RANDOM MATRICES & TOPOLOGICAL RECURSION FOR JT-GRAVITY

Carlos I. Pérez Sánchez, ITP, Universität Heidelberg Structures CP7-Seminar on the Schwarzian Theory

I'll sketch several applications of matrix integrals, spending the last part of the talk in Jackiew-Teitelboim gravity applications as pioneered by SAAD-SHENKER-STANFORD '19 (sss). The partition function for $S_{\rm JT}$ turns out to decompose in boundary wiggles and bulk. The former $|_{2\gamma=\alpha=1}$ is (STANFORD-WITTEN '17)

$$Z^{g=0,n=1}_{\rm Sch}(\beta) = \frac{{\rm e}^{\frac{\pi^2}{\beta}}}{4\sqrt{\pi\beta^{3/2}}}, \qquad Z^{g=0,n=2}_{\rm Sch}(\beta,b) = \frac{{\rm e}^{-\frac{b^2}{4\beta}}}{2\sqrt{\pi\beta}}\,.$$

We focus on the remaining (according to sss, harder) integral over the bulk aided by random matrix theory.

1. Discrete surfaces

- To address the enumeration of surfaces constructed by 'gluings of polygons', we first address an simpler problem: count gluings of a rooted polygon of 2p sides. By a gluing, we mean pairings $\pi \in \mathcal{P}_2(2p)$ of its sides. We think of π as chords inside the polygon; 'rooted' means that the polygon is fixed while \mathbb{Z}_{2p} rotates the chord diagram
- from the $(2p-1)!! = (2p)!/2^p p! = \#\mathcal{P}_2(2p)$ gluings, let $c_g(p)$ be the number of those having genus g. Call $Q_p(N)$ the generating series (a polynomial in this case) in the sense

$$Q_p(N) = \frac{1}{N^2} \sum_{g \ge 0} c_g(p) N^{2-2g},$$

where the scalings in N (still just a formal variable to be clarified) are by convenience. Notice that for g > 0, $c_g(p)$ are higher genus generalizations of the Catalan number $c_0(p) = \frac{1}{p+1} {2p \choose p}$. For instance, $N^2Q_3(N) = 5N^2 + 10N^0$

• a further step is dropping the restriction of the polygons having 2*p*-sides and summing over these

$$1 + 2zN + 2z\sum_{p \ge 1} \frac{Q_p(N)}{(2p-1)!!} (Nz)^p = \left(\frac{1+z}{1-z}\right)^N \quad (1)$$

which is HARER-ZAGIER '86 formula. This generating function contains all the information, since the coefficient $[z^{p+1}, N^{p+1-2g}]^{\frac{1}{2}}$ RHs gives the genus-g fraction of gluings of 2p-agons for arbitrary p

• a matrix integral representation was relevant in one of the many proofs of Eq. 1. With the trace $Tr(H) = \sum_{a=1}^{N} H_{a,a}$,

$$Q_p(N) = \int_{M_N(\mathbb{C})_{\text{S.a.}}} \frac{1}{N} \operatorname{Tr}(H^{2p}) \,\mathrm{d}\mu(H) =: \langle \frac{1}{N} \operatorname{Tr} H^{2p} \rangle_{\text{Gauß}},$$

where $d\mu(H)$ is the normalized Gaußian measure $d\mu(H) = K_N \exp\left[-(N/2) \operatorname{Tr} H^2\right] dH$. While in order to get Formula 1 one has to work more, the matrix integral representation is readily obtained via $\langle H_{a,b}H_{c,d}\rangle_{\text{Gauß}} = \frac{1}{N}\delta_{a,d}\delta_{b,c}$ and

$$H_{a_1,b_1}\cdots H_{a_{2p},b_{2p}}\rangle_{\text{Gauß}} = \sum_{\pi\in\mathcal{P}_2(2p)}\prod_{(i,j)\in\pi}\langle H_{a_i,b_i}H_{a_j,b_j}\rangle_{\text{Gauß}} \text{ of }$$

