RANDOM MATRICES \& TOPOLOGICAL RECURSION FOR JT-GRAVITY

Carlos I. Pérez Sánchez, ITP, Universität Heidelberg

 Structures CP7-Seminar on the Schwarzian TheoryI'll sketch several applications of matrix integrals, spending the last part of the talk in Jackiew-Teitelboim gravity applications as pioneered by SaAd-Shenker-Stanford '19 (sss). The partition function for S_{JT} turns out to decompose in boundary wiggles and bulk. The former $\left.\right|_{2 \gamma=\alpha=1}$ is (Stanford-Witten ${ }^{17}$)

$$
Z_{\mathrm{Sch}}^{g=0, n=1}(\beta)=\frac{\mathrm{e}^{\frac{\pi^{2}}{\beta}}}{4 \sqrt{\pi} \beta^{3 / 2}}, \quad Z_{\mathrm{Sch}}^{g=0, n=2}(\beta, b)=\frac{\mathrm{e}^{-\frac{b^{2}}{4 \beta}}}{2 \sqrt{\pi \beta}}
$$

We focus on the remaining (according to sss, harder) integral over the bulk aided by random matrix theory.

1. Discrete surfaces

- To address the enumeration of surfaces constructed by 'gluings of polygons', we first address an simpler problem: count gluings of a rooted polygon of $2 p$ sides. By a gluing, we mean pairings $\pi \in \mathcal{P}_{2}(2 p)$ of its sides. We think of π as chords inside the polygon; 'rooted' means that the polygon is fixed while $\mathbb{Z}_{2 p}$ rotates the chord diagram
- from the $(2 p-1)!!=(2 p)!/ 2^{p} p!=\# \mathcal{P}_{2}(2 p)$ gluings, let $c_{g}(p)$ be the number of those having genus g. Call $Q_{p}(N)$ the generating series (a polynomial in this case) in the sense

$$
Q_{p}(N)=\frac{1}{N^{2}} \sum_{g \geqslant 0} c_{g}(p) N^{2-2 g},
$$

where the scalings in N (still just a formal variable to be clarified) are by convenience. Notice that for $g>0, c_{g}(p)$ are higher genus generalizations of the Catalan number $c_{0}(p)=$ $\frac{1}{p+1}\binom{2 p}{p}$. For instance, $N^{2} Q_{3}(N)=5 N^{2}+10 N^{0}$

- a further step is dropping the restriction of the polygons having $2 p$-sides and summing over these

$$
\begin{equation*}
1+2 z N+2 z \sum_{p \geqslant 1} \frac{Q_{p}(N)}{(2 p-1)!!}(N z)^{p}=\left(\frac{1+z}{1-z}\right)^{N} \tag{1}
\end{equation*}
$$

which is Harer-Zagier 86 formula. This generating function contains all the information, since the coefficient $\left[z^{p+1}, N^{p+1-2 g}\right] \frac{1}{2}$ RHS gives the genus- g fraction of gluings of $2 p$-agons for arbitrary p
a matrix integral representation was relevant in one of the many proofs of Eq. 1 . With the trace $\operatorname{Tr}(H)=\sum_{a=1}^{N} H_{a, a}$, $Q_{p}(N)=\int_{M_{N}(\mathbb{C})_{\text {s.a. }} \frac{1}{N} \operatorname{Tr}\left(H^{2 p}\right) \mathrm{d} \mu(H)=:\left\langle\frac{1}{N} \operatorname{Tr} H^{2 p}\right\rangle_{\text {Gauß }}, ~}^{\text {, }}$ where $\mathrm{d} \mu(H)$ is the normalized Gaußian measure $\mathrm{d} \mu(H)=$ $K_{N} \exp \left[-(N / 2) \operatorname{Tr} H^{2}\right] \mathrm{d} H$. While in order to get Formula 1 one has to work more, the matrix integral representation is readily obtained via $\left\langle H_{a, b} H_{c, d}\right\rangle_{\text {Gauß }}=\frac{1}{N} \delta_{a, d} \delta_{b, c}$ and
$\left\langle H_{a_{1}, b_{1}} \cdots H_{a_{2 p}, b_{2 p}}\right\rangle_{\text {Gauß }}=\sum_{\pi \in \mathcal{P}_{2}(2 p)} \prod_{(i, j) \in \pi}\left\langle H_{a_{i}, b_{i}} H_{a_{j}, b_{j}}\right\rangle_{\text {Gauß }}$

