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I'll sketch several applications of matrix integrals, spending the
last part of the talk in Jackiew-Teitelboim gravity applications
as pioneered by SAAD-SHENKER-STANFORD *19 (sss). The parti-
tion function for Sjr turns out to decompose in boundary wig-
gles and bulk. The former|oy—q=1 is (STANFORD-WITTEN '17)
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We focus on the remaining (according to sss, harder) integral
over the bulk aided by random matrix theory.

1. DISCRETE SURFACES

+ To address the enumeration of surfaces constructed by ‘glu-
ings of polygons’, we first address an simpler problem: count
gluings of a rooted polygon of 2p sides. By a gluing, we mean
pairings 7 € P2(2p) of its sides. We think of 7 as chords in-
side the polygon; ‘rooted” means that the polygon is fixed
while Zs), rotates the chord diagram

+ from the (2p — 1)l = (2p)!/2Pp! = #P>(2p) gluings, let
¢g(p) be the number of those having genus g. Call Q,(N)
the generating series (a polynomial in this case) in the sense
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where the scalings in NV (still just a formal variable to be clar-
ified) are by convenience. Notice that for g > 0, c4(p) are
higher genus generalizations of the Catalan number ¢ (p)

17 (°7). For instance, N?Q3(N) = 5N? + 10N°

« afurther step is dropping the restriction of the polygons hav-
ing 2p-sides and summing over these
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which is Harer-Zacier g6 formula. This generating
function contains all the information, since the coefficient
[P, NP*1729] Lrus gives the genus-g fraction of gluings
of 2p-agons for arbitrary p

.

a matrix integral representation was relevant in one of the
many proofs of Eq. 1. With the trace Tr(H) = Y'Y | Ha.a,

Qo) = $yp o A TE(H) dp(H) = (& Tr B g,

where du(H) is the normalized Gauflian measure du(H)
Kn exp [—(N/2) Tr H*|dH. While in order to get Formula
1 one has to work more, the matrix integral representation
is readily obtained via (Ha s He,d)Gaug = %5(1@5;376 and

<Ha1,b1 o 'Hazp,b2p>GauB =

meP2(2p) (irj)em

if one allows connected ‘gluings’ of several polygons, the
natural concept is combinatorial map G = (J,¢,7), where
J = {1,...,h} is the set of h € 2N half-edges and ¢, 7 €
&n = Sh, being 7 free from free ponts and 2 = 1.
The faces, edges and vertices of the map are the cycles
(denoted C) of ¢,7 and v ¢ o T, respectively. Thus
#C(v) — #C(1) — #C(¢) = x(G) = 2 — 2g. For instance,
J={1,...,6},¢ = (162435),7 = (14)(25)(36) describe a
map with x( @) = 0, since v = (132)(465)

to generate maps, one introduces a potential V(z)
Do<k<d trz” /k which yields a new partition function Z =
Cn SIMN (C)sa. e NVUDAH. Maps (with ) are counted by

<T1“ Hel . Tr Hln> —- Zgzo N272g7n72(9)
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where the 1ns is computed with (P(H))
Z7'{P(H)eNVH ) dH. These can be obtained when

O¢ := /0%, hits the partition function Z,

N2775122 =014y - 04,00, 2
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with £ = (la, ..., 4,), Tutte Equations‘tlzo R read
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to obtain these (with ¢1,¢2 + 1 # 0) one can use Schwinger-
Dyson equations (spE), sketched next: from §d(Xe™%/") = 0,
it holds { [ div X — £dS(X)]e /" = 0. So (grad S(X)) =
h(div X). For i — 0, the spk yield (classical Eom)

using relations like e.g. (2), Tutte Equations can be restated
as differential operators, Ly, k = —1,0,1,2... that annihi-
late the partition function Z’ exp(N%t0)Z, LxZ2' = 0.
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Omitting the cases k = 0, £1, Ly, is given by
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jeN

(k>1)

j=1,...,k—1

which satisfies [£,, £4] = (p— ¢)Lp+q (if L—1,0,1 are added)
for p, g € Z>_1 i.e. non-central pit

