

For x‘l) > e > xﬂ Eq. (3.77) reduces to (O|¢(x1) - - - ¢(x,)|0), and we simply have to use the canonical
commutation relations (Eq. (2.83)) (note, that ¢ = ¢; is free). In the next step, we use normal ordering
and the vanishing expectation value of the ordered parts. For the two-point function this works as follows:
Firstly, we rewrite

H(x) = ¢(x) + p_(x), (3.78)
with
oo [ e
d+(x) = 2n) 2p a(p)ec
) b 1 e (3.79)
d_(x 2 20, a(p)e . .

For 1% >y it is

T ¢x)d) = ¢+(X)Ps(y) + 9 (X) oY) + ¢-(X) p1 () + ¢_(xX) p_(y)
= ¢ P+()) + ¢ (X) () + (¢+(y) ¢-(x) + [p-(x), 6+ ()] ) +¢_(x) (). (3.80)
Thus,
T ¢(x) $(y) =: () d(y) : +[p-(x), ()] , (3.81)
X0>Y0
where
D-(0) ¢4 1 = 9. () P_(x)  Vx, (3.82)
from
ra(p)a’(q) : = da'(q)a(p). (3.83)
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Then, by taking the vacuum expectation values, the normal ordered part vanishes. The time ordered
propagator for the two-point function is called

Feynman-propagator

Dr(x-y) OIT p(x)¢(»)]0)

[6-(x), 6+ (] 0" = ¥0) + [$-(1), ()] 66 — x°), (3.84)

and is the key-ingredient in (time ordered) perturbation theory. To explicitly calculate the Fenyman-
propagator we consider

[6-(x), ()] 6G° = %)

~ ) e ) @ Jrapra, Y
3
d’p L e~iP(=y) 9()60 _ yo)
(27)3 2wy
o T A P S N YIS
= Dpx-y)= 2 )32—(6 PV O(x” —y7) + ' P O(y —x)). (3.85)
n)? 2wy
Using
- 1
0(x) = limfdp e ——— | (3.86)
e—0 pt+i1e
the Feynman propagator can be written as
Feynman-propagator (explicit)
d'p i i pley)
Drx—y) = 2P pz_m2+iee , as €—0. (3.87)

This can be proven with the Residue theorem:
The contour integral of a function f(z) around a closed, counterclockwise path encircling a domain

where f(z) has a finite number of isolated singularities (poles at z = z;, i = 1,2,...,n) is
n
SEdZ f(2) =2mi Z Res(f,zi), (3.88)
i=1

where the residue of f(z) at a simple pole z; is Res(f, z;) = lim(z — z;) f(2).
ransdé]
The integrand in Eq. (3.87) has poles at (p°)> = ++/p? + m? — i€, as shown in figure 3.3. Hence, for

10 =30 > 0 the pole is at p° = /p? + m2 — i€ — wp, and thus

d&*p 2mi e IPY
Dr(x—y) = P ( )

- | = =—res o | 5————
Qnp 2 P \pr—mPtie
43 P . e 1p(x-y) (3.89)
= 1 . .
Q2n)? 2iwp po=w,
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1 —yY <0 : close contour in upper half plane

1 —=y" >0 : close contour in lower half plane

Figure 3.3.: Sketch of the poles of the integrand of Eq. (3.87) and the contour for the Residue theorem.

This works similarly for x° — y° < 0, and proves Eq. (3.87).
Note, that we have parametrised the time ordered propagator in terms of commutators. On operator level
we have

Tox)d(y) = X)) : +...

e [0, 0] OG =3 + [P- (), 6+ ()] OG° - x%), (3.90)
i.e.
1
T ¢(x) $(y) = : () (y) : +P(N)P(Y), (3.91)

with the contraction

[6-(x), 9+ ()] OG = y0) + [¢-(1), ()] O — x°)

—
P(x) ¢(y)

Dr(x—y). (3.92)

Note, that Dr(x —y) is a c-number (and not an operator!). We use this, to generalise the time ordering to
a product of n fields. This is

Wick’s theorem
T ¢(x1) - P(xp) =: dp(x1) - - - p(xp,) + all contractions :, (3.93)

where
1
¢(x1) - p(xi) -+ P(xj) - - Plxn)

| —
= O(x1) - P(xi1) (Xi1) - - - plxj1) P(x i) - - P(xn) G(X7) Pl ) (3.94)

Example 6: 4-point correlation function.
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T ¢(x1) - - P(x4) T ¢1 ¢2 3 P4

1 1 1
D1 P2 B3 Pa + PL P2 B3 Pa + DL P2 B3 Pa + P1 P2 B3 Pa + ..

1 1 1
et PL P2 P3 P4+ P1 P2 D3 P4 + P1 P2 3 Ps + ...

— —r 1 | [ 1
et PL P23 P4+ P P2 D3 Ps + DL P2 P3Ps -, (3.95)
where e.g.
— —
CO1P2P3Pa = P3Ps P11 = d3ds i Dp(xp — x2). (3.96)
Note also that
0]: 0:0)=0. 3.97)

With this it follows
OIT ¢(x1) - - - P(x4)I0)
= Dr(x1 —x2) Dp(x2 —x3) + ...
i + Dp(x1 — x3) Dp(xp — x4) + ...

et Dp(xl - )C4) Z)F(XQ - X3) , (398)

where each term corresponds to one of the terms with two contractions in Eq. (3.95).

It remains to prove Wick’s theorem. We will do this by induction. First we show, that it holds for the
one- and two-point function:

n:1,2: T¢1 = 2(]51:

—
T ¢1¢2 C01¢2 +P1 9o (3.99)

Next, we assume that Wick’s theorem applies to the n-point function, i.e. T ¢; - - - ¢p+1. Without loss of
generality we can assume that x(l) > x? Vi. Then

Tér---dpe1 = 01T ¢ s

o1 ( D¢ -+ due1 + all contractions : )

((]51+ + ¢1,)( 2 ¢ - ¢due1 + all contractions : )

Sh1 bpgr D1, d2] D3 bt +
et G2 (D1, 03] s Ppr D2 (D1 D] e

v t (qﬁh + qﬁL)( : all contractions : ) (3.100)
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Using
(|
[#1_, ¢i] = [#1_.¢i.] = ¢1 i, (3.101)
and similarly as in Eq. (3.100) for
(¢1+ + qﬁL)( : all contractions : ), (3.102)
we obtain
T ¢(x1) - P(xp+1) = d(x1) - - - d(xu41) + all contractions :, (3.103)

which completes the induction.

lll. Feynman Rules

With Wick’s theorem (Eq. (3.93)) we write every time ordered n-point function as product of Feynman
propagators (Eq. (3.84)) plus the normal ordered terms. We introduce the diagrammatical notation

Dr(x1 — x2) = 0T ¢1 ¢2/0) = ?—3 )

First of all, let us discuss the expression (0|T ¢ ¢1|0). With Eq. (3.87), we find

i _ O
Dr(0) = = :
() QnY pr-mi+ie 1

This is a singularity, which will again be removed by an appropriate adjustment of the computation
(renormalisation). In particular, we note that the momentum dimension of Dg(0) is two. Therefore, we
argue

Dr(0) = M? + infinite . (3.104)

Now, let us again consider the 2-2 scattering, as it is a relevant example.
The zeroth order term in A, i.e. the term without interaction is simply given by the expectation value of
the 4-point function:

12 1T Tz 12
o) : 0T 0) = ©
(1) OF o200 = 0+ | O4+Z><Z
3 4 3 4
The first order term is
_'ﬂ
4—1, d*x (OIT 1 ¢ ¢3 b4 6 B b 910)
—i1 s Y e T s O
= o [ dx|oioe0030000 a1+
[ 1 1 1
-+ 00(01 66209364 ) (12 perm) + .
1 i 1 1
-+ 0999(01 620364 ) (3 perm)|. (3.105)

Note, that the factor 4! accounts for all possibilities to contract ¢* with ¢ - - - ¢4, and the factors 12 and 3
account for permutations of the contractions, that give an identical expression. This will again be further
discussed below. Diagrammatically and without the symmetry factors this writes
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1 1 2 1 2

X 2 10—02 oo
oun: - C e GO

37 M 34 3 4

where the vertices correspond to (—i A f d4x). The second order term

—iA
( i ) f d'x f d*z O ¢ 62 63 61 6 $'10)

comprises
57+ 2!
1 /\
) 2
: \/‘
54!

1 2

1 1

.+ — 4. + ... + =
3 4

To encounter the right prefactor for each diagram, we need to do some combinatorics: The permutations
of how to contract opd¢ in Hi, with the external fields gives a factor 4!, which cancels with the
denominator in 5. This originally motivated the normalisation in Eq. (3.21). When loops are present,
we further have to account for the symmetries that result from contracting the ¢* amongst each others
in Hjy. For this purpose we introduce the symmetry factor é, where S corresponds to the number of
interchanging components without changing the diagram.

Now we can write down the

Feynman rules (position space)

l) o0—o0 = PDp(x; — x
= F(x1 — x2)

i) W = (i) [dx
1
iii) multiplication with 3

(3.106)

We will use this to obtain the final result for the vacuum expectation value (Eq. (3.72))

(OIT ¢1 -+ pnexp(i [ d*x Lin)I0)
(O|T exp (i fd“x Lim)lO)

(T 1 ¢n) = (3.107)
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For the computation we note, that each term (0|7 ¢; - - - ¢, %IO) can be ordered in terms of contrac-
tions between the ¢; and the Liy’s:

(L )
OIT ¢+ ¢y —=—10) = (0T ¢y +$al0) — <0|T (Lin)"10) + .
1 _
et OIT ¢y -- ¢n Lin0) ——— -1 OIT (Lin)™ '0) + ..., (3.108)
where " " denotes all contractions, where internal fields from the interaction Hamiltonian are con-

1
nected to external fields (and not amongst themselves).
We use that

1
—{0IT @1+ du (Lind)"[0)
m:

O Lint—contr.)

1 ot
= — (O ¢1 -+ ¢u (Lin)*[0) <OIT Loy20y. =D

1 1 -
= O ¢1-:-60 Lp)"0) Ty O (Lin)"10) 5109

and that in general the combinatorics factor for / — Lj-contractions is

1 (m 1 m! 1
%(Z)zﬁ(m—mzz:(m—z)m' (3.110)
Then,
OIT ¢1---ppexp (ifd“x Lim)|0> = (<0|T é1- $al0) + OIT @1 -~ Lintl0) + ...
|
Y .
4 COIT 1 -+ G (Lin)?/210) + )

- (O|T exp (i f d*x Lim)|0> . (3.111)

Consequently the denominator cancels all the vacuum terms. Therefore, the vacuum expectation value
is given by
(OIT ¢y -+~ nexp (i [ d*x Lin)I0)
(O|T exp (i fd“x Lim)lO}
which corresponds to all diagrams without "vacuum bubbles".
As most computations are carried out in momentum space, we will terminate this section, by examining

the Fourier transforms.
The Feynman propagator becomes

- ooy e ] dx Lin
OIT ¢p1---¢ne 10) (3.112)

i
Dr(x1 = x2) = Dp(p) = ———5——2n0)* 5*(p1 - p2), (3.113)
p1—m~ +1€

and

o0—o0 — >
X1 X2 p
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For the vertices we write

4
) ) d*p;
—Mf&wmf:Mjijaﬁmm«%ﬁﬂm+m+m+mx (3.114)

where the delta-function indicates momentum conservation. Hence,

—id - —id 2r)* 6*(p1 + p2 + p3 + pa)
P1 4

>< - ><p p4 = —(p1+p2+p3)
p2 p3

For example:

o L _p "
SXOX T =@ s' i+ p2=py=pa) -

)22 _ Pa
pP—DP1—D2 d4p 1 1

|

@m p2 = m? +i€ (p— py — p2)? —m? + i€

‘We now have the

Feynman rules (momentum space)

i

1) o =
) » pr—m? +ie
P1 P4
ii) >< = —id and ps = —(p1 + p2 + p3) (momentum conservation)
P2 pP3
d4

iii) f 2 for each loop
1 Pn
iv) 2m* ' (%, pi) for Q\W/

1
v) multiplication with 3

(3.115)

Example 7: two-point function in momentum space.
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(T o(p1)¢(=p2)) = 2x)* *(p1 + p2) o—@p—o

1

p
i 1 ( Z
= 55— Q' (p1 +p)+ ) +0(2%).
py —m? +ie 1 24 PP
S
Without external propagators it is:
p . .
d*p i
= —id =—ill+0(1?).
Q I Qn)* p2 —m? + e )
P D2
Heuristics:

i i i
—) - + Sl ——————— 102
p ° p* —m? +ie p2—m2+ie( )pz—m2+ie @

+0(1?)