- if one allows connected 'gluings' of several polygons, the natural concept is combinatorial map $G=(J, \phi, \tau)$, where $J=\{1, \ldots, h\}$ is the set of $h \in 2 \mathbb{N}$ half-edges and $\phi, \tau \in$ $\mathfrak{S}_{h}=\mathrm{S}_{h}$, being τ free from free ponts and $\tau^{2}=1$. The faces, edges and vertices of the map are the cycles (denoted \mathcal{C}) of ϕ, τ and $v=\phi \circ \tau$, respectively. Thus $\# \mathcal{C}(v)-\# \mathcal{C}(\tau)-\# \mathcal{C}(\phi)=\chi(G)=2-2 g$. For instance, $J=\{1, \ldots, 6\}, \phi=(162435), \tau=(14)(25)(36)$ describe a map with $\chi(\infty)=0$, since $v=(132)(465)$
to generate maps, one introduces a potential $V(x)=$ $\sum_{0<k \leqslant d} t_{k} x^{k} / k$ which yields a new partition function $\mathcal{Z}=$ $C_{N} \int_{M_{N}(\mathbb{C})_{\text {s.a. }}} \mathrm{e}^{-N V(H)} \mathrm{d} H$. Maps (with ∂) are counted by

$$
\left\langle\operatorname{Tr} H^{\ell_{1}} \cdots \operatorname{Tr} H^{\ell_{n}}\right\rangle=: \sum_{g \geqslant 0} N^{2-2 g-n} \mathcal{T}_{\ell_{1}, \ell_{2}, \ldots, \ell_{n}}^{(g)}
$$

where the Lhs is computed with $\langle P(H)\rangle \quad:=$ $\mathcal{Z}^{-1} \int P(H) \mathrm{e}^{N V(H)} \mathrm{d} H$. These can be obtained when $\partial_{\ell}:=\partial / \partial t_{\ell}$ hits the partition function \mathcal{Z},

$$
\begin{equation*}
N^{2} \mathcal{T}_{\ell_{1} \ell_{2}}=\ell_{1} \ell_{2} \cdot \partial_{\ell_{1}} \partial_{\ell_{2}} \mathcal{Z} \tag{2}
\end{equation*}
$$

- with $\ell=\left(\ell_{2}, \ldots, \ell_{n}\right)$, Tutte Equations $\left.\right|_{t_{1}=0, t_{2}=-1} \mathrm{read}$

$$
\begin{aligned}
\mathcal{T}_{\ell_{1}+1, \ell}^{(g)} & =\sum_{j=3}^{d} t_{j} \cdot \mathcal{T}_{\ell_{1}+j-1, \ell}^{(g)}+\sum_{c=2}^{k} \ell_{c} \cdot \mathcal{T}_{\ell_{1}+\ell_{c}-1, \ell_{2}, \ldots, \widehat{\ell_{c}}, \ldots, \ell_{n}}^{(g)} \\
& +\sum_{\substack{p, q \text { with } \\
p+q=\ell_{1}-1}}\left\{\sum_{\substack{h_{1}+h_{2}=g \\
I \cup J=\ell}} \mathcal{T}_{p, I}^{\left(h_{1}\right)} \times \mathcal{T}_{q, J}^{\left(h_{2}\right)}+\mathcal{T}_{p, q, \ell}^{(g-1)}\right\}
\end{aligned}
$$

- to obtain these (with $t_{1}, t_{2}+1 \neq 0$) one can use SchwingerDyson equations (sDe), sketched next: from $\int \mathrm{d}\left(X \mathrm{e}^{-S / \hbar}\right)=0$, it holds $\int\left[\operatorname{div} X-\frac{1}{\hbar} \mathrm{~d} S(X)\right] \mathrm{e}^{-S / \hbar}=0$. So $\langle\operatorname{grad} S(X)\rangle=$ $\hbar\langle\operatorname{div} X\rangle$. For $\hbar \rightarrow 0$, the sde yield \langle classical еом \rangle
using relations like e.g. (2), Tutte Equations can be restated as differential operators, $\mathcal{L}_{k}, k=-1,0,1,2 \ldots$ that annihilate the partition function $\mathcal{Z}^{\prime}=\exp \left(N^{2} t_{0}\right) \mathcal{Z}, \mathcal{L}_{k} \mathcal{Z}^{\prime}=0$.

