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I’ll sketch several applications of matrix integrals, spending the
last part of the talk in Jackiew-Teitelboim gravity applications
as pioneered by SAAD-SHENKER-STANFORD ’19 (SSS). The parti-
tion function for SJT turns out to decompose in boundary wig-
gles and bulk. The former|2γ“α“1 is (STANFORD-WITTEN ’17)
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We focus on the remaining (according to SSS, harder) integral
over the bulk aided by random matrix theory.

1. DISCRETE SURFACES

‚ To address the enumeration of surfaces constructed by ‘glu-
ings of polygons’, we first address an simpler problem: count
gluings of a rooted polygon of 2p sides. By a gluing, we mean
pairings π P P2p2pq of its sides. We think of π as chords in-
side the polygon; ‘rooted’ means that the polygon is fixed
while Z2p rotates the chord diagram

‚ from the p2p ´ 1q!! “ p2pq!{2pp! “ #P2p2pq gluings, let
cgppq be the number of those having genus g. Call QppNq

the generating series (a polynomial in this case) in the sense

QppNq “
1

N2

ÿ

gě0

cgppqN2´2g ,

where the scalings inN (still just a formal variable to be clar-
ified) are by convenience. Notice that for g ą 0, cgppq are
higher genus generalizations of the Catalan number c0ppq “
1

p`1

`
2p
p

˘
. For instance, N2Q3pNq “ 5N2

` 10N0

‚ a further step is dropping the restriction of the polygons hav-
ing 2p-sides and summing over these
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which is HARER-ZAGIER ’86 formula. This generating
function contains all the information, since the coefficient
rzp`1, Np`1´2g

s 1
2
RHS gives the genus-g fraction of gluings

of 2p-agons for arbitrary p

‚ a matrix integral representation was relevant in one of the
many proofs of Eq. 1. With the trace TrpHq “

řN
a“1Ha,a,

QppNq “
ş
MN pCqs.a.

1
N
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where dµpHq is the normalized Gaußian measure dµpHq “

KN exp
“
´pN{2qTrH2

‰
dH . While in order to get Formula

1 one has to work more, the matrix integral representation
is readily obtained via ⟨Ha,bHc,d⟩Gauß “ 1

N
δa,dδb,c and

⟨Ha1,b1 ¨ ¨ ¨Ha2p,b2p⟩Gauß “
ÿ

πPP2p2pq

ź

pi,jqPπ

⟨Hai,biHaj ,bj ⟩Gauß

‚ if one allows connected ‘gluings’ of several polygons, the
natural concept is combinatorial map G “ pJ, ϕ, τq, where
J “ t1, . . . , hu is the set of h P 2N half-edges and ϕ, τ P

Sh “ Sh, being τ free from free ponts and τ2 “ 1.
The faces, edges and vertices of the map are the cycles
(denoted C) of ϕ, τ and υ “ ϕ ˝ τ , respectively. Thus
#Cpυq ´ #Cpτq ´ #Cpϕq “ χpGq “ 2 ´ 2g. For instance,
J “ t1, . . . , 6u, ϕ “ p162435q, τ “ p14qp25qp36q describe a
map with χp q “ 0, since υ “ p132qp465q

‚ to generate maps, one introduces a potential V pxq “ř
0ăkďd tkx

k
{k which yields a new partition function Z “

CN

ş
MN pCqs.a.

e´NV pHqdH . Maps (with B) are counted by
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ř

gě0N
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where the LHS is computed with ⟨P pHq⟩ :“

Z´1
ş
P pHqeNV pHqdH . These can be obtained when

Bℓ :“ B{Btℓ hits the partition function Z ,

N2Tℓ1ℓ2 “ ℓ1ℓ2 ¨ Bℓ1Bℓ2Z (2)

‚ with ℓ “ pℓ2, . . . , ℓnq, Tutte Equations
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‚ to obtain these (with t1, t2 ` 1 ‰ 0) one can use Schwinger-
Dyson equations (SDE), sketched next: from

ş
dpXe´S{ℏ

q “ 0,
it holds

ş “
divX ´ 1

ℏdSpXq
‰
e´S{ℏ

“ 0. So ⟨gradSpXq⟩ “

ℏ⟨divX⟩. For ℏ Ñ 0, the SDE yield ⟨classical EOM⟩
‚ using relations like e.g. (2), Tutte Equations can be restated

as differential operators, Lk, k “ ´1, 0, 1, 2 . . . that annihi-
late the partition function Z 1

“ exppN2t0qZ , LkZ 1
“ 0.