Cpr-m?-Tl+ie

It follows, that we have an interacting mass m? — IT, which is finite. In general (beyond 1-loop) it
holds:
IT - I(p) (3.116)

The proper treatment is again provided through renormalisation and the LSZ-formalism.

IV. Cross Section

We start by considering an exemplary fixed target experiment:

e ° \ ! o °
! i e
¢ E ° 'Y E ° L]
S L R
o °
o ) [ ]
bunch of particles, type B bunch of particles, type A
bunch length /p bunch length /4
density pp density pa
velocity v velocity 0

The cross section is defined as

NeVentS
o= Nevents 3.117
(N -Na)/A ( )
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where A is the scattering area (transverse). With a space-dependent density

(Np - Na)/A = fdzx pa(xX) pp(x)lalp, (3.113)
A
the cross section is
— NCVCHIS , (3 . 1 19)
Ialp [, &x pa(x) pp(x)
or for constant densities
_ Nevems ] (3.120)
lapa-lppp-A

For the above example, we need to consider states, that are localised in space/momentum. Therefore, we
consider the wave packet from Eq. (2.94):

ek 1
)= [ s oy 2 0O ) (3.121)
with fj,(K) being a packet at p, e.g.
fy(k) ~ e ® PN Gaussian . (3.122)

Using the normalisation, it follows

d*k e, ,
U= (flf)= f o f S 7 3 oK) 300 ()

Pk 1
2n)3 2w

| p(k)I2 (see Eq. (2.99)). (3.123)

The Gaussian is localised in k and x. Recall, that a Fourier transform of a Gaussian remains a Gaussian.
In operator language,

’fp f f on )3 2 1kx f(k) ¢ (x)|0) — i fd3 f o )3 2 1kx £(K) TI(x) |0) , (3.124)

where we used

k) = 2w a0y (3.125)
and Eq. (2.82), i.e.
af (k) = f & eik"(a)k H(x) — iH(x)) . (3.126)
This indicates, that the probability for one particle is
&p
2 el = [ S vpcaP =1 (3.127)

In our case, the initial state is given by

Py 0 Pkp 1

" fps (Ka) fpy (Kp) [Ks kp) 3.128
|i) Q3 J 2n) 2w, 2wk, pa (Ka) fpy (k) [ka Kkp) ( )
with
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(D o

A

Figure 3.4.: Sketch of the impact parameter b.

Next, we introduce the impact parameter b (see figure 3.4). For this purpose, we recall, that the momen-
tum operator P from Eq. (2.51) generates translations. Thus,

PPy = Kbk

1k(x b) .
f f n) Zwk (wk ¢(x) IH(X)) 10 . (3.130)

— o-iPb |fp>

With this we rewrite the

initial state (with impact parameter b)

&Bky (" Php 1

Q23 J 2n)? 2wy, 2wk fpu (ka) fpy (ki) €72 [ka k) . (3.13D)
A B

lip) =

This shows, that the impact parameter only gives an additional phase shift. The transition amplitude is
given by
(Pt Pra| S liv) . (3.132)

with probability | (p, pf2| S lip) . In the following we will restrict ourselves to a collision of the bunch
with a single target, i.e. Ny = 1. Then integration over the impact area A is equal to integration over the
impact parameter b and the number of events in a dense beam is

N,
Nevents = AB fd bl <pf1 sz|S |lb>| (3.133)
A
With Eq. (3.117) it follows
o (pry» Pr,) = f &b [ {pr, Pr,| S lin) I*- (3.134)
A

However, more realistic is a detection of a momentum region vy, as detectors will in practice never be
aligned with the beam. Hence, we will rather obtain something like:

correlated
momenta
It follows 3 3
d’pp 1 dpp 1 f 2 2
= ‘ d<b S i , 3.135
0N = ) Gap 2wy, J (@) 2wy, o, | 1) G
where 5
d’p 1 p
/ —ER om)5(p2 — m?) (3.136)

@) 2wy, J @)
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implies that it is on-shell, i.e. that p> = m?. Finally, we obtain the

differential cross section (for n particles)

d =| | [ &
771 Ly 2wpfif ey,

S lip) % (3.137)

We assume now, that the pj are not parallel to pg, so that there is no (trivial) forward scattering. Using

we conclude
d d pi f f Gy 1 ke 1
o = .
(27r)3 2wp (2n)? 2wk, (27)3 2wiy
377 377
&k, 1 dkp 1
2n)3 2wy, (27)3 2wy

e~ kn) |72 (o) 6 (Z pyi- Z ki) - Qny* &t (Z pri— Z k,f) , (3.139)

with k; = ka, ky = kp.
To explicitly compute this, we first consider the integral over the impact parameter, as solely the phase
factor depends on b. Therefore,

fp, (ko) fpy (kp) 5, (K ) pp (k) - .

f &b P*7*) = (2m)? 67k, — k). (3.140)

Next we examine the integral over the primed momenta,

f Pk ot (Y pji— Y K) 82k, — k)

[y o) (3 3w o (Xt~ 1))
[a@ya(S -2 m). Gan
withk, = kg, K, =ka,, (k3) = 2 p3; - (k) . It follows

f dPr a6 (> pri— D k) 8Ky, —ks,)

fd(kg), 6(2 p(})(l _ \/(kA/)Z + mi — \/(kB/)2 + mﬁ) 'kA/BL:k,,A/BL

£ =20
S H=3)

’

ka/p=pa/B
—

(3.142)

() _ () va —vgl

(k) ()
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"2 ) "2
where we also used, that (k) ) = k2 ((ki) ) and (kp)” = k%ﬁ + (Z pf’ - (kf‘) ) .
As the wave packages fp, , are located around pa/p, we can substitute k), , — payp in all prefactors.

Then we obtain
$Epr 1 1
do = 1_[ pf3 .
)3 2wpq 4p8 Pl Iva — vl

d*ky f Sk 1 ) )
f(27r)3 (2n)3 2](2 Zk% | pa( A)| | s ( B)| (=1

oM @t (D pr- Y k). (3.143)

Again, we use the localisation to replace ) k; — p; = pa + pp. Further, (zﬂ)g Zwk | fp(k)| =1 and
Y. pfi = 2, ps — pi. Finally, we get the

differential cross section

1 4
v [l @ryo*p, - p,>]_l

dpfl 1

. 3.144
(27.[)3 2p(}i ( )

Note, that except for the first fraction all expressions are Lorentz invariant. The first fraction is invariant
under boosts along the beam axis. Thus, do is a (differential) transverse area, i.e. invariant under
boosts along the beam axis. We define the n-particle phase space factor as

d Pfi
dI, = 2n)*s* 3.145
= 2n)'s*(ps - p,)l_[ Gy 2pﬁ (3.145)
Let us now consider the highly relativistic case. Then
2 2
sl = (pa+pe)=(p) —pa’+(p) —ps>+2p% P - 2papB
2 2 2
= my +mB+2pApB 2papB > my +my.
= 4pA pB [va — vgl — 2s, (3.146)
and .
2
do = - |M | dr,. (3.147)
Note, that Eq. (3.147) can be rewritten in a manifestly boost-invariant way:
1
dor = ————— || an,, (3.148)

2w(s, mf‘, m%)

with w(x,y,2) = y/x2 +y2 + 22 — 2xy — 2x7 — 2yz.
Let us exemplary discuss the 2-2 scattering in ¢*-theory in the highly relativistic case. Then, we have
n =2in Eq. (3.147) and py; = p;. It follows

f dIl,

Epr 1 Fpy 1
(2n)3 2p1 (2n)3 2p2

f @) 6'(p1 + p2 = (pa + pi))-

1
(2m)% 4pY pd

1

fd3p2 5(p)+pY = \s) for (pa+pp) >mjmy. (3.149)
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We compute this in the center of mass system (CMS). Therefore, we have p; = —p2 = p? = pg, i.e.
equal masses. We also use
d*p2 = dQp2ldlpal, (3.150)

with the solid angle dQ = dysin8d6.
It follows, p(l) + pg — s = 2p(2) — s =2Ip2l - Vs, p? = 5/2

1 4 1
dez - -% dQ = ——dQ. 3.151)
22(n)? 4p| p; 32n

Now we use Eq. (3.40), i.e. that for classical scattering it is

Mpf* = 22 (3.152)
With this, we obtain the
differential cross section (2-2 scattering)
do _ 1 M am, = (3.153)
aQ 25 1M >T 6dnls '
dQ(py)fixed

Lastly, we discuss the computation of the S-matrix elements. In the 2-2 scattering example we used,
that

IMf" = 22+ 0%, (3.154)
We make an expansion in the Feynman diagrams:
o) (%) O(%)
(P1p2/iT [pA PB) —><+ (>Q<+perm. ) + >%+
Computing » DA with
1
. ! 40— = i1l
PB :
gives
i . .
————— (i) - @0)* 6*(pa + ps = p1 - p2)
p3 —m* +ie
i - i i
- ( 2 _ 0. ) 7o ClD) = (i) - ..
pi—m*+ie) py,—m*+ie py —m* +ie

...-64(pA +pp—p1—p2)

PA
1 P1 P1 paA

= = +
2 m p2 DB
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-1
1 1 1 1
—id ( ) ( + (—11I) ) e
2 2 4 2 2 4 2 2 . 2 2
py —m”+ie py—m°+ie p3—m+ie py—m°+ie

e 6 (pa + p—p1 - p2)

. -1 .
1 1
= —id 8 pa+ps—p1 - 3.155
(pf‘—m2+ie] o=+ 1D+ ic (pa+pB=p1=p2) (3.155)
= [-i16*(pa + ps — p1 - p2)| T+ oW
/ A
(bare) free inverse full propagator
propagator with py4 with py

We remark, that the free inverse propagator is related to the fact, that the particle A in the initial state was
prepared as a free state, which is only true for 1 — —co. The correct state should relate to full (inverse)
propagation, i.e.

- - O
PA PA

This leads to

LT pa o PA

in the above equation. Thus, we conclude, thatMy; is computed by computing amputated, connected
scattering diagrams. This will be discussed further in the subsequent section.