Omitting the cases $k=0, \pm 1, \mathcal{L}_{k}$ is given by $\quad(k>1)$
$\sum_{j=1, \ldots, k-1} \frac{j(k-j)}{N^{2}} \partial_{j} \partial_{k-j}+\frac{2 k}{N^{2}} \partial_{k} \partial_{0}+\sum_{j \in \mathbb{N}}(j+k) t_{j} \partial_{j+k}$, which satisfies $\left[\mathcal{L}_{p}, \mathcal{L}_{q}\right]=(p-q) \mathcal{L}_{p+q}\left(\right.$ if $\mathcal{L}_{-1,0,1}$ are added $)$ for $p, q \in \mathbb{Z} \geqslant-1$ i.e. non-central $\mathfrak{v i r}$
2. Airy structures and Topological Recursion (tr)

Airy structures Kontsevich-Soibelman 17 extract the essence

- Let W^{*} be the vector space with basis $\left\{t_{j}\right\}_{j=1}^{d}$. If \hbar is a formal variable, an Airy structure on W is a family of operators $\left\{L_{k}\right\}_{k}$ on $\operatorname{Sym}\left(W^{*}\right)\left[\left[\hbar, \hbar^{-1}\right]\right]$ of the form $L_{k}=\hbar \partial_{k}-\frac{1}{2}\left(\mathbf{t}, A^{k} \mathbf{t}\right)-\hbar\left(\mathbf{t}, B^{k} \partial\right)-\frac{\hbar^{2}}{2}\left(\partial, C^{k} \partial\right)-\hbar D_{k}$, such that $\left[L_{i}, L_{j}\right]=\hbar \sum_{k} f_{i, j}^{k} L_{k}$, being $f^{k}, A^{k}, B^{k}, C^{k} \in$ $M_{d}(\mathbb{C})$, where A^{k} and C^{k} are symmetric, while f^{k} is skewsymmetric for each k (not a matrix index nor exponent)
- The Lie algebra condition implies that A, seen as a tensor, is fully symmetric; that $f_{i, j}^{k}=B_{j, k}^{i}-B_{i, k}^{j}$; and three inx-relations described next. To the six vertices one associates letters. Red edges have indices that run. Further, the indices of each letter O at the vertices $O_{[2][]}^{\left[\frac{1}{3}\right]}$ is determined in the sense of the arrow, starting at the shaded edge. The inx-relation for $\left(v_{1}, v_{2}, \ldots, v_{6}\right)=(B, B, B, B, C, A)$ is that $\sum_{a=1}^{d} B_{j, a}^{i} A_{k, l}^{a}+B_{k, a}^{i} A_{a, l}^{j}+B_{l, a}^{i} A_{a, k}^{j}$ is $(i \leftrightarrow j)-$ symmetric. Similar relations hold for $\left(v_{1}, v_{2}, \ldots, v_{6}\right)=$ (B, A, B, B, B, A) and (C, B, B, C, C, B). The name 'Airy' comes from the $W=\mathbb{C}$ case applied to the next theorem.

(Other diagrams describing D appear, but are omitted here)
Thm (Kontsevich-Soibelman) There exists a unique $\hbar^{-1} F \in$ $\operatorname{Sym}\left(W^{*}\right)[[1 / \hbar]]$ such that $\left\{L_{j} \mathrm{e}^{F}=0\right\}_{j=1, \ldots, d}$
Proof sketch of uniqueness (cf. Borot's 17 lectures). Expand $F=\sum_{g \geqslant 0} \hbar^{1-g} \sum_{n \geqslant 1} \sum_{I, \# I=n} F_{g, n}[I] t_{I} / n!$, with $I=\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, d\}^{n}$ and $t_{I}=t_{i_{1}} \cdots t_{i_{n}}$ in
multi-index notation, and read off the coefficient of $\hbar^{g} \times$ $t_{i_{2}} \cdots t_{i_{n}} /(n-1)!$ in $\exp (-F) L_{i_{1}} \exp (F)=0$. This yields $F_{0,3}\left[i_{1}, i_{2}, i_{3}\right]=A_{i_{2}, i_{3}}^{i_{1}}$ and $F_{1,1}\left[i_{1}\right]=D_{i_{1}}$ for $\chi=-1$, while for higher $-\chi, F_{g, n}\left[i_{1}, i_{2}, \ldots, i_{n}\right]$ is determined by recursion and equals