• if one allows connected 'gluings' of several polygons, the natural concept is *combinatorial map* $G = (J, \phi, \tau)$, where $J = \{1, \ldots, h\}$ is the set of $h \in 2\mathbb{N}$ half-edges and $\phi, \tau \in \iota_{-(m)}$. $\mathfrak{S}_h = \mathfrak{S}_h$, being τ free from free ponts and $\tau^2 = 1$. The faces, edges and vertices of the map are the cycles (denoted \mathcal{C}) of ϕ, τ and $\upsilon = \phi \circ \tau$, respectively. Thus $\#\mathcal{C}(\upsilon) - \#\mathcal{C}(\tau) - \#\mathcal{C}(\phi) = \chi(G) = 2 - 2g$. For instance, $J = \{1, \ldots, 6\}, \phi = (162435), \tau = (14)(25)(36)$ describe a map with $\chi(\mathbf{O}) = 0$, since $\upsilon = (132)(465)$

to generate maps, one introduces a potential $V(x) = \sum_{0 < k \le d} t_k x^k / k$ which yields a new partition function $\mathcal{Z} = C_N \int_{M_N(\mathbb{C})_{s.a.}} e^{-NV(H)} dH$. Maps (with ∂) are counted by

$$\langle \operatorname{Tr} H^{\ell_1} \cdots \operatorname{Tr} H^{\ell_n} \rangle =: \sum_{g \ge 0} N^{2-2g-n} \mathcal{T}^{(g)}_{\ell_1, \ell_2, \dots, \ell}$$

where the LHS is computed with $\langle P(H) \rangle := \mathcal{Z}^{-1} \int P(H) e^{NV(H)} dH$. These can be obtained when $\partial_{\ell} := \partial/\partial t_{\ell}$ hits the partition function \mathcal{Z} ,

$$N^2 \mathcal{T}_{\ell_1 \ell_2} = \ell_1 \ell_2 \cdot \partial_{\ell_1} \partial_{\ell_2} \mathcal{Z}$$
(2)

with
$$\ell = (\ell_2, \ldots, \ell_n)$$
, Tutte Equations $|_{t_1=0} |_{t_2=-1}$ read

$$\mathcal{T}_{\ell_{1}+1,\ell}^{(g)} = \sum_{j=3}^{d} t_{j} \cdot \mathcal{T}_{\ell_{1}+j-1,\ell}^{(g)} + \sum_{c=2}^{k} \ell_{c} \cdot \mathcal{T}_{\ell_{1}+\ell_{c}-1,\ell_{2},...,\widehat{\ell_{c}},...,\ell_{n}}^{(g)} \\ + \sum_{\substack{p,q \text{ with} \\ p+q=\ell_{1}-1}} \left\{ \sum_{\substack{h_{1}+h_{2}=g \\ I \cup J=\ell}} \mathcal{T}_{p,I}^{(h_{1})} \times \mathcal{T}_{q,J}^{(h_{2})} + \mathcal{T}_{p,q,\ell}^{(g-1)} \right\}$$

• to obtain these (with $t_1, t_2 + 1 \neq 0$) one can use *Schwinger-Dyson equations* (SDE), sketched next: from $\int d(Xe^{-S/\hbar}) = 0$, it holds $\int [\operatorname{div} X - \frac{1}{\hbar} dS(X)]e^{-S/\hbar} = 0$. So $\langle \operatorname{grad} S(X) \rangle = \hbar \langle \operatorname{div} X \rangle$. For $\hbar \to 0$, the SDE yield $\langle \operatorname{classical EOM} \rangle$

using relations like e.g. (2), Tutte Equations can be restated as differential operators, \mathcal{L}_k , k = -1, 0, 1, 2... that annihilate the partition function $\mathcal{Z}' = \exp(N^2 t_0)\mathcal{Z}$, $\mathcal{L}_k \mathcal{Z}' = 0$. Omitting the cases $k = 0, \pm 1, \mathcal{L}_k$ is given by (k > 1)

$$\sum_{j\in\mathbb{N}}\frac{j(k-j)}{N^2}\partial_j\partial_{k-j}+\frac{2k}{N^2}\partial_k\partial_0+\sum_{j\in\mathbb{N}}(j+k)t_j\partial_{j+k},$$

which satisfies $[\mathcal{L}_p, \mathcal{L}_q] = (p-q)\mathcal{L}_{p+q}$ (if $\mathcal{L}_{-1,0,1}$ are added) for $p, q \in \mathbb{Z}_{\geq -1}$ i.e. non-central vir