Omitting the cases k “ 0,˘1, Lk is given by pk ą 1q

ÿ
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which satisfies rLp,Lqs “ pp´ qqLp`q (if L´1,0,1 are added)
for p, q P Zě´1 i.e. non-central vir

2. AIRY STRUCTURES AND TOPOLOGICAL RECURSION (TR)

Airy structures KONTSEVICH-SOIBELMAN ’17 extract the essence
of TR
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‚ Let W˚ be the vector space with basis ttju
d
j“1. If ℏ is a for-

mal variable, an Airy structure on W is a family of operators
tLkuk on SympW˚

qrrℏ, ℏ´1
ss of the form

Lk “ ℏBk ´
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pB, Ck

Bq ´ ℏDk ,

such that rLi, Ljs “ ℏ
ř

k f
k
i,jLk, being fk, Ak, Bk, Ck

P

MdpCq, where Ak and Ck are symmetric, while fk is skew-
symmetric for each k (not a matrix index nor exponent)

‚ The Lie algebra condition implies that A, seen as a ten-
sor, is fully symmetric; that fk

i,j “ Bi
j,k ´ Bj

i,k; and three
IHX-relations described next. To the six vertices one asso-
ciates letters. Red edges have indices that run. Further,
the indices of each letter O at the vertices Ol1

l2 l3 is deter-
mined in the sense of the arrow, starting at the shaded edge.
The IHX-relation for pv1, v2, . . . , v6q “ pB,B,B,B,C,Aq

is that
řd

a“1B
i
j,aA

a
k,l ` Bi

k,aA
j
a,l ` Bi

l,aA
j
a,k is (i Ø j)-

symmetric. Similar relations hold for pv1, v2, . . . , v6q “

pB,A,B,B,B,Aq and pC,B,B,C,C,Bq. The name ‘Airy’
comes from the W “ C case applied to the next theorem.
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(Other diagrams describing D appear, but are omitted here)

‚ THM (Kontsevich-Soibelman) There exists a unique ℏ´1F P

SympW˚
qrr1{ℏss such that tLje

F
“ 0uj“1,...,d

Proof sketch of uniqueness (cf. BOROT’S ’17 lectures). Ex-
pand F “

ř
gě0 ℏ

1´g ř
ně1

ř
I,#I“n Fg,nrIstI{n!, with

I “ pi1, . . . , inq P t1, . . . , du
n and tI “ ti1 ¨ ¨ ¨ tin in



multi-index notation, and read off the coefficient of ℏg ˆ

ti2 ¨ ¨ ¨ tin{pn ´ 1q! in expp´F qLi1 exppF q “ 0. This yields
F0,3ri1, i2, i3s “ Ai1

i2,i3
and F1,1ri1s “ Di1 for χ “ ´1,

while for higher ´χ, Fg,nri1, i2, . . . , ins is determined by
recursion and equals

nÿ

m“2

Bi1
im,a Fg,n´1ra, i2, . . . , xim, . . . , ins (jq :“ #Jq , q “ 1, 2)

`
1
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`
ÿ
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*

‚ adj. ‘topological’ explained by excisions of ‘pair of pants’ (Y )

unstable F0,1 :“ 0 F0,2 :“ 0

χ “ ´1 F0,3 “ F1,1 “

χ “ ´2 F0,4 “ F1,2 “

χ “ ´3 F0,5 “ F1,3 “ F2,1 “

...
...

...
. . .

‚ the boundaries above are not oriented; but, parenthetically,
the ABCD-terms could stem from a TQFT F : Bord2 Ñ VectC

A “ F
´ ¯

, B “ F
` ˘

, C “ F
` ˘

, D “ F
´ ¯

3. THE VOLUME OF THE MODULI SPACE Mg,npLq

‚ Tg,npLq “ tmetrics on Σg,n : length of boundary bj “

Lju{tconformal mapsu, with L “ pL1, . . . , Lnq

‚ Γg,n “ tDiffpΣg,nq that keep labelsu{{isotopies to idΣg,nu

‚ Mg,npLq “ Tg,npLq{Γg,n “ Teichmüller{mapping class
‚ decomposition of a stable surface Σg,n in simple closed curves

yields p Y -pieces, each having Euler number ´1, so p “

´χpΣg,nq. From the 3p geodesic boundaries, n are not glued,
so there are 1

2
pp´nq “ 3g`n´ 3 :“ dg,n inner pairings of

cycles, whose lengths ℓj can coincide. The twisting angle θj
of one cycle with respect to the other is another parameter

‚ tℓj , θjuj“1,...,3g`n´3 are in fact the Fenchel-Nielsen coordi-
nates of Tg,n. The form ωWP “

ř
j dℓj ^ dθj is Γg,n-

invariant, as shown by WOLPERT ‘85, and ω^dg,n
WP {dg,n! defines

the volume form of Mg,npLq and Vg,npLq “ volrMg,npLqs

‚ MIRZAKHANI ’06 TR states that Vg,n`1pL0, Lq equals

ÿ
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ı
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where BMirzpL1, L2, L3q and CMirzpL1, L2, L3q are given by