$$
\begin{align*}
& \sum_{m=2}^{n} B_{i_{m}, a}^{i_{1}} F_{g, n-1}\left[a, i_{2}, \ldots, \widehat{i_{m}}, \ldots, i_{n}\right]\left(j_{q}:=\# J_{q}, q=1,2\right) \\
& +\frac{1}{2} C_{a, b}^{i_{i}}\left\{F_{g-1, n+1}\left[a, b, i_{2}, \ldots, i_{n}\right]\right. \tag{3}\\
& \left.+\sum_{\substack{h_{1}+h_{2}=g \\
J_{1} \cup J_{2}=\left\{i_{2}, \ldots, i_{n}\right\}}} F_{h_{1}, 1+j_{1}}\left[a, J_{1}\right] \times F_{h_{2}, 1+j_{2}}\left[b, J_{2}\right]\right\}
\end{align*}
$$

- adj. 'topological' explained by excisions of 'pair of pants' (Y)

$$
\text { unstable } \quad F_{0,1}:=0 \quad F_{0,2}:=0
$$

- the boundaries above are not oriented; but, parenthetically, the ABCD-terms could stem from a TQFT $\mathcal{F}:$ Bord $_{2} \rightarrow$ Vect $_{C}$
$A=\mathcal{F}(\xi)), B=\mathcal{F}(\{), C=\mathcal{F}(\xi), D=\mathcal{F}(\bigotimes)$

3. The volume of the moduli space $\mathcal{M}_{g, n}(L)$

- $\mathscr{T}_{g, n}(L)=\left\{\right.$ metrics on $\Sigma_{g, n}$: length of boundary $b_{j}=$ $\left.L_{j}\right\} /\{$ conformal maps $\}$, with $L=\left(L_{1}, \ldots, L_{n}\right)$
- $\Gamma_{g, n}=\left\{\operatorname{Diff}\left(\Sigma_{g, n}\right)\right.$ that keep labels $\} /\left\{\right.$ isotopies to id $\left.{ }_{\Sigma_{g, n}}\right\}$
- $\mathcal{M}_{g, n}(L)=\mathscr{T}_{g, n}(L) / \Gamma_{g, n}=$ Teichmüller/mapping class
- decomposition of a stable surface $\Sigma_{g, n}$ in simple closed curves yields $p Y$-pieces, each having Euler number -1 , so $p=$ $-\chi\left(\Sigma_{g, n}\right)$. From the $3 p$ geodesic boundaries, n are not glued, so there are $\frac{1}{2}(p-n)=3 g+n-3:=d_{g, n}$ inner pairings of cycles, whose lengths ℓ_{j} can coincide. The twisting angle θ_{j} of one cycle with respect to the other is another parameter
- $\left\{\ell_{j}, \theta_{j}\right\}_{j=1, \ldots, 3 g+n-3}$ are in fact the Fenchel-Nielsen coordinates of $\mathscr{T}_{g, n}$. The form $\omega_{\mathrm{wp}}=\sum_{j} \mathrm{~d} \ell_{j} \wedge \mathrm{~d} \theta_{j}$ is $\Gamma_{g, n}-$ invariant, as shown by Wolpert ${ }^{85}$, and $\omega_{\mathrm{WP}}^{\wedge} d_{g, n} / d_{g, n}$! defines the volume form of $\mathcal{M}_{g, n}(L)$ and $V_{g, n}(L)=\operatorname{vol}\left[\mathcal{M}_{g, n}(L)\right]$