2. Airy structures and Topological Recursion (TR)

Airy structures Kontsevich-Soibelman '17 extract the essence of TR

Let W* be the vector space with basis {t_j}^d_{j=1}. If ħ is a formal variable, an Airy structure on W is a family of operators {L_k}_k on Sym(W*)[[ħ, ħ⁻¹]] of the form

$$L_{k} = \hbar \partial_{k} - \frac{1}{2} (\mathbf{t}, A^{k} \mathbf{t}) - \hbar (\mathbf{t}, B^{k} \partial) - \frac{\hbar^{2}}{2} (\partial, C^{k} \partial) - \hbar D_{k},$$

such that $[L_i, L_j] = \hbar \sum_k f_{i,j}^k L_k$, being $f^k, A^k, B^k, C^k \in M_d(\mathbb{C})$, where A^k and C^k are symmetric, while f^k is skew-symmetric for each k (not a matrix index nor exponent)

The Lie algebra condition implies that A, seen as a tensor, is fully symmetric; that $f_{i,j}^k = B_{j,k}^i - B_{i,k}^j$; and three IHX-relations described next. To the six vertices one associates letters. Red edges have indices that run. Further, the indices of each letter O at the vertices $O_{\mathbb{Z}[\mathbb{S}]}^{[\mathbb{I}]}$ is determined in the sense of the arrow, starting at the shaded edge. The IHX-relation for $(v_1, v_2, \ldots, v_6) = (B, B, B, B, C, A)$ is that $\sum_{a=1}^{d} B_{j,a}^i A_{k,l}^a + B_{k,a}^i A_{a,l}^j + B_{l,a}^i A_{a,k}^j$ is $(i \leftrightarrow j)$ -symmetric. Similar relations hold for $(v_1, v_2, \ldots, v_6) = (B, A, B, B, B, A)$ and (C, B, B, C, C, B). The name 'Airy' comes from the $W = \mathbb{C}$ case applied to the next theorem.

(Other diagrams describing D appear, but are omitted here)

• THM (Kontsevich-Soibelman) There exists a unique $\hbar^{-1}F \in$ Sym $(W^*)[[1/\hbar]]$ such that $\{L_j e^F = 0\}_{j=1,...,d}$

Proof sketch of uniqueness (cf. BOROT'S '17 lectures). Expand $F = \sum_{g \ge 0} \hbar^{1-g} \sum_{n \ge 1} \sum_{I, \#I=n} F_{g,n}[I]t_I/n!$, with $I = (i_1, \ldots, i_n) \in \{1, \ldots, d\}^n$ and $t_I = t_{i_1} \cdots t_{i_n}$ in

multi-index notation, and read off the coefficient of $\hbar^g \times \bullet$ MIRZAKHANI '06 TR states that $V_{q,n+1}(L_0,L)$ equals $t_{i_2}\cdots t_{i_n}/(n-1)!$ in $\exp(-F)L_{i_1}\exp(F)=0$. This yields $F_{0,3}[i_1, i_2, i_3] = A_{i_2, i_3}^{i_1}$ and $F_{1,1}[i_1] = D_{i_1}$ for $\chi = -1$, while for higher $-\chi$, $F_{g,n}[i_1, i_2, \dots, i_n]$ is determined by recursion and equals

$$\sum_{m=2}^{n} B_{i_{m,a}}^{i_{1}} F_{g,n-1}[a, i_{2}, \dots, \widehat{i_{m}}, \dots, i_{n}] \quad (j_{q} := \#J_{q}, q = 1, 2)$$

$$+ \frac{1}{2} C_{a,b}^{i_{i}} \left\{ F_{g-1,n+1}[a, b, i_{2}, \dots, i_{n}] \quad (3)$$

$$+ \sum_{\substack{h_{1}+h_{2}=g\\J_{1} \cup J_{2}=\{i_{2}, \dots, i_{n}\}} F_{h_{1},1+j_{1}}[a, J_{1}] \times F_{h_{2},1+j_{2}}[b, J_{2}] \right\}$$