V. LSZ-Formalism

In this section we aim to compute the elements of the S-matrix. We will derive, that this can be done with
the LSZ-reduction formula, named after the three German physicists Harry Lehmann, Kurt Symanzik and
Wolfhart Zimmermann. In the previous section we have seen, that the naive preparation of our in-state
lead to a product of the free inverse propagator with the full propagator in our scattering amplitudes
(Eq. (3.155)). We have encountered a similar problem with vacuum bubbles before. In this section we
shall see that

ot —> Foo) — AL dinjout  (Weak op. equivalence), (3.156)

with Z < 1. So far, we have implicitly assumed Z = 1. In the following we determine Z by computing
the two-point function and subsequent generalisation to the n-point function. We begin with the vacuum
expectation value of the two-point function

(Qlpn(x) du(y)I2)

(P (x) o (y))

i Qlor(x) |4, Py (A Ply ¢r(IL) . (3.157)
P
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Where we chose |1, p)y as eigenstates of H, i.e.
HIA,p) = Ey 14, p) (3.158)

and

Pl4,p)=pilLp), (3.159)

with Eﬁ - pﬁ = mﬁ fixed (on-shell). The idea for the next steps is to integrate over all states (on-shell)
with different masses to obtain the representation of the two-point function, which then will be off-shell.
The fixed states |4, p) with fixed m, are connected by boosts.

E A
\ scattering spectrum/
multi-part. continuum
one-part. state - bound states
E2_ pz - m?
lightcone
p
Note, that for the vacuum state it is
E;=0:1Q). (3.160)

Furthermore,

d*p 1
1 = |QQ L apa
@@+ [ G g e s

Qlp(x)I€2) = 0. (3.161)
We use, that with P = (H, P) we have
#(x) = eP* p(0) e 1P (3.162)

Then we get, (x° > y°)

(B 60 }i f S e @O et

e iPG-) 2
I‘f Qm)* p? —m? + ie QIO |4 p)[ . (3.163)

using Eq. (2.21) —
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p(p?)
m’ \/ (2m)? P
S
mass of particle bound states continuum of
pole of propagator (resonances) multiparticle states

Figure 3.5.: Sketch of the spectral function.

Using the same steps for x” < y°, we obtain in summary the

Killén-Lehmann spectral representation
am? 2
(T ¢(x) p(y)) = ?p(M ) Dr(x —y; M7), (3.164)
0
with the
spectral function
2
p(p?) = I}(zn) 8(p* = m) [(QleO) 1V [ (3.165)
2
The spectral function is depicted in figure 3.5 and has the representation
p(p?) = Z-2m8(p* = m?) + 6(p” —m) + -+, (3.166)
where m% denotes the mass in the first residue. Hence,
2 dm? 2 2
(T ¢(x)p(y)) = ZDp(x —y;m”) + 7P(M ) Dp(x —y; M7). (3.167)
my
Note, that Dr(x — y; M?) carries the one-particle pole of ¢.
To relate this to ¢;,, we consider one-particle states |4;) in [A) (1]
p~ z one-part.e P10 [ (Q] g(0) |41 [ (3.168)
statesA|
with, U = U(—00,0)
2 _ _ 2
Qe[ = QU UsUT Ul
2
€01 Z"2 ¢in 101, |
= Z. (3.169)
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Let us now determine Z. For this purpose, we consider the not time ordered expectation value {¢(x) ¢(y)).
Then Dr in Eq. (3.167) is substituted by the not time ordered propagator D. Note also, that

(IR ) R

25 ton. 000D

$0=y0

i x—-y) (3.170)

and

a .
[a_yO(D(x_y) _D(y_X))LO:yo - 153(X_y)' (.171)

Next, we integrate over space, i.e. evaluate f d3x <[¢S(x), I1(y)] xO:y0>- With Eq. (3.167) and Eq. (3.170)
we obtain

(o8]

M2
1=Z+ fd—p(Mz) (3.172)
2

2
%

and, as the integral term is larger than zero,

0<z<l. (3.173)

Note, that Z = 1 in free theory and Z < 1 in interacting theory. Also note, that 1 — Z accounts for the
overlap of ¢ |2) with multi-particle states and that in the limit t — Foo:

o(x) > Z 172 dinjout  (Weak op. equivalence) . (3.174)
The propagator on-shell is
iZ
Dr(p? ) 3.175
R o) (3.175)

(

where m~ is not simply the mass parameter m(z) in the Lagrangian.

Now we will derive the LSZ-reduction formula. For this purpose we extend the analysis of the two-
point function to an n-point function. The latter will be related to the S-matrix elements. Asin Eq. (3.175)
we evaluate the Fourier transform

f d*x el (T ¢<x>¢(0>>),

2

f d*x €7 (T $(x) p(x2) -+ - P(x)) - (3.176)

With T, > xg, X0 and T_ < xg, oo X0, we split

T- T+ +0o0

f dx? e’ = f + f + f dx® e’ | (3.177)
—o0  T_ T+

49



Chapter 3. Perturbation Theory

where the first and the third integral give poles and the second one is finite. It follows

o0 T_ T,
f dx P (T ¢(x) p(x2) -+ Plx)) = f d*x P (P(OT (x2) - - - p(xy)) + f + f
T, —00 T-
~ 3
= fd4xeif”‘ Z: d_‘gi
¥ n (2m)° 2wq
AP PYAPIT fo ) + -+ . (3.178)

Using (¢(x)|4, p) = (€ ¢(0) 12y e

0 1( +1e)x . 33
I‘f Qn)3 Za)qd o (QI$0) ) (A, PIT ¢+~ pn) - 27)* 6*(p — @)

0

1 i(p wpHe)
- }j = (Q1$(0) |1) (A, plba - ) - (3.179)

2wy pY —wp +ie

For p® — wp: (using Killén-Lehmann)

+00

. i 7172
lim [ d*x e (T () $x2) -+ 900) = 53— (PIT $(x2) -+ $(xy)) + finite .~ (3.180)
P—wp p-—m- +1€

Analogously we find for the f -term:

T_
1/2

i VA
tim [ dtwe (T g0 600 60) = < (T 92+ glxn)l-p) + finite. (3.181)
POo—wp p-—m= +1€

As mentioned before, the last term fT_ T, --- is finite as the integration interval has a finite length (com-
pact). We remark, that the above analysis can be repeated iteratively for all ¢(x;). Strictly speaking, one
should separate the fields spacially: f d*x elP* — f e LK eipx fp(K). Further note, that states |p) are at
time t — oo and states (p| are at time t — +oo, and that after iteration we have

—c0 <p1 t pn|k1 t km>+oo = (pl t pn|S |kl v 'km> . (3-182)
With this we obtain the

LSZ-reduction formula

(P1---Pal S K1 - Km)

on-shell
fl_[d4x e""x’ d*y; e ki l_[ 62 +m l_l 62 +m
j:l i=1 j=1
L ZOTRAT $(x1) -+ $) §01) -+ $Om)) (3.183)

where on-shell means p?> = m? being the physical mass pole and not the mass parameter m(z) in the
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Lagrangian. Let us now consider the structure of (T ¢; - - - ¢p).

Example 8: n=2.
) o)

o—@—o-= o—o+<>@o+ o—g—m @+...+o@o+...
¥—/\/\"J

I(p): 0—%1—0 1PI: one-particle irreducible

cannot be split by cutting one line

= 0—Oo+0—)—o+ —P—{P—o+---

1PI 1PI 1PI
i i . i

I R R S (—1H(p))ﬁ+---

pr—mj+ie  p? —mg +ie p* —mg +ie

i

) (3.184)

p*— (m% + H(p)) +ie

with ) )
- pomt 12 (3.185)

p*— (m(z) + H(p)) +ie  pP-m?+ie

Example 9: n=4.

And in general:
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This entails for the S-matrix elements with Eq. (3.183)

@1 Pal S [ky - k) = Zlm)2

on-shell

(3.186)

Concluding, we remark: Z is called wave function (or field strength) renormalisation, as it multiplies the
field. Note that

(T 272 902712 p(3))

Z renormalises the field. With this we also see, that

, = Dr(x —y;m?) (3.187)

prom

Z(n+m)/2 (T ¢p(p1)--- ¢(km)>amput.

2 + 2 k2 + m2
& gmm)2 l—[ plzl/;n l_l le/z (T ¢(p1) -+ d(km))
i J
= [ et +m [ |6+ (T 272 ¢p1) 271 gtk (3.188)
i J

where <T ZV2p(py)--- 27112 ¢(km)> is just the expectation value of the renormalised fields.
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4. Fermions

|l. Fields and Lorentz Invariance

So far we have discussed the quantisation of a scalar field, i.e. particles with spin zero (Higgs boson).
The scalar field is invariant under Lorentz transformations:

) A ) =9, 4.1

with
¥ (=AY 4.2)

and ¢’ (x) = ¢(A~! x). However, for vector fields we have
AH(x) - AF, A (x)
@y = AMAA D), 4.3)
and for Tensor fields (e.g. the fieldstrength in QED, QCD, week):
F¥(x) - A”p N F(x). 4.4)

Note, that the graviton is an example for a particle with spin two.
In the following we will present some mathematical background on group theory, as it is important to
understand the properties of fermions. In general we can write

¢ - RN W), (4.5)
with the general index i, e.g. i = {},u, uv,... and the representation R. The representation is chosen
accordingly to the field, i.e.

scalar: R(A) = 1 trivial representation

vector:  R(A) A fundamental representation

(2nd rank) tensor:  R(A) (A” 0 AV(T) tensor representation . (4.6)

Let G denote a group. Then, the representation R : G — R(G) has the properties:

R(1) 1,

R(g-h) R(g) - R(h). 4.7

For instance, for rotations in R3, i.e. the SO(3) group we have

trivial rep:  R(A) 1 A € SO03)

fundamental rep: R(A) A Lie group. (4.8)
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A useful property of Lie groups is, that we can write every element in terms of an exponential
A=e*t, 4.9)

where w is a vector and J is a Lie-algebra with the generators J'. These generate infinitesimal rotations
with axis x': (0'x/ = —6’].)

—igl* xI gk

el
[

= —%e"fkﬂ’f o= —i(xok - A (4.10)

Note, that this is for instance used in quantum mechanics in the n-dimensional representation of spins
with n = 2n + 1. As this chapter is about fermions, we now consider the situation with spin 1/2. Then,
we have the generators %l, with

O'i O'J ii O'k
e IR § i
[2, 2} i€ 5 “4.11)

where o are the Pauli matrices (spinor representation)

1 _ (01 > (0 —i 3 (10
0'—(1 O)’ 0’—(i 0), 0'—(0 _1). “4.12)

We remark, that the Lie algebra provides local information about the Lie group (tangential space). We
will now present two important examples.

Example 10: SO(3) and SU(2)~ S°.

Lie algebra:
|, 2] = iee e (4.13)

As the Lie group is a differentiable manifold, the SU(2) is the double covering of SO(3)~ RP3, which is
visualised in figure 4.1

group

SU2) algebra:
tangential space

at the identity

Figure 4.1.: Schematic representation of the SU(2) and the Lie algebra.