Mirzakhani ${ }^{06}$ Tr states that $V_{g, n+1}\left(L_{0}, L\right)$ equals

$$
\begin{aligned}
& \sum_{m>0} \int_{\mathbb{R}_{+}} B_{\mathrm{Mirz}}\left(L_{0}, L_{m}, \ell\right) V_{g, n}\left(\ell, L_{1}, \ldots, \widehat{L_{m}}, \ldots, L_{n}\right) \mathrm{d} \ell \\
& +\frac{1}{2} \int_{\mathbb{R}_{+}^{2}} C_{\mathrm{Mirz}}\left(L_{0}, \ell, \ell^{\prime}\right)\left[V_{g-1, n+2}\left(\ell, \ell^{\prime}, L_{1}, \ldots, L_{n}\right)\right. \\
& \left.\quad+\sum_{\substack{h_{1}+h_{2}=g \\
J_{1} \uplus J_{2}=\left\{L_{j}\right\}_{j=0}^{n}}} V_{h_{1}, 1+j_{1}}\left(\ell, J_{1}\right) V_{h_{2}, 1+j_{2}}\left(\ell^{\prime}, J_{2}\right)\right] \mathrm{d} \ell \mathrm{~d} \ell^{\prime}
\end{aligned}
$$

where $B_{\text {Mirz }}\left(L_{1}, L_{2}, L_{3}\right)$ and $C_{\text {Mirz }}\left(L_{1}, L_{2}, L_{3}\right)$ are given by

$$
\begin{aligned}
& \quad \frac{L_{3}}{L_{1}} \log \frac{\left[1+\mathrm{e}^{\left(L_{3}+L_{2}-L_{1}\right) / 2}\right]\left[1+\mathrm{e}^{\left(L_{3}-L_{2}-L_{1}\right) / 2}\right]}{\left[1+\mathrm{e}^{\left(L_{3}+L_{2}+L_{1}\right) / 2}\right]\left[1+\mathrm{e}^{\left(L_{3}-L_{2}+L_{1}\right) / 2}\right]} \\
& \text { and } \quad 2 \frac{L_{2} L_{3}}{L_{1}} \log \frac{1+\mathrm{e}^{\left(L_{3}+L_{2}-L_{1}\right) / 2}}{1+\mathrm{e}^{\left(L_{3}+L_{2}+L_{1}\right) / 2}}, \text { respectively }
\end{aligned}
$$

- keeping the coefficients of the volumes as amplitudes,

$$
V_{g, n}(L)=\sum_{a_{1}, \ldots, a_{n} \geqslant 0} F_{g, n}\left[a_{1}, \ldots, a_{n}\right] \prod_{j=1}^{n} L_{j}^{2 a_{j}}
$$

Mirzakhani's TR and (3) lead to the Airy structure:

$$
\begin{align*}
B_{j, k}^{i} & =\frac{(2 k+1)!}{(2 i+1)!(2 j+1)!}(2 j+1) \theta_{k-j-i} \tag{4a}\\
C_{j, k}^{i} & =\frac{(2 j+1)!(2 k+1)!}{(2 i+1)!} \theta_{k+j+1-i} \tag{4b}
\end{align*}
$$

where $\sum_{k+1 \geqslant 0} z^{2 k} \theta_{k} / \mathrm{d} z=4 \pi / \sin (2 \pi z) \mathrm{d} z^{2}=: 1 / y(z) \mathrm{d} z^{2}$.
But we need the initial A and D terms

- maps, or ribbon graphs, are useful to compute also intersection numbers. Kontsevich's 93 remarkable formula helps

$$
\sum_{a_{j} \in \mathbb{Z} \geqslant 0, \text { for all } j} \int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{a_{1}} \cdot \psi_{2}^{a_{2}} \cdots \psi_{n}^{a_{n}} \prod_{j=1}^{n} \frac{\left(2 a_{j}-1\right)!!}{\lambda_{j}^{2 a_{j}+1}}
$$

$a_{1}+\ldots+a_{n}=\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{g, n}$

$$
=\sum_{G \text { trivalent, of topology }(g, n)} \frac{2^{2 g-2+n}}{\# \operatorname{Aut}(G)} \prod_{e \in E(G)} \frac{1}{\lambda_{L(e)}+\lambda_{R(e)}}
$$

there is a unique $(1,1)$-graph:

$$
G=>\quad \frac{1}{\lambda^{3}} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}=\frac{2^{1}}{\# \operatorname{Aut}(G)} \frac{1}{(2 \lambda)^{3}}
$$