2. AIRY STRUCTURES AND TOPOLOGICAL RECURSION (TR)

A1ry structures KONTSEVICH-SOIBELMAN 17 extract the essence

* Let W* be the vector space with basis {t;}7_,. If & is a for-

mal variable, an Airy structure on W is a family of operators
{Ly}x on Sym(W*)[[h, h~']] of the form
2

Li = héy — %(t,Akt) — h(t, B*3) — %(a,c’“a) — WDy,

such that [Li, L;] = hY, fF;Lk, being f*, A¥, B*,C" €
M4(C), where A* and C* are symmetric, while fFis skew-
symmetric for each k (not a matrix index nor exponent)
The Lie algebra condition implies that A, seen as a ten-
sor, is fully symmetric; that fF; e — Bfﬁk; and three
mx-relations described next. To the six vertices one asso-
ciates letters. Red edges have indices that run. Further,
the indices of each letter O at the vertices O%@ is deter-
mined in the sense of the arrow, starting at the shaded edge.
The mx-relation for (vi,vs,...,vs) = (B, B, B, B,C, A)
is that ZZ:I Bj oA + Blic,a.Ai,l + Bli,aAi,k is (i < j)-
symmetric. Similar relations hold for (vi,va,...,v6) =
(B, A, B,B, B, A) and (C, B, B,C, C, B). The name ‘Airy’
comes from the W = C case applied to the next theorem.
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(Other diagrams describing D appear, but are omitted here)

Tum (Kontsevich-Soibelman) There exists a unique h™'F €
Sym(W*)[[1/h]] such that {Lje* = 0};—,
Proof sketch of uniqueness (cf. Borot’s 17 lectures). Ex-

pand ' = 3 D Y 2rp1-n FanlI]tr/nl, with
I = (21,7171) € {1,,d}n and tr = til"'ti in

n



multi-index notation, and read off the coefficient of A x + MIRZAKHANI 06 TR states that Vy n41(Lo, L) equals 4. Back 10 JT-GRavITY (NO LONGER ADDRESSED IN THE TALK)

tiy -+ tin/(n — 1) in exp(—F)Li, exp(F) = 0. This yields 7 . N R o

Foglin,iz,is] = Al and Fia[i] = Dy, fory = -1, ) J Butee (Lo, Ly OV (6, Ly« Ty L) e+ Recall e 57 = (e50)x(M0e2 har #(FED+oas (K7D \hilge in
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while for higher —x, Fyn[i1,is,...,in] is determined by o0 the path-integral the green term leads to ‘wiggles’, the red

recursion and equals + % J ) Cwirz(Lo, £,0) [Vsy,lmﬂ(é, C,Ly,...,Ly)
R
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one Vl€1d§ a ‘ﬁmctlolnl \ dz ~ 6(y)’, thus—unlike V5 1,
V 1):2—12116 volume of all such stable M does exists

B Fan—1layia, . imy e yin] Ug = #7000 = 1,2) , , * in random matrix theory x(M) is the exponent of N =
mz::Q moats ! ! + Z Vir 141 (6 J1) Vig 1442 (€ J2)] dede, matrix size, but ‘double scaling’ in such a way that density
1 ‘ n thzih{ij)g?:o of eigenvalues keeps normalized implies N depends on e=°,
+ 50 {FEJ Lnt1[abyiz, . in] () which shall replace 1/N as expansion parameter
where Bumirz(L1, L2, L3) and Cmirz(L1, L2, Ls) are given by +  the relation to random matrix theory reads
+ D0 Frawala, 1] X Fag (b, Jz]} 0 (_L
hitha=g Ls log [1 4 eLatlz=L1)/2][] 4 (La—L2=L1)/2] R,(Ey, ..., En) = J Vg (L) %o*%’mmw
JiwJa={iz,....in} Ll [1 ¥ e(L3+L2+L1)/2][1 ¥ e(L3_L2+L1)/2] n R, j=1 4%
+ adj. ‘topological’ explained by excisions of ‘pair of pants’ (Y) LoLs | 1+ elbstla=lu)/2 where 2} = —F; and if R(E) = (Tr[1/(E — H)]) and
and 2 log LTI respectively
U11§t1b1€ 1“‘(] 1= 0 1"}) 2 1= 0 Ll 1 te srherh Sa\2—2
o o o R(F1) - R(En))e = TP R (B, . E,
‘=1 Fos — @ Fiy— <§ + keeping the coefficients of the volumes as amplitudes, (R(E:) (Bn)) ) EZ‘;”(@ ) f§< b )
N } n and the rus is the connected part of the double-scaled en-
C Von(L) = Z Fynlas,...,a H semble with leading eigenvalue density
X = -2 Foua=" Fio =\~ ay,...,an =0 =1 i
/\ B = sinh(27E'/?) v = — i (E
i \ Mirzakhani’s Tr and (3) lead to the Airy structure: po(E) = (2m2 y = —mipo(E)