Example 11: SO(1,3) and SL (2,C).
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Consider the infinitesimal Lorentz transformation A € SO(1,3):
A=) HT) . (4.14)

From
Aﬂ" Ap(r Mvo = Nyp 4.15)

follows:
(6, +iT,)) (67 +iT ) me = nyp+OT?)
= Ty+Ty = 0. 4.16)

We conclude, that T has 167‘4 = 6 free parts, of which three are given by boosts and the other three by
the

generators M
W v
T} = —- (Mpo)ﬂ , (4.17)
with
[M¥, MP7] =i(n"? MF7 — g M7 — "7 M*° + g7 M’P) . (4.18)

Eq. (4.18) is the Lie algebra of SO(1,3) rotations. To see this, we extend the SO(3)-generators of rota-
tions, J¥ in Eq. (4.10) to boosts (J%) and find

T =i (0" - X | (4.19)

which satisfy Eq. (4.18). To find general representations, we also look for M, that satisfy Eq. (4.18). For
the fundamental representation we obtain for example

(M*),y =i (6, 8" — 6" 6%,) . (4.20)
Thus, boosts and rotations are given by
1 .
Ji = 56[ ik M rotations
K, = My boosts. “4.21)
Example 12: Boosts along x;-axis.
y =y 0 0
g _ |=vwv vy 00 B 1
M=l o0 1ot YT
0 0 01
_ whkp \H
= (e .) iy (4.22)
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with the rapidity w = arctanh3 and the generator

0 -1 0 0
-1 0 00

K=o 0 00 4.23)
0 0 0 0

The generators in Eq. (4.21) make the structure of the Lorentz group apparent, as we can now formulate
the Lie-algebra in terms of J and K

|77, 7] = i€l J*
[K", Kf'] = —ielk
|7, K] = i€ k* . (4.24)

We remark, that SU(2) and SL(2,C) with the generators (J' + iK', J' — iK') are the universal covering
groups of SO(3) and SO(1,3), respectively. Note: For a universal covering group G of G it holds:

’simply connected group G 2 G’ . (4.25)

Il. Spinor Fields

In section I we have discussed the mathematical structure of the Lorentz group. Let us now use these
concepts to describe spinor fields. For this purpose we combine boosts K* and rotations J' into

N = %(J"HK")

. 1, . .
T _ - s
)T = 5 (J-ik'). (4.26)
The N’s and N'’s have the SO(3) i.e. SU(2) Lie-algebra:
[NV ND] = e N 4.27)

Hence, we can formulate a two-dimensional spin 1/2 representation:

left-handed: Ap = exp (% o' (wi—ivi))

right-handed: Ag

exp{% ol (w; + ivi)} , (4.28)

where w; and v; denote rotations and boosts, respectively and Ay, Ag € SL(2,C)'. Note, that under
parity transformations

(8 2. (5.
= J £ J pseudo-vector

= K £ -K vector. (4.29)

—

'universal covering group of the Lorentz group
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To determine, how Az g act on coordinates, we define
x = x,0t, (4.30)

with
(o) = (0'0,0'1,0'2,0'3) ;0= 1oy, 4.31)

and the Pauli matrices o-!">3. Then:

)?:(X() —.X3 X1 +IXQ) ’ (4.32)
X1 —1X2 Xp+ X3
and

det X = x,x* . (4.33)
Note, that Lorentz transformations leave the determinant unchanged

¥ =AL chz with  det®’ = det®, (4.34)
as det A(J) = 1. We remark, that Ay and —A[, give the same &’ (double covering). Further
T Al
App = Ngyrs (4.35)

and o maps L — R. Also note, that o* transforms as a vector. We can now formulate the field equations
for a two-component spinor
DY, =0, (4.36)

where Wy is the left-handed Weyl spinor. Under Lorentz transformation, it holds

Pr(x) A ALY
D¥Yr(x) A DALYL(x) = ADrYr(x)
=D, = MDAL, as Ap=A7", (4.37)

with Dy = i16#0, and & = (0'0, —c?'). Analogously, this holds for the right-handed Weyl spinor, with
Dg = i0#0,, which yields the

Weyl equations
i0#0, ¥, =0

ic?0,¥Yr =0, (4.38)

which form the equations of motion of two-component spinors. Note, that the Weyl equations (4.38) do
not have parity invariance.
Let us now connect Eq. (4.38) to the Klein-Gordon equation (2.14):

o8, (578, ¥, = 0)
1 , 1.
= E{o-",d}(?ﬂav‘PL=§(2n“)(')ﬂ6y‘I’L

= 9,0'¥Y, =8P, =0, (4.39)
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where we used the anti-commutator
{o#, 07} = ot + ot = 20" . (4.40)

Similarly, one shows > Wz = 0, which implies, that the Weyl spinors also satisfy the Klein-Gorden
equation.
If we demand parity invariance, we have to combine left- and right-handed spinors. This gives the Dirac
spinor
_ (YL

Yp = (‘PR) , (4.41)
which basically partitions space into the space of left- and right-handed spinors. Then, ; maps left- to
right-handed spinors and Dgr maps right- to left-handed spinors. Now we combine the Weyl-operators

Dyr
0 De\(¥r\ . .
(DL 0 ) (‘PR) =1y (9,1 Yp, 4.42)

with the matrix y* (chiral representation)

0 C’#) . (4.43)

WZ(&# 0

The y matrices are Lorentz invariant and have the desired parity invariance. Further they satisfy the

Clifford algebra
Ly =20". (4.44)

To perform Lorentz transformations, we now define the four-dimensional spin 1/2 representation of A:

(AL O
) ws
with
ALY
A -
Y0, ¥p A Aipiv'0u AT, A ¥p = Apiy e, Vp. (4.46)
With ¥ = ¥p, we can formulate the
Dirac equation
Gd—m)¥ =0, (4.47)
with the short notation
W= Ywy,. (4.48)
We can now write down the generators M (Eq. (4.17)) in spin-representation:
SH = 411 [v.v'] . (4.49)
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with
9] = ota 8 oVt s 9 &VU#)
o0 : L—->L
oo R—R
Note, that (see Eq. (4.21))
Ki, = So,=-10ip=10ip
1 i i .
Ji, = > Eijk S = ~5Cilk [O'j/ZaO'k/Z] =~k (1 €kl 0'1/2) =0in.
Analogously, it follows
Ki, = ioip
Jip. = 0Oipn,
and hence
A1 = el W2 SH — (IBL /E)R) )

with (see Eq. (4.28))

i
AL exp (i % (w; — iv,-))

AR

i
exp (i % (w; + ivi)) ,

and wo; = v, Wij = € jx W.
Next, let us find the inverse of Aj/s. yo is hermitian, i.e.

2 T
()’0) = Laxa, ()’O) =7’.
On the other hand, y' is anti-hermitian:

(Yi)z = —luxa, (?”.)T =—.

(4.50)

4.51)

4.52)

(4.53)

4.54)

(4.55)

(4.56)

Note, that these properties are representation independent. From Eq. (4.43) (i.e. choosing chiral repre-

sentation) it also follows

(4.57)

and we conclude
)’0 (S;D/)T 0 _ _SH

(4.58)
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Thus, the inverse Lorentz transformation for the four-dimensional spin 1/2 representation is given by

YA =AY, (4.59)

Note, that also the Dirac spinor satisfies the Klein-Gordon-equation (2.14):

(—iy”(?,, - m) (iy'dy —m) ¥ = ()/'“ Y'0,0, + mz) v

1 1
= (5 .y} 0,0, + mz) Y= (5 (27") 0,0, + mz) y

= (00" +m*) ¥ =0. (4.60)

In the following, we consider the Lagrangian and the Hamiltonian of the spinor field. The Lagrangian
transforms as a Lorentz scalar ~ (i — m) ¥

L = Y(id-m) V¥
A "P’A]/z (1$ - m) v
= ¥ =%A7,, 4.61)

as the Lagrangian is Lorentz invariant. It follows that
¥ =970, (4.62)
which is called Dirac conjugate, with
Vo= ‘I’TAi /2)/0 = ‘PT)/O)/OA_[ /23/0
Eq.(459) - = WAp,. (4.63)

The equation of motion is given by the Dirac equation (4.47)

oL .
ﬁ = 0—(1é9—m)‘P
0L 0L = (.
aTP— ﬂa(a—ﬂ\y) O—‘P(lé?—m), (464)

with the short notation f (ci = —0,, f. Then the Hamiltonian density is given by
H = MyP-L=iPO¥-2
= YO (-iyd+m) ¥, (4.65)

- . i 0
whereff‘a:y"ai:y’§. . . . o

Let us now discuss some invariants and general properties. The derivations above made use of a
specific representation of our spinors in left- and right-handed Weyl spinors. In particular for massive

Dirac fermions, this is not the best adapted representation. The y’s and ¥’s can be rotated with unitary
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transformations U, without changing the Lagrangian in Eq. (4.61). Thus a different representation can

be obtained by
y->UyU.

(4.66)

This leaves the Clifford algebra unchanged. When transforming the generators S, — U TS w U we have

to find a way, to project on the left- and right-handed eigenspaces. For this purpose we define

ys =iy"y'y*y?, (4.67)
with properties
y% = 1 — eigenvalues + 1
frs: 7"} = 0
[S v y5] = 0 —§,, ys5canbe diagonalised at the same time . (4.68)
. . . -1 0
Note, that in chiral representation ys = o 1) Consequently, we find the
projection operators on L/R spaces
1+
Pk = 275 : (4.69)
with Pi/R = Py and Py + Pgp = 1. Hence,
PrrY =Yr. 4.70)

Next, we discuss Dirac matrices and Dirac field bilinears. So far we found that ¥ is a Lorentz scalar.
One easily finds, that ¥ y* ¥ is a 4-vector. Using y* — A",y”, we find a basis of sixteen 4 x 4 matrices,

defined as antisymmetric combinations of y-matrices:

1 scalar 1 of these
o vector 4 of these
[v*,9"] = y#y"1  tensor 6 of these
ylHyyyP] pseudo-vector 4 of these
Vs pseudo-scalar 1 of these
16 total

The prefix pseudo indicates, that these quantities transform usual under continuous Lorentz transforma-
tions, but with an additional sign change under parity transformations. We obtain two conserved currents

out of Dirac field bilinears, namely
JF=PyHY and ji=Wy'ys¥.
These are conserved as

= imP¥Y-imP¥=0

ou (Pr'ys®) = 2imPys¥| =0.

m=0

4.71)

4.72)
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Note, that the axial current ]’; is only conserved for m = 0 (chiral symmetry). The underlying symmetries
are

Yy = P Peie

Yo ety o o Petinse (4.73)

We will now determine solutions of the Dirac equation. As W(x) satisfies the Klein-Gorden equation
(2.14), we write

Y(x) = u(p)e 'P*, (4.74)
with u(p) being a vector and p> = m?. Thus,
e P (i) — m) P(x) = (p - m) u(p) = 0. (4.75)
Similarly, with ¥(x) = v(p)eil’x we find
(p+m)v(p) =0, (4.76)

for p?> = m>. We now choose the rest frame as coordinate system. Then:

P = (po,0)
m(y’ - 1)u(p) = 0. 4.77)
. . . 0 _ _]]_2><2 ]].2)(2 . . .
With chiral representation, we have (y - ]l) = . With Dirac representation on the other
Ioo  —loxo

hand,

- (70—11):2(8 0 ) (4.78)
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With this, we find

us(p) = m(}g)
0
vs(p¥) = @(EXS), (4.79)

with s = 1/2,-1/2, y12 = ((1)),/\/_1/2 = ((1)) and the metric in spinor space € = (_01 (1)) Note, that

1

€ o€ = 0. Then we obtain the

general solutions of the Dirac equation

_ 1 p+m 0y _ 0 ( %,\:s )
ug(p) _m—\/po—-l—m ug(p”) VP tmy g

pO+m S
1 p—m 0 ((j?ﬁ €Xs
vs(p) = —————=vs(p) = —+/p? +m|P'*m , (4.80)
’ V2m AP +m EXs

where u,, vy are normalised to 1. We will now introduce some relations between the solutions. We have

iur(p)us(p) = 2més
v (p) vs(p) = —2mb (4.81)
u(p)vs(p) =0= v.(p)us(p) (4.82)
Z us(pleiis(p)g = (p+myg
D = (p-mig. (4.83)

N

The calculation to Eq. (4.81) goes as follows:

) i 0 @ rm)y’ (p+m)
ipyu(p) = ul(p)) LT P o)
P +m
5 (p+m)(p+m)
Yy =y - = d" ——u(p")
p°+m
. 2 2 0 0
U (p)=u,p0), _ 0y, 0P tm +2pmy” g
w0 = W)Y am )
m(p® + m)
Yu(p) =u,(p") > = 20"y —5—— u(p")
P +m
= 2mo,,. (4.84)
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and analogously for v, v,. Eq. (4.82) follows from (p—m)(p+m) = 0 and Eq. (4.83) is proven by showing
it at the basis ug(p), vs(p), i.e.