$\operatorname{Aut}(G)=\left\{\psi \in \mathfrak{S}_{6}:\right.$ commuting with ϕ and $\left.\tau\right\}$

$$
=\left\{\mathrm{id},(123)(456),(132)(465), \tau, \phi, \phi^{-1}\right\}
$$

then $\int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}=1 / 24$, so $D_{1}=1 / 24$. Penner ' 85 computed $V_{1,1}(0)=\zeta(2)$ implying $D_{0}=\pi^{2} / 6$. Else $D_{k}=0$ for $k>1$ four graphs of $(0,3)$-type $\Rightarrow A_{i_{2}, i_{3}}^{i_{1}} \neq 0$ iff $i_{*}=0\left(A_{0,0}^{0}=1\right)$
4. Back to JT-Gravity (No longer addressed in the talk)

- Recall $\mathrm{e}^{-S_{\mathrm{JT}}}=\left(\mathrm{e}^{S_{0}}\right)^{\chi(M)} \mathrm{e}^{\frac{1}{2} \int_{M} \varphi(R+2)+\int_{\partial M}(K-1)}$. Whilst in the path-integral the green term leads to 'wiggles', the red one yields a 'functional $\int \mathrm{e}^{\mathrm{i} x y} \mathrm{~d} x \sim \delta(y)$ ', thus-unlike $V_{0,1}$, $V_{0,2}$-the volume of all such stable M does exists
- in random matrix theory $\chi(M)$ is the exponent of $N=$ matrix size, but 'double scaling' in such a way that density of eigenvalues keeps normalized implies N depends on $\mathrm{e}^{-S_{0}}$, which shall replace $1 / N$ as expansion parameter the relation to random matrix theory reads

$$
R_{g}\left(E_{1}, \ldots, E_{n}\right)=\int_{\mathbb{R}_{+}} V_{g, n}(L) \prod_{j=1}^{n} \frac{\left(-L_{j}\right)}{2 z_{j}} \mathrm{e}^{-L_{j} z_{j}} \mathrm{~d} L_{j},
$$

where $z_{j}^{2}=-E_{j}$ and if $R(E)=\langle\operatorname{Tr}[1 /(E-H)]\rangle$ and
$\left\langle R\left(E_{1}\right) \cdots R\left(E_{n}\right)\right\rangle_{\mathrm{c}}=\sum_{g \in \mathbb{Z}_{\geqslant 0}}\left(\mathrm{e}^{-S_{0}}\right)^{2-2 g-n} R_{n}^{g}\left(E_{1}, \ldots, E_{n}\right)$
and the LHS is the connected part of the double-scaled ensemble with leading eigenvalue density

$$
\rho_{0}(E)=\frac{\sinh \left(2 \pi E^{1 / 2}\right)}{(2 \pi)^{2}}, \quad y=-\pi \mathrm{i} \rho_{0}(E)
$$

which, in terms of z (with $z^{2}=-E$), yields the function that generates the Mirzakhani-Airy structure (4)
from inverting $R(E)=-\int_{0}^{\infty} \mathfrak{z}(\beta) \mathrm{e}^{\beta E} \mathrm{~d} \beta$ one can compute the correlators $\left\langle\mathfrak{z}\left(\beta_{1}\right) \cdots \mathfrak{z}\left(\beta_{n}\right)\right\rangle_{\mathrm{c}, \mathrm{T}}$ where $\mathfrak{z}(\beta)=\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)$ and the random matrix is thought of as Hamiltonian at ∂M
Eynard-Orantin tr-theory: in terms of residues of $W_{n}^{g}\left(z_{1}, \ldots, z_{n}\right)=\left(-2 z_{1}\right) \cdots\left(-2 z_{n}\right) R_{n}^{g}\left(-z_{1}^{2}, \ldots, z_{n}^{2}\right)$ is
$W_{\substack{g \\ n}}\left(z_{1}, K\right)=\operatorname{Res}_{z \rightarrow 0}\left\{\frac{1}{\left(z_{1}^{2}-z^{2}\right)} \frac{1}{4 y(z)}\left[W_{\substack{g-1 \\ n+1}}(z,-z, K)\right.\right.$
$\left.\left.\# K=n-1+\sum_{J_{1} \cup J_{2}=K}^{\text {stable }} W_{h_{1}}\left(z, J_{1}\right) \times W_{h_{1}}\left(-z, J_{2}\right)\right]\right\}$ $J_{1} \cup J_{2}=k$
$h_{1}+h_{2}=g$