L3

L1
log

r1 ` epL3`L2´L1q{2
sr1 ` epL3´L2´L1q{2

s

r1 ` epL3`L2`L1q{2sr1 ` epL3´L2`L1q{2s

and 2
L2L3

L1
log

1 ` epL3`L2´L1q{2

1 ` epL3`L2`L1q{2
, respectively

‚ keeping the coefficients of the volumes as amplitudes,

Vg,npLq “
ÿ

a1,...,aně0

Fg,nra1, . . . , ans

nź

j“1

L
2aj
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Mirzakhani’s TR and (3) lead to the Airy structure:

Bi
j,k “

p2k ` 1q!

p2i` 1q!p2j ` 1q!
p2j ` 1q θk´j´i (4a)

Ci
j,k “

p2j ` 1q!p2k ` 1q!

p2i` 1q!
θk`j`1´i , (4b)

where
ř

k`1ě0 z
2kθk{dz “ 4π{ sinp2πzqdz2 “: 1{ypzqdz2.

But we need the initial A and D terms
‚ maps, or ribbon graphs, are useful to compute also intersec-

tion numbers. KONTSEVICH’s ’93 remarkable formula helps

ÿ

ajPZě0,for all j
a1`...`an“dimC Mg,n

ż

Mg,n

ψa1
1 ¨ ψa2

2 ¨ ¨ ¨ψan
n

nź

j“1

p2aj ´ 1q!!

λ
2aj`1

j

“
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G trivalent, of topology pg,nq

22g´2`n

#AutpGq

ź

ePEpGq

1

λLpeq ` λRpeq

‚ there is a unique p1, 1q-graph:

G “ ñ 1
λ3

ş
M1,1

ψ1 “ 21

#AutpGq

1
p2λq3

AutpGq “ tψ P S6 : commuting with ϕ and τu

“ tid, p123qp456q, p132qp465q, τ, ϕ, ϕ´1
u

then
ş
M1,1

ψ1 “ 1{24, so D1 “ 1{24. PENNER ’85 computed
V1,1p0q “ ζp2q implying D0 “ π2

{6. Else Dk “ 0 for k ą 1
‚ four graphs of p0, 3q-type ñAi1

i2,i3
‰ 0 iff i˚ “ 0 (A0

0,0 “ 1)

4. BACK TO JT-GRAVITY (NO LONGER ADDRESSED IN THE TALK)

‚ Recall e´SJT “ peS0q
χpMqe

1
2

ş
M φpR`2q`

ş
BM pK´1q. Whilst in

the path-integral the green term leads to ‘wiggles’, the red
one yields a ‘functional

ş
eixydx „ δpyq’, thus—unlike V0,1,

V0,2—the volume of all such stable M does exists
‚ in random matrix theory χpMq is the exponent of N “

matrix size, but ‘double scaling’ in such a way that density
of eigenvalues keeps normalized impliesN depends on e´S0 ,
which shall replace 1{N as expansion parameter

‚ the relation to random matrix theory reads

Rg
n

pE1, . . . , Enq “

ż

R`

Vg,npLq
nś

j“1

p´Ljq

2zj
e´LjzjdLj ,

where z2j “ ´Ej and if RpEq “ ⟨Trr1{pE ´Hqs⟩ and

⟨RpE1q ¨ ¨ ¨RpEnq⟩c “
ÿ

gPZě0

pe´S0q
2´2g´nRg

n

pE1, . . . , Enq

and the LHS is the connected part of the double-scaled en-
semble with leading eigenvalue density

ρ0pEq “
sinhp2πE1{2

q

p2πq2
, y “ ´πiρ0pEq

which, in terms of z (with z2 “ ´E), yields the function
that generates the Mirzakhani-Airy structure (4)

‚ from inverting RpEq “ ´
ş8

0
zpβqeβEdβ one can compute

the correlators ⟨zpβ1q ¨ ¨ ¨ zpβnq⟩c,JT where zpβq “ Trpe´βH
q

and the random matrix is thought of as Hamiltonian at BM

‚ EYNARD-ORANTIN TR-theory: in terms of residues of
Wg

n
pz1, . . . , znq “ p´2z1q ¨ ¨ ¨ p´2znqRg

n
p´z21 , . . . , z

2
nq is

Wg
n

pz1,Kq “ Res
zÑ0

#
1

pz21 ´ z2q

1

4ypzq

”
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n`1
pz,´z,Kq

#K “ n ´ 1

`
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ı+

Szczecin Brass Quintet, Wikicommons CC 4.0 BY (Modified)

... what SSS computed

this ∂-type, needed?

(let’s pretend brass instruments are not cylinders)

path int. of e−SJT ⇒ stable geometries