Z us(p) ﬁs(p) Mr(p) = Z us(p) 2md s
2m(p + m) 0. (p+m)? 0
= 2 r = —F— Uy = ——1Uy
muy(p) mu(p) p0+mu(p)
= (p+mu(p) (4.85)
D (P ap)vip) = 0=(p+mv(p), (4.86)

N

and similarly for )} vi(p) Vs(p).

lll. Quantisation

First, we try to quantise fermions similarly to scalars (bosons), as performed in section III. In analogy to
Eq. (2.126), we have the

general solution to the Dirac equation

W(x) = "X ay(p) us(p) + ¢ P bi)vy(p)|,  with p° = \p2+m>. (4.87)

(2n>3 r 2.l

The Hamiltonian follows from Eq. (4.65)

H

fd3x?{= fdsx‘lﬁ(x)yo (i)75+ m) ¥(x)

dp 2
= (2,53 220 pOZ[ @) ap) - by bi(p)] . 4.88)

Note the "—" sign instead of the "+" in Eq. (2.129) in the last line! Here, we have used Eq. (4.81) and

Fotmup) = (=@-m+y"p)up)

0 % u(p)

(~yp+m)vip) = —¥°p°v(p), (4.89)

non non

where the
operators, e.g.

in the last line corresponds to the in Eq. (4.88). If we now suggest commuting

byb' = bl by + c-number,
this would imply that
&p 2p°

Grrap P 2la®ae \bi(p) b@)].

7
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which does not hold, due to the minus sign. Therefore, we suggest

byb! = —b! by + c-number . (4.90)
Further, demanding
|, 1% (y)] =i6(x -y, (4.91)
implies
lasp). al(@] = @) 6(p-q)6s
= - [bs(p).bi(g)] - (4.92)
Again, note the additional "—" int the last line, which rescues causality, but does not cure the issue with

the minus sign in the Hamiltonian! Hence, we define the

anti-commutation relations of creation and annihilation operator (for fermions)

{asp).al@} = @n)*6,0(p-q

{bu(p). bl(@} = @n)650(p—q). (4.93)

Note, that the anti-commutators of a-a, b-b, b-a'” vanish and in particular ay(p) as(p) = a% = 0 (Grass-
mann variables). It follow the

anti-commutation relations of field operators (for fermions)

e, ¥, ] = S dx—y)

(W), Wey)] =0= {¥[x),¥(y)] . (4.94)

Similarly to section III, we will now construct the Fock space. Again, we define a vacuum state |0)
(compare to Eq. (2.90)), with

\/Twp as(p)10) =0 = /2wy bs(p) [0) . (4.95)
The one-particle states are given by
p.5) = 2wpal(P)10) (4.96)
and \/m bI(p) |0) for anti-particles. The states are normalised to
(q.7p. 5) = 2)*2p" 6,5 6(p ~ Q). 4.97)
Note, that the states are antisymmetric, as e.g. for two-particle states:
~ aj(p)af(@)0) = ~ a(@)a{(P)[0) . (4.98)

In particular, it is
al(p)al(p)|0y =0, (4.99)
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which mirrors the Fermi-exclusion principle. Next, we consider continuous symmetries. Again, we
define the 4-momentum operator (compare to Eq. (2.120)):

PO = f Pk poz[ai(p)as(pnbj(p) bs(p)], N E>0

H

P = (2) Z al(p) as(p) + bi(p) bs®))] - (4.100)

¥ is a complex field and the Lagrangian is invariant under ¥ — ¥, ¥ — ¥e™“?, as shown in
Eq. (4.73). This leads to conserved currents and similarly to Eq. (2.61), we can formulate the

Noether charge (for fermions)

0 f Bxl=e f ExPT)Px) =e f BxPx) " P(x)

1

d3
e f (zﬂ’;Z[al(p)as(m—bi(p)bs(p)], (4.101)

where e is the elementary charge, and (aZ(p) as(p)), (b:(p) bs(p)) correspond to a fermion with charge e
and an anti-fermion with charge —e, respectively. Let us now calculate the propagator. Therefore we
first consider

- dp 1 e
¥ Fem0) = | o575 [ > (1) (us)g,l ip(x-y)
Ep 1 ey
= (0 +m)g 207 20 e (4.102)
and
¥ = i d3p ! —ip(y—x)

Note, that the two rear integrals correspond to the scalar propagator (see Eq. (3.85)) without the 6-
function from time ordering. Also note the global minus sign in Eq. (4.103), which implies that the order
of W(x), ¥(y) is important (which was not the case for the scalar field)! With time ordering we find in
analogy to Eq. (3.87) the

Feynman-propagator (for fermions)
Sr(x=y) = (0T ¥e(x) P () 0)
o i(p+ ;L
&p 1P+ M iprey) (4.104)
Qr)* p?2 —m? +ie
with time ordering
TYOP0) = 0" =y P - 60" - x)¥e) ¥
- T YY) ¥ (4.105)
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Again, note the relative minus sign, when comparing to Eq. (3.35).
We can now formulate the Feynman rules for fermions. We can directly take over the results for the
scalar theory (section III- V), but we have to take care of the anti-symmetry of fermions. We have already
introduced

TYY=-TYV.

Accordingly, if we define contractions as in the scalar theory, it follows

— -
Y)Y = (0T ¥(x) ¥ 10)
= Sr(x-y)
!
= W) ¥(). (4.106)
Then
1 ™1 -
PP = ()T (4.107)
Also it holds for normal ordering:
cad': = —:da:=-d"a
=S YWY o= =W W
= ¥V o= =P, (4.108)

Similarly to Eq. (3.93), we obtain

Wick’s theorem (for fermions)

TW(xp) - PO) PXa1) - PXam) = P(x1) - - P(x) P(xpe1) - - - P(xpim) + all contractions : .
(4.109)

In the following, let us discuss the simplest interacting theory with fermions. Then we have a La-
grangian of the form

L = Lscatar + Lirac + L1, (4.110)
with the interaction Lagrangian of Yukawa theory
Li=-h¥oV, 4.111)
where h is the Yukawa coupling. We obtain
Propagators:
1 i
b1 db= -3 =—o—s—
p p? —my +ie
1 i(p +
. PP _ i(p m‘I’)'
J% p? —mj, +ie
Vertex:

(4.112)
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External leg contraction:

¢lpy =1=: (pl¢

’q

W(x Ip, s)
( )annihilation P (277)3

3
) bf(gié %§§ZS[G*W%w«D{aquaﬂpﬂu»]

= e uyp).

We drop the phase in Eq. (4.113) and find:

WIp,s) = us(p) = >—<
' p

Analogously:
(P, s|'¥ = its(p) = +/
P
Anti-fermions:
NS =Pk s) = (k)
- [
ko b0
—— =(k, s|¥ =v(k)
<
k
Loops: e.g. ->- >-  (vacuum polarisation)
ps: €.g J: Qp p
— 1  m

(ql(@PY) (P Y¥)Ip) ~ —(qlp (FPYYYP)Ip) .

2_22 > [e7 ur(@) ar(q) al(p) 10)]

(4.113)

4.114)

Consequently, closed fermionic loops lead to minus signs! The calculations for loop integrals and Dirac

traces goes as follows. Consider

k+p

Then:

AV 4 4 L4 Y
_(_1 h) fd xfd y <Q| bx \ng \Pyﬂ \ij,, \Px§ ¢y |P> .

We now use, that for any (is this correct?) operators O; it holds:

f&{ﬂmaww@mfhj}%@mfx

(4.115)

(4.116)
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which gives the trace. Thus

TXg = Squ(x_y)SF,lf(y_x)

= tpirac [SF(x =) Sr(y —x) “4.117)

It follows

N 4 4 L g b
—(-ih) fd XId VAl o Vi, ¥y, ¥y, Vi, 8y D)

(4.118)
o [ d% tr( k+ my (eA+p) + my ]
Qr* k2 - m?{, +ie (k+ p)? - m%P +ie
Let us summarise the
Feynman rules (in momentum space, for Yukawa theory)

i) _ l(p + my)

p p*—mi, +ie

s 3 i

» S pr- mi +1ie

1
ii) ; -¢- =-ih and p; =—(p; + p3) (momentum conservation)

p3
P2

d4

iii) f 2P for each loop
(-) for each fermion loop
1 Pn
g
iv) 2m)*6* (3 pi) for &@
4.119)

When comparing to Eq. (3.115), we note, that there is no symmetry factor in Eq. (4.119), as L is built-up
from 3 different fields. Also, now the direction of the fermion line is important. Along fermion lines
Dirac indices are contracted, e.g.

vy ' -
0 I N P (—12(”’ * ) ) (—ih)(—;("j - ) ) .
PP PPy p? —my +ie p*—my +ie) .,
1l ’ ’

‘P¢[(‘I"I’) ¢ (‘P@)Lg,wy
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Example 13: scattering process.
p/ kl

p k

. . - 7 - 7 - ’ 1 - ’
= iM = (=ih)* |a(p’) u(p) ————— Wk uk) —a(p’) u(k) —————=u(k) u(p)| . (4.120)
(p=p) —my (p— k)™ —my
Example 14: QED: couple electron ¥, to photon A,,.
The interaction Lagrangian is then contracted with a vector A,
Li=eVA Y. (4.121)
Then
LQED = -Ephoton + Lpirac + L1, (4.122)
with
Loiae + L1 =P (P —-m) ¥, (4.123)
where
D,=0,-1ieA, (4.124)
For the vertices it is
e

W< =ie
Y e

To explicitly compute expressions as the above, we need the photon propagator. This will be subject to

the subsequent chapter, in particular section II.
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Chapter 5. Gauge Fields

5. Gauge Fields

. Gauge Symmetry
Consider the Dirac theory of e*, e~
Lp =¥ (id-m) ¥, 5.1)

or complex scalar theory
Ly = up 0™ —m* 66" =V (99") . (5.2)
The Lagrangians in Eq. (5.1) and Eq. (5.2) are invariant under global U(1)-rotations, namely

¥ 5 ey, P el
¢ — el o, ¢ —> " el (5.3)

which corresponds to a global rotation in field space. Let us require the invariance of the theory under
local rotations (gauge symmetry), e.g.

P(x) — e P(x). (5.4)
We see, that Lp is not invariant, as
Lp — Lp-F@a)¥
= Lp-od.aj, (5.5)

with
F=Pyv. (5.6)

Hence, if we add a term A, j* to Lp, and demand invariance, it follows

Lp+At - Lp-duaft +A;lj”

Lp+AL !
=>Ax) - Aux)+0a(x). 5.7)
Also note, that £ is a Lorentz scalar:
A N NA, (5.8)

as A, j* transforms as a scalar. Next, we write the invariant action
Lp=Y(iD-m) V¥, (5.9

with the covariant derivative
D, =0,-iA,. (5.10)
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A, is also called a connection (German: "Zusammenhang"). It induces covariant transformation proper-
ties for D,;:

D, — €“YD,e W =4, -iA, —id =8, -iA)

=DY — ele® D, el gla) g — ia) D,¥ (transforms homog. as the field ¥), (5.11)
as well as D¢ — ele® D,¢. Similarly, we get that

Ly =Dy (Dug) —m*ge" =V (6¢") (5.12)

is invariant under

P(x) — €™ p(x)

Ay - A +d,a. (5.13)

To examine the dynamics of the gauge field A,, we start by constructing gauge-invariant scalar quantities
from A,,. This is easily done from D,,, which transforms covariantly:

|D. D] = =i (0,4, - 0vA,) = i Fpy (5.14)
with F,, = d,A, — 0,A,, or Fpyy =11 [Dﬂ, DV]. As shown in Eq. (5.8), A, transforms as a vector. Thus
Fy — AypAV‘TFW (5.15)
transforms as tensor. F,, can be interpreted as field strength, or curvature. F, is gauge invariant:

F,uv — i [e—la Dﬂ el g7 p el(l]
sl i s -l i
= e [D#,Dv]e =1ie (—1 F,,V)e

= Fu. (5.16)

In summary this means, that F,, is gauge invariant, but is a Lorentz tensor. Thus, F,, F*" is gauge
invariant and a Lorentz scalar. Therefore, a gauge invariant Lagrangian can be written as

1
LoD = ~12 FuF* + Lp. (5.17)
We re-parametrise A, — eA,,, with the electric charge e and obtain
1 _
LQED:_ZFﬂvF#V"'\P(ilD_m)\P, (518)
with
D,=0,-1ieA,. (5.19)

Note, that this construction also goes through for

Y —» UY, for U eSUN)

D, - UD,U"!