xX=-3 Fos= g Fis= F2 1= Bi,— (2k + 1)' (2 + 1) 00 (42) which, in terms ofz. (witl zhz - —FE), yields’the function

2% + D1(27 + 1)! that generates the Mirzakhani-Airy structure (4
(2i+1)1(25 + 1) g y
i (25 + D12k + 1)! (4b) « from inverting R(E) = — " 3(8)e””dpB one can compute

k= - Ok+j+1—i ) : _5
+ the boundaries above are not oriented; but, parenthetically, J (2t + 1)! J the correlators (3(81) - - - 3(Bn))e,r where 3(3) = Tr(e ™)
the aBcD-terms could stem from a TQFT F : Bords — Vect and the random matrix is thought of as Hamiltonian at oM
? 2 ¢ where >, 1, 2280y Jdz = 4m/sin(272)d2? =: 1/y(z)dz -

EyNARD-ORANTIN TR—theor\' in terms of residues of

A= _7:( ;)) B=F( j)\) C = ]:( , D= ]—'(<),) But we ne.ed the initial A and D terms | ’ Wo (21,
* maps, or ribbon graphs, are useful to compute also intersec- n
tion numbers. KONTSEVICH’s 93 remarkable formula helps

sy zZn) = (—221) - (72277)[{%(7,:/% c,22) s

1 1
W, (21, K) = Res {< W)
z— ZI 2 aYl( 2

3. THE VOLUME OF THE MODULI SPACE M (L) " 9 —22) 4y(z) n+1
T _ . . _ Z a1, .. a’" H 20/] — #K =n—1 stable
e Jyn(L) = {metrics on Ly, : length of boundary b; = _ 1 2a]+1 - v
Lj}/{conformal maps}, with L = (L1,...,Ly) aj€lzo.forallj Mg,n j=1 + Z W, 1 (z,J1) x W ha (—2z, Jz)]
. . . . ai+...+ap=dimc My n JiwJo=K 1471 1+j2
« Tgn = {Diff(Xy,n) that keep labels}/{isotopies to idx, ,, } 929—2+n 1 hit+ha=g
o Mgn(L) = Z4n(L)/Tgn = Teichmiiller/mapping class N #Aut(G) AL(e) + AR(e)

G trivalent, of topology (g,n) ecE(G)
* decomposition of a stable surface . in simple closed curves
yields p Y -pieces, each having Euler number —1, so p = * there is a unique (1, 1)-graph:
—X(Zg,n). From the 3p geodesic boundaries, n are not glued, )
so there are (p—n) = 3g+n — 3 := dg,,, inner pairings of G= @ = 35 Sﬂl’l Y1 = mﬁ
cycles, whose lengths £; can coincide. The twisting angle 6, Aut(G) = (¢ € &g

) . : commuting with ¢ and 7}
of one cycle with respect to the other is another parameter

= {id, (123)(456), (132)(465), 7, ¢, ¢~ '}

N1

o {0;,0;}j=1,... 3g+n—3 are in fact the Fenchel-Nielsen coordi-
nates of Zyn. The form wwr = 3;d6; A df; is T'gn- then Sﬂl %1 =1/24,50 D1 = 1/24. PENNER ’85 computed

invariant, as shown by WorperT ‘55, and wvAvpdg’”/dg,n! defines Vi.1(0) = ¢(2) implying Do = 7%/6. Else Dy, = 0 for k > 1
the volume form of Mg (L) and Vy,,,(L) = vol[Mg,(L)] £ 0iffiy — 0(A90 — 1)
% = 0,0 =

stable geometries

path int. of e

+ four graphs of (0, 3)-type = A
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