N2-1
FunP = ) (F) (P2 (5.20)
a=1
with .
Fu = = [Du D] ~ [AnA] (5.21)

We remark, that we have quantum chromodynamics for N = 3 and weak interaction for N = 2.
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Il. Quantisation

To quantise gauge fields, we concentrate on the pure gauge field Lagrangian
1
L= ~1 Fy F*  with  Fy, =0,A, —0,A,. (5.22)

The equation of motion is

0L,
Ay
with the current ,F*" = J”. Eq. (5.23) reflects a redundancy of the gauge field A, because the EOM is
invariant under

3, = 0" = (0,0'n"" - 90" ) Ay = 0, (5.23)

Ay — Ay+eda

OuF" + (0,00 =007 )dpar = GuF™ +0, (5.24)
since

00" Oy — 8”07 0y 20 a - 0% =0

(0,00’ = 8"0") 0

1B
(e}

(5.25)
In momentum space this writes
(p2nv0' _ pvp(r) ps = 0, (5.26)

where the term in the brackets is the transverse part, which we will discuss later in the section. Eq. (5.23)
and Eq. (5.24) already entail, that A cannot have canonical commutation relations! But what about the
canonical momentum I1#:

oL 1 4
" = =———— (F,,F o6 oy
3(BoA,) 46(60A#)( porFyan”™1F")
1 OF s
= ——F,,n"° y_“ Y
3 Foott”™ " D(BoA,)
= FHO, (5.27)
In particular, it is
n = o, (5.28)

which also reflects the redundancy. We remove the redundancy by fixing the gauge, e.g. with a Lorentz-
or covariant gauge

0,A" =0. (5.29)
For these A# we can write
1 1 2
- _2 wo_ 2
Li = —gFuP” = o (0.4%)
1 4
= -7 wFH (5.30)
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or
S[A] = % fd“xA,, (apépnf” - (1 - é)aﬂaV)Av. (5.31)
We split the gauge field in transverse and longitudinal parts
Ay=@A0,+ ALy, (5.32)
with
A, =0
(600" - 0"07)(AL), = 0. (5.33)

It follows, that

(6,07 = 0"07) (AL),

= 0, (5.34)

because the left-hand side is solely transverse, and the right-hand side solely longitudinal. The EOM is
given by

9, F = —éav (6,4") =0. (5.35)

Note, that ((')p(')pn’” - (1 - é)@va‘f) is invertible, and specifically simple for ¢ = 1 (Feynman gauge
0,0"n"7). With Eq. (5.29) we obtain the

EOM for the Lorentz gauge

0,0°AY = 0, (5.36)

which is similar to the Klein-Gordon equation (Eq. (2.14)). Eq. (5.36) suggests a quantised field

dsk 1 —ikx ikx
A= | o Vo (e a,(k) + e** ] (), (5.37)
with the commutation relations
|0, al@H] = @16k - )
|a.®). a,()] =0="[a}K).ajK)]. (5.38)

Note, that the 7 in the first equation is necessary for Lorentz-symmetry. However, Eq. (5.37) and
Eq. (5.38) are not compatible with Eq. (5.29), as

d3k —i —ikx ikx
W= | e & ke 00 (@) 1)
Lo, (5.39)
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This entails, that k,a*(K) 10, because if Eq. (5.39) fails, the EOM is not satisfied
0, F" = -0"9,A”. (5.40)
However,

K [auk),al (k)| = -k 2m)*6(k - K')

# 0. 5.41)

Indeed one can show, that it is not possible to quantise the gauge field A, with canonical commutation
relations and 9,A" = 0, or other gauge conditions; If using A* in Eq. (5.37) and Eq. (5.38), the gauge
J,A* has to be implemented on the states! We will target this problem later in this section, but prior to
this, we construct the Fock space ¥ based on Eq. (5.37) and Eq. (5.38). We define the vacuum state |0)
with

00y =1. (5.42)
One-particle states are given by
2k0 (k) [0) (5.43)
with norm
\2K02 (k) (0] @y (K) @ (k) 0) = —17,,, (27)° 2K 5(k — K') . (5.44)

Thus, we have positive norm states for 4 = v = i, and negative norm states for u = v = 0. Consequently,
¥ is not the physical Hilbert space H, as it does not allow for probability interpretation. We remark,
that 7, — 7" does not solve the problem of negative norm states (leave aside the wrong commutators
[Ai , H‘]). But separating the positive norm subspace of 7, will solve all problems of quantisation. This
is the Gupta-Bleuler quantisation. We demand, that the EOM is satisfied on

physical states

hysical states’| 9, F*” [physical states) . 0, (5.45)
phy (7 phy

that is, its matrix elements vanish. Eq. (5.45) is satisfied for

k"a, (k) |physical states) = 0, (5.46)
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which is trivially satisfied on the vacuum. The above suggests to rewrite A, in Eq. (5.37) as

field operator (Lorentz gauge)

P 1 . _ .
Au(x) = —— ) () e ™ + ol (k) () (el , (5.47)
H (2n)3 m /IZ:O( M 1 ( #) )
where the eit introduce unitary rotations! from a, to ay with
e @ =
e k)€ k) = . (5.48)
Hence, we write the "new" operators « as linear combination of the "old" operators a:
a,(k) = aﬂ(k)ef k). (5.49)

Now, we choose our coordinate system without loss of generality, such thatk-€® = k* = k-€> and k-€' = 0,
for i = 1,2. The €’s are also called polarisation vectors. Eq. (5.46) now reads with o, = \/Li (g = a3)

ay |physical states) = 0,

with @ + 3 = ka,,. In the frame with (k) = (K%, 0,0,°) we have

(6’1)# = 61 .

(5.50)

(5.51)

The @’s have the same commutation relations as the a’s, as we have used unitary rotations (see also

Eq. (5.48) and Eq. (5.49)). It follows, with i = 1,2:
[i®).0]®)] = @Psk-K)

[oz+(k), ai(k’)] 27 6(k — K)

|02, ®K)| =0= [a).a{" )] .
Let us now examine the physical Hilbert space . It is the physical subspace Fpnys C F with
¥) € Fonys = s [¥) = 0.

It follows
I¥) € Fohys = @) [¥) € Fonyss  for i=1,2,
with
asa) |¥) = af a,|¥) =0.

'unitary rotations keep the canonical commutation relations

(5.52)

(5.53)

(5.54)

(5.55)
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Also
al [¥) € Fonys » (5.56)

with
ol W) =al o W) =0. (5.57)

This indicates, that everything, that commutes with @, is in the physical subspace. Therefore

al |¥) ¢ Foys » (5.58)
since
a0l ) = ol 1)+ |aal|1®)
= [ew.al |1y ~ ) % 0. (5.59)
We conclude, that
Fonys = span [(a])™ (a])" (a3)”10)] . (5.60)

Fphys contains only states with semi-positive norm

(P|¥) > 0. (5.61)
Indeed, it is
lal 9P = (Pla.al |¥)
= (Yol o, W) =0, (5.62)
and
(o))" (3)” 10y 1> 0, (5.63)

with a.T,a/i = +(2n) 2k%5. If we identify two states |¥;), [¥2) with ||[¥;) — |¥2) || = 0, every matrix
i y y

element of an operator O(a?),a(j)) vanishes, and (¥|O (|¥) — |¥,)) vanishes. This means, that we

define the physical Hilbert space as the space of equivalence classes
H = Fonys/~» (5.64)
with [¥1) ~ |W¥,) for || W) — [¥2) || = 0. For |¥) € H, we have
(PI¥) >0, for [¥)#0
a.|¥) =0, (5.65)
and hence the EOMs are satisfied, since

(V|0 F* ¥y = (V| 8,0,A" |¥) = 0. (5.66)
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We can now introduce the Feynman rules for gauge fields. For the propagator we find, for x” >y

1 e 1 ity .
1kx+1 K . )10
© If(27r)3 Varo J @ap We |2k, al(1)] [0)

&K —ikx+ik'y 3
1KX+1 2 6k_kl O
© lf(271')3 @f@ﬂp 2(k,)06 (2m)” o( )10)

¢k 1 e
- —_— Y) 5.67
Nuv (271_)3 %0 € > ( )

(0] Au(x) Ay(»)10)

where similar to Eq. (4.103) the last integral corresponds to the scalar propagator Dr(x —y) (Eq. (3.85)).

With analogous arguments we find the

Feynman-propagator (for gauge fields)
OIT Au(x) A, (M 0) = =y Dr(x =), (5.68)
or
1y
K v =
{\/\]{\/\f 2 +ie
Initial and final states are given by
k,€) = V2k0a' (k) |0) . (5.69)
Note, that o' = e;j (aT)ﬂ (Eq. (5.49)). Hence, we have
A k. €) f 22 et g, al @)
,E) = ——e""a a
H anninit 2m)* N 2@k)° g
(drop phase) — = g (k). (5.70)
That is
Ak,e) = €
(k,elA = €. (5.71)

At the vertices we have:
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a) Ly=eVPAVY:
>\MM = ey

b) L= Du¢ (D“¢)* —5ﬂ¢6”¢* :

7 7 k’,V
P vx/\/\/\/\ =—ie (pu+p) P h: =2ie* .
p p. 7 Yk

(5.72)

Let us next discuss gauge independence and Feynman rules. We can add a longitudinal part to the
field A, without changing the physics:

A, , (5.73)

1
Al~l - A# + CX@IIW

or in the Lagrangian

1 , 1 2
L= 4 Far - L (o) 574

Then the propagator is
OIT ALA,10) (k)

. ymy k/,t k,
= H V = — — 1 —_ -
MV 1(k2 e 9%y 16)2)

I S
T TR tie ('7’” ( §)k2+ie)‘
(5.75)

The equation of motion in Fourier space with the Lagrangian in Eq. (5.74) is
1
(kzn‘” - (1 - E) k”kV)Av(k) =0. (5.76)

Note, that for € = 1 we have the Feynman gauge, ¢ = 0 the Landau gauge and for ¢ = oo the unitary
gauge. When considering the scattering amplitudes, & drops out. E.g.:
+

k e
Mﬁ TR 01T A,4,10) R 5(p + ) Y u(p) .
’y —

e

This only holds on-shell, i.e. internal Feynman diagrams are ¢ dependent. We have used, that:

Ekuky ¥(p + k)Y ulp) = &k, ¥(p + k) ku(p)
Eq.4.75) — = fkvp+l)k+p-pulp)
Eq.(475) — = &k Wp+hk+p-mulp). (5.77)
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We now look at gauge invariant observables, for example £ and B-fields. We have

Ei — _FOi:_(aOAi_aiAO)
B = €*Fy. (5.78)
Using Eq. (5.47) they read
e 1, k N L AT
ko= (2n)32k0k[(a_@a°) T %)e ]
— &k L ik° ( + )e—ikx _ ( Ty T) elkx| _
= (27_[)3 2k0 €1 1 [SX0%) €1 a/l € a2
&k 1 k k.
~0 - o= | === ik ar e — — ol R (5.79)
(2m)3 2k0 T [kO KO
s
with the physical polarisations €] 5. Analogously, we find
. . &Sk 1 . .
B =ell [ ikl ae - e o' eik|. (5.80)
(2m)* V240

It follows that only @ and «, appear in E and B. Sandwiched between physical states [¥) € H, a4
drops out. The Hamiltonian reads, with IT' = E’

H = f [H(aOA VA0)+1F F“"]
- fd3x[l(E2+B2)+V(EA)]
3 0
1
VE=0 — = 5fc13x(132+132), (5.81)
where we have used
VE = (—aoaiA"+(a")2A°)

dA =0 - = [_(30)2+(af)2]A0:o. (5.82)

We insert the E-B-field operators Eq. (5.79) and Eq. (5.80) and arrive at

1 &k ky o< .
0 -~ = 0 . T
p H ~ AR 250 k ,-:51 (ozl @, +a; al)

1

Bk k
O 2130 OZ ] (K) a;(K), (5.83)

where we have dropped the @ -terms in the first line, and the vacuum terms in the second line. Similarly,

we get for P
P = fd3xE><B

d3
f(z )3kZaf (k) ;(K), (5.84)

1
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where we have dropped the vacuum terms.
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6. QED

In this chapter we discuss Quantum Electro Dynamics (QED) as an application. We use the following
notation:

Dirac fields electrons, positrons: e~, e ¥,
Leptons myons: TR AR ¥

tau: T, 1" ¥,
Gauge field photons: 0% Ay

Note, that the photon is the gauge boson of the U(1)-symmetry, with the Noether charge being the electric
charge (see chapter 5).

I. Action and Feynman rules

The action is a sum of the Dirac actions of e, y, T and the gauge field action of the photon (see Eq. (5.18))

SqeplA, We, ¥y, Vel = SplA, Wel + SpIA, W] + SplA, Wr] + SalA] + Sgf[A], (6.1)

with the Dirac actions
SplA, WYl = fd“x‘i’e,m (iD - me,“,T) Yeur with D, =0, —ieA,, (6.2)
and the gauge field action
1
SalAl=-7 f d*x F, F*,  with Fy, = 8,4, - 0,A,. (6.3)
The gauge fixing term S, ¢[A] in the covariant gauge is
A= -2 [ d*x (8,4) 4
Serldl = =5 x (9,44) (6.4)
with the gauge fixing parameter &£. The gauge transformations are

Yx) — e@yx) = yx)

1
Ay(x) — Aux)+ géﬂa/(x) = Afj(x), (6.5)
with -
S QEp[A%, ¥*] = S gEplA, W] + e f d*x 9,410, a, (6.6)
e
where
e
y =y, (6.7)
v,
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Next, we consider the Feynman rules. It is

SQED = Sftree + 51, (6.8)

with
Stree = SalA] + ng[A] + fd4-x\il(1¢9 -mV¥, (6.9)

and
&zefﬁ%@W£ (6.10)

We remark, that any other coupling of leptons and photon introduces dimensiona-full couplings to the
theory, e.g. spin-coupling

e -

X‘I’O'“V‘{’FW‘P, (6.11)

where A carries momentum dimension one. Such a term makes the theory non-renormalisable. We
obtain the propagators for
Leptons (Eq. (4.112)):

’ + my
n_y = _ptmy
l(pz—m2+ie]
p £ '

and photon (Eq. (5.75)):

i k. k
K vt —(1-&=L2 .
VMV E T e (’7‘” 1-9e7 ie)
At the vertices it holds (see Eq. (5.72)
T]/
w = —ie ('}’/1)777]’ .
n

6.12)

Note, that here the sign is irrelevant, as A, — —A,. Eq. (6.12) has been deduced simply by analogy to
the derivation of the scalar self-interaction. Further, we have

incoming lepton: outgoing lepton:

—>— =u(p) < =ip)
P ?

incoming anti-lepton:
—<— =7¥p)

—>

p

incoming photon:

“«/\]{\/\» = €,(k)

outgoing anti-lepton:
—>— =)

-

4

outgoing photon:

‘V\I{W = e (k).

(6.13)

See also Eq. (4.113) ff. and recall the minus sign for fermion loops.
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Il. Elementary Processes

This section deals with elementary processes. Consider

1) Compton scattering: e”y — e~y

T

ii) Elastic e~ e”-scattering:

iii) Pain-annihilation/creation: e* e~ — yvy

iv) Bhaba-scattering: e* e~ — e* e~
§ + +

v) light-by-light scattering: (non-linear electrodynamics)

effective four photon vertex

vi) Landé factor (gyromagnetic ratio):

Ag e
2 4m,

. . a
ip—m, — i) —m, + o FH Ag=—,a=—
n

Let us compute an example of a tree level process in detail.

tree level
processes

loop
effects

Example 15: electron-positron annihilation into muon-antimuon pair (¢* ¢~ — u*u~).

We choose this example, because there exists only a single Feynman diagram for this process, namely:
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e M
P1 P3
p2 P4

et 'u+

As we look at the highly relativistic case of 2-2 scattering we can use Eq. (3.153):

do 1 2
— = — My IT 14
o 2s|f,|fdz, (6.14)
with | 14
)
dil, = ———"——dQ, s=(p; + ). 6.15
f 2 2202 4pgp2 (p1+ p2) (6.15)
We find

MP? = % > % > MG s, 5P, (6.16)
r

ros,s
where we computed the average by summing over r, 7’ and summed over all possible splits s, s,”. The
scattering amplitude is read off by the Feynman rules:

o8

iM = i1, (p3) (i€ ¥p) Vi, (P2) [”p ]v (p2) (ie¥e) te,(p1), 6.17)

s
where the term in square brackets corresponds to the (on-shell) propagator. Therefore, the gauge fixing
parameter & drops out (see Eq. (5.77)). The terms in front of and behind the propagator correspond to
right- and left-hand side in the diagram, respectively. It follows that

\MJ* = %(T,l)aﬁ(m“” , (6.18)
with
T = 00 9) 63 i 0010, 05) (10 35) i 0]
T = 35 o) (et () [7e, ) i) e )] (6.19)
We use Eq. (4.83), i.e. |
D (p3) i (p3) = (py +my)
D Ve (P T (pa) = (py =), (6.20)
to compute S
Z ity (p3) ya[vus, (P4) Py (p4)]7}§ t,(p3) = tr (ps + my) Yo (Py = ) V8 (6.21)
with |

VL@ vy alp), v =1

[ oarvi@)]|

75(9) Ya us(p). (6.22)
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As we consider the highly relativistic limit, we drop m,,, m,. Then

(Twaep = tr (l”3 + mﬂ) Ya (l”4 - mﬂ) YB

ry”=0 - = U PyYaPs¥p + U YaYp mﬁ ) (6.23)
We use
1 1
wy?y” = Suly’ =5 u@r) =2
ey Y = 27wy —wy Ty = 8T — ey Ty
= = A (P P ) (6.24)
and obtain

(Tep = 4 (p3ap4ﬁ + P3sPa, — 77(1/5P3P4) - 477(43m,21

s>m; = = 4(ps,pa, + P3,Pa, — NapP3Ps) - (6.25)

Similarly, we get
(T ~4(pi s + Pip3) . (6.26)

and arrive at

4 8 4
IMP = 4%-2-16 (Pl'p4)(P2'P3)+(P1'P3)(P2'P4)] = s—§-2-16[<p1-p4>(pz-p3)+(p1-p3>(p2-p4> . (627)

In summary, and after inserting Eq. (6.27) in Eq. (6.14), we find
2

do 202 e
= | 1 o2 P+ 1 P2 P, @=L 628)
dQ - pIpis 4n

Note, that this expression depends on the scattering angle ). Furthermore, s = (p| + p2)>, t = (p1 — p3)?
and u = (p; - p4)2 are called Mandelstam variables.

s

s-channel
P3 P —_— .
e > 9 er >@< \t—channel
P1 P2
D4 P2 P4

o Nt‘—channel

The scattering angle is given by
_ PiPs3
osth = ———

= . (6.29)
Ipyllps3

In the highly relativistic limit, it holds

1 1 1
pi-py = pipy—pip3 = g5 — s cost= <s(l—cosd) = pr-ps
4" 4 4
1
pi-ps = Zs(l +cosd) = pa- p3
1 2 2 1 2 2
= (P p)(P2 p3) + (1 p3)p2-pa) = 75 (24 2c08?9) = 057 (1 +cos? D) . (6.30)
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The final result for |M|? is

&2

IMP = ¢* (1 + cos™) = 16n°a* (1 + cos”8) , o = o 6.31)

If we compare Eq. (6.31) with that for scalar 2-2 scattering (Eq. (3.40)), |M |2 = 22, we see, that for
fermions the scattering angle is important, whereas for scalar fields it is not. Inserting Eq. (6.31) in
Eq. (6.14) and using 4p(3) pg ~ s yields the cross section

do o
a0 - E(l + cos). (6.32)
Again, compare this to the cross section of scalar 2-2 scattering (Eq. (3.153)), i.e. g—g = #g.

We remark, that the intermediate virtual photon was chosen in the Feynman gauge, i.e. £ = 1. However,
we have shown in Eq. (5.77), that any choice of £ leads to the same result, in particular ¢ = 0. Further,
in the high energy limit also (p1 — p2),V(p2) ¥* u(p1) ~%¢ 0. Only the physical polarisations €; and &
play a role, e3 drops out (see Eq. (5.48)). This argument also applies to i(p3) y” v(p4). In summary we
have

0

X

u(p3)y" v(pa) (p3ja)y

0. (6.33)

X

v(p2) ¥ u(p1) (p1/2)u

So if p34 are orthogonal to the beam axis, defined by p1,2, the related polarisation €; or € also ’drops
out of the game’. In this case, @ = n/2, only one polarisation contributes to the scattering, for @ = 0,
both. Lastly, note, that in the highly relativistic case and for @ = 7/2:

n "

o = ol
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7. Renormalisation

As we have seen in the previous chapters, loop diagrams are divergent. In this chapter we discuss
renormalisation, a mathematical approach, to cancel singularities from the integrals.

l. ¢*-theory

In ¢*-theory the action is given by (see Eq. (3.21))

sio1=-5 [ xon (@ +md) a0 - [ dxat, 1)
with bare fields ¢o and parameters/couplings m% and Ag. We write
w = 7%
m(z) = Zn m?
Ao = Z4, (7.2)

with renormalised or physical fields ¢, parameters m?, A and multiplicative renormalisations Zg, Z,, Z;.
The Z’s are expanded in powers of A:

Z=1406Z, 6Z=06Z11+6821%+..., (7.3)

where the first part corresponds to classical theory and 6Z to quantum corrections. Recalling LSZ-
formalism we use Eq. (3.166) with fields ¢g

iz

(T ¢060) (D)1 = P + finite = Zy (T ¢ 9)| . - (74)
We demand Z, = Z, which implies
i :
(T ¢ ¢) |pOle = + finite . (7.5)

Here, we have implicitly fixed Z4 such that m? = m]%hys, i.e. p?> = m?. Eq. (7.4) and Eq. (7.5) can be cast
into

renormalisation conditions (1-2)

1

| T 00|

pr=m

1
Lo (7.6)

02T 6) )|

pi=m

This fixes the constants Zy and Z,,. More generally, we fix (T ¢¢) at some scale p* = p?, where u is
called renormalisation scale. The coupling renormalisation Z, is fixed, by fixing the amputated four-point
function:
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If we write this in terms of the Green function (using Eq. (7.5)), we obtain the third

renormalisation condition (3)

-1
[1[Toom| ~Town-swn|  =-ia, (7.7)

£ S=t=u=m

where 4 = Apnys symmetric point” The renormalisation conditions Eq. (7.6) and Eq. (7.7) fix the map
between the bare quantities ¢, mg, Ao to the renormalised (finite) quantities ¢, m, A. The finiteness of
correlation functions of the renormalised fields ¢ follows from the finiteness of Eq. (7.6) and Eq. (7.7).
Hence, the Z’s have to cancel the loop divergences. Thus, the Z’s carry the singularities. Note, that in
(perturbatively) renormalisable theories, it is sufficient to introduce the Z’s (and similar quantities) for
getting a manifestly finite theory. The freedom of (re)-normalising fields and couplings also encodes, that
Green functions are not by themselves physical observables. For example, we could have renormalised
the theory at some other momentum scale p*> = u” with the renormalisation conditions, with

A= /lphyslpzzﬂz

2 _ 2
m? = mphyslpzzyz. (7.8)

Physics is invariant under changing u, which is expressed in the

renormalisation group equation

d
,u@(phys. observables) = 0. (7.9)

Note, that the renormalisation conditions encode the reparametrisation invariance of the theory and
the insensitivity of physics to the specific renormalisation scheme. u is called renormalisation group
(RG) scale. We remark, that the generator of the RG is ﬂ%, and the RG is a one-parameter, Abelian semi
group (see QFT II).

Let us now formulate the Feynman rules in terms of renormalised quantities (where we have dropped
the ie):
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Propagator:

pz—meZ_[ i

[ o] =z pz_mz]_l— — o

where  —@—— = (D|1-2) - (1= Z,Zy .

—_—
<1

>< :—izlzga=—i/1+>®< ,
where >g;< =iA(1-222).

Note, that < ) >®< are called counter terms. Zy, Z,,, Z, cancel singularities, that are proportional
to pz, m? and A, respectively. Next, we examine renormalisation at one loops. First, we consider the
mass correction (see Eq. (3.184)).

Vertex:

o—@)——o= o—o+oQo+ O(/lz)

i

i
= + [—iH(p)]—+...,
p2_m2 p2_m2 p2_ 2

i = | oL —®—]

= OQQ + i(l—Z¢)p2+i(1—Z¢Zm)m2:|

pv\,/

with self-energy:

For the loop diagram, we have: finite
f Qm)* ¢ - m2
Consequently, the self-energy is
d*q i , . ,
_1H(p) = (27_[)4— 1(1 —Z¢)p +1(1 —Z¢Zm)m . (710)

P p
Note, that %Qf has no dependence on the external momentum p. Therefore, Z¢|1-1oop = 1. Further,

it is
-1
o]
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i(geR
{
PR+ m?
i — >
" integration contour (gm)°

rotate by
avoiding the poles

Figure 7.1.: Recall the i€ of time-ordering: m. The rotated Euclidean contour runs i(gg)° from —ico

to +ico, or (gr)? from —co to +co. As this rotation does not swipe the poles, the integration
stays the same.

The renormalisation condition in Eq. (7.6) implies
= H(p)|1_100p£0. (7.11)

We conclude, that

1A dq i
1-Z,=-—— | ———. 7.12
" 2m? ) @nt g -m? (7-12)
It remains to compute
a* i
9 1 (7.13)

Qn)* ¢? —m? +ie’

where we have to encounter two problems, namely that the integrand diverges on-shell (¢> = m?), and
that the integral diverges for ¢g*> — co. The diverging integrand can be resolved with Wick rotation. For
this, we rescale momentum in Minkowski space to Euclidean space as shown in figure 7.1. Then

()’ = i(ge)"
ey’ =-1 - = (@uulan) = —(qe)u(qe) = —(qE)u(qE),
= fd4qM=ifd4qE
R4 R4

d4q M i _ d4qE 1
Qn)* g2, — m? Qg% +m?

(7.14)

The divergent integral for g> — o is dealt with by regularisation. Consider for example a momentum

cut-off A:
d*q d*q
f(27r)4 - f 20 (7.15)

R4 q2 <A2
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Then
dg 1 d ; ’
1 1
2n)* ¢ + m? (2n)* g*+m?  8n? q* + m?
P<A? 0 0
1 m?
= e A2 + 2 1 7. 16
1672 N T (7.16)
Another example is dimensional regularisation. We rewrite the four-dimensional integral as
dq 1 _ [(z)y diq ] 1
2n)* g + m? Q21 ¢* + m?
Qi (% f a1 1
= — d -, 7.17
(zﬂ)d (,u ) 19 qz + m?2 ( )
0

with the angular volume Q. Note, that the term in square brackets in the first line has dimension 4 due
to the scaling factor in front of the d-dimensional integral. For d < 2 the integral in the last line is finite,
and we can compute Eq. (7.17), and then analytically extend the result. We use

d
Q
—((; )dd: vrl = (fdxexz) :fddxexz, X =
n
Xd

r d
= ‘fde‘fdxxd_le_’62 :fdel"(E)
0

(7.18)

and

quqd—l( 1 _ EM(L)W; (7.19)
0

q* +m?)" 2 I'(n) m2
L(de 11 Tlog) oy (7.20)
Quyd (2 +m?)"  @4md2 T(n) \m? ' '
0
With this, we obtain
s dlg 1 1 d\ (@Y d
() ° i =—r(1-5)m5) -5 (7.21)
Q2r)d g% + m? (4m)? 2 m 2
Then, for d = 4 — 2e with € — 0, this is
d 2 2
_9\€ dg 1 m- |1 m
= —+y—1+ndr—In—|, 7.22
(&) i +m 1ent|e nar nﬁz] (7.22)
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with
1
I'-1+¢ = I'e) « xI'x)=T'(x+1)
-1+e€
1
= ——+v—-1+0(), (7.23)
€
and the Euler-Mascheroni constant y = 0.577... . This allows us to determine Z,, loop" With cut-off

regularisation (Eq. (7.16)) we get

11 A? 1
Zp=1—-———=A|— +1 . 7.24
m 21672 m2+n1+A_§) ( )
m
And with dimensional regularisation (Eq. (7.23)) we obtain
11 1 m?
Zm:1—§—16ﬂ2/1(—g +y—l+ln47r—ln'a—2). (725)

Note, that in Eq. (7.24) and Eq. (7.25) the term #/l is the expansion coefficient in ¢*-theory. The
1 1
2

equivalence between these equations is best seen with: In 2 1
+25 +
m

=In ’/’\L; +1n —
Y
Finally, in both cases at one loop we have

o—@)—o :ﬁJFO(/ﬂ).

(7.26)
Next, we have to consider the coupling correction
= .l ¢ 2 + 1@; + 0(13)
- 2 ><>< 2 2
A 1
- 3
_ :Xi+[5>CK+”+>< ~o(¥)
A 1
- _ . 3
7 B X+ [ 5 >@<+ i1 =2y |+ 0(P)
=0 (u=0)
The renormalisation condition for # = s = u = 0, i.e. 4> = 0 becomes
30 d i
1-z,=2 4 ___1 (7.27)

2 J et (P -me
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Using Wick rotation (Eq. (7.20)) with dimensional regularisation (n = 2, 2 — g = €), we compute

30, ( d 1 31 1 I(e) (m?\*
M) el @ T T2 4T 42
301 (1 m?
= - _[-—y+Indnr-In—], 7.28
216712(6 v e n;ﬂ) (7.28)

where in the last line, we used the expansion: I'(e) = é — v+ O(¢e). In summary, we state, that (at
renormalisation group scale ;> = 0)

1 m?
ZA:1+——(——y+ln47r—ln—2). (7.29)
€ M

With Zs = 1 our theory is consistent at one loop. Also, it is renormalisable at one loop. We remark, that
the renormalised correlation functions (¢(p1) #(P2))1-100p> (P(P1) - - $(P4))1.100p are finite, but depend
on the renormalisation scale u. Higher correlation functions at one loop are finite from the onset, e.g. the
six-point function, as at p; = 0:

d*q 1
Q) (> +m?)3”

(@o(p1) *+* $0(P6)) 110op ~ A (7.30)
is finite. Note, that a singularity in {(¢o(p1) - - do(pe)) 1-loop would be disastrous, because there is no
counter term for it. Hence, perturbative renormalisability (in ¢*-theory) implies, that all correlation
functions fo all orders in perturbation theory are finite, by adjusting Zy, Z,,, Z,. Also note, that Physics’
does not depend on the renormalisation scheme, which yields the

renormalisation group invariance

d
,uaobservable =0. (7.31)

Moreover, it does not depend on the cut-off scale

d
Aaobservable =0. (7.32)

Evidently, the bare quantities know nothing of the renormalisation point. Hence

d d d
— b0 = U—mo = U—An = 0. 7.33
,Ud’uqﬁo /ldumo #du 0 (7.33)
It follows, that
dp1 1 dZy 1
ar a1
Faa = Pauz, =™
dm? 1 dz, 1
—_— = =y 7.34
M a2 % A Ym (7.34)
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which are also referred to as beta-functions. In turn, the renormalised quantities are insensitive to the

cut-off. Hence
A oA adazo (7.35)
an? == At = ‘

Therefore, A and u scaling are (asymptotically) directly related.
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A. Complementary Calculations

. Normalisation of the coherent state

Here, the explicit calculations for the normalisation NV () of the coherent state |a) are provided. We start
with the ansatz given in section III

L ol &p; 1
|a>——(a);ﬁ|;[( f N a(pl>]|p1...p,,>, (A.1)
with
a(p)lpl-"pn>=Z(Zﬂ)3 2wp; p1- - Pi-1Piv1 " Pn) 6P~ Pi) - (A.2)

i=1

From Eq. (A.2) and with normal ordering (Eq. (2.97)) it follows

— (p)( TRy P o) (f >) 10)

1 dp o\
= L na(p) ( | S awd >) 0)

= a(p) ! ( I (p)a'( ,))"_1 [0) (A.3)
= APLTS @pp @Pefp '

and similarly

L&y ., L\
<0|a( Wup)a(p)) a'(p)

d3p/

1
= O ( @y

n—1
a*(p) a(p’)) a*(p). (A4

Now we can calculate

— d’p;
(ala) = Nz(a) (m) f ]_[((2”)3 n )3 @ (pi) (pl))

.+ (Ola(py) - - - a(pn) @' (p}) - - - @' (p})I0)

(AS)
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With

(Ola(p1) - - - a(pn) @' (P}) - - - a' (p))I0)

(Ola(py) - ( |a(pa), a"(0))] + a (B} a(pn>) --a' (p)I0)

27)* 8(pn — P,) (Ola(p1) -+ a(pn-1) @' (p),_;) - @ (PIO) + ...

ot Ola(py) -~ a(pa-1) @' (p}) a(pn) @' (P,_) - - a' (p))I0)

(continue normal ordering)

n

@m* > (Ola(py) -+~ a(pa-1)a'@}) -+ a (B)) -+~ a' (PIO) - 6(pn — P)). (A.6)
i=1

where

—

af(p))=1. (A7)
Finally we get

[

1 11 &dp, .
(el Nz—@;ﬂm—m Gy (Pr)a(Pn) -

n—1 d3p- d3p{
e f ]_1[ ( (2@3 G @ @) a(p;)) (Ola(p1) - - a(pa-1) @’ (p,_y) - --a' (pI0)

(continue normal ordering)

1 1 &dp n
- NM)EOE(f (27:))3“ (p)“(p))

1
- M@ e"p(

d3]9 2
20 la(p) )

1 &
= N(@) exp(5 f (27:)9 3|a(p)|2). (A.8)
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