• adj. 'topological' explained by excisions of 'pair of pants' (Y)

• the boundaries above are not oriented; but, parenthetically, the ABCD-terms could stem from a TQFT \mathcal{F} : $\mathsf{Bord}_2 \to \mathsf{Vect}_{\mathbb{C}}$

$$A = \mathcal{F}\left(\begin{array}{c} \\ \\ \end{array}\right), B = \mathcal{F}\left(\begin{array}{c} \\ \\ \end{array}\right), C = \mathcal{F}\left(\begin{array}{c} \\ \\ \\ \end{array}\right), D = \mathcal{F}\left(\begin{array}{c} \\ \\ \end{array}\right)$$

3. The volume of the moduli space $\mathcal{M}_{g,n}(L)$

- $\mathscr{T}_{g,n}(L) = \{ \text{metrics on } \Sigma_{g,n} : \text{length of boundary } b_j = \}$ L_i {conformal maps}, with $L = (L_1, \ldots, L_n)$
- $\Gamma_{q,n} = {\text{Diff}(\Sigma_{q,n}) \text{ that keep labels}} / {\text{isotopies to id}_{\Sigma_{q,n}}}$
- $\mathcal{M}_{q,n}(L) = \mathscr{T}_{q,n}(L)/\Gamma_{q,n}$ = Teichmüller/mapping class
- decomposition of a stable surface $\Sigma_{g,n}$ in simple closed curves yields p Y-pieces, each having Euler number -1, so p = $-\chi(\Sigma_{g,n})$. From the 3p geodesic boundaries, n are not glued, so there are $\frac{1}{2}(p-n) = 3g+n-3 := d_{g,n}$ inner pairings of cycles, whose lengths ℓ_j can coincide. The twisting angle θ_i of one cycle with respect to the other is another parameter
- $\{\ell_j, \theta_j\}_{j=1,\dots,3g+n-3}$ are in fact the *Fenchel-Nielsen* coordinates of $\mathscr{T}_{g,n}$. The form $\omega_{WP} = \sum_{j} d\ell_j \wedge d\theta_j$ is $\Gamma_{g,n}$ invariant, as shown by WOLPERT '85, and $\omega_{WP}^{\wedge d_{g,n}}/d_{g,n}!$ defines the volume form of $\mathcal{M}_{q,n}(L)$ and $V_{q,n}(L) = \operatorname{vol}[\mathcal{M}_{q,n}(L)]$

$$\begin{split} \sum_{m>0} \int_{\mathbb{R}_{+}} B_{\text{Mirz}}(L_{0}, L_{m}, \ell) V_{g,n}(\ell, L_{1}, \dots, \widehat{L_{m}}, \dots, L_{n}) \, \mathrm{d}\ell \\ &+ \frac{1}{2} \int_{\mathbb{R}_{+}^{2}} C_{\text{Mirz}}(L_{0}, \ell, \ell') \Big[V_{g-1,n+2}(\ell, \ell', L_{1}, \dots, L_{n}) \\ &+ \sum_{\substack{h_{1}+h_{2}=g\\J_{1} \cup J_{2}=\{L_{j}\}_{j=0}^{p}} V_{h_{1}, 1+j_{1}}(\ell, J_{1}) V_{h_{2}, 1+j_{2}}(\ell', J_{2}) \Big] \, \mathrm{d}\ell \mathrm{d}\ell' \,, \end{split}$$

where $B_{\text{Mirz}}(L_1, L_2, L_3)$ and $C_{\text{Mirz}}(L_1, L_2, L_3)$ are given by •

$$\begin{aligned} \frac{L_3}{L_1} \log \frac{\left[1 + e^{(L_3 + L_2 - L_1)/2}\right] \left[1 + e^{(L_3 - L_2 - L_1)/2}\right]}{\left[1 + e^{(L_3 + L_2 + L_1)/2}\right] \left[1 + e^{(L_3 - L_2 + L_1)/2}\right]} \\ \text{and} \qquad 2 \frac{L_2 L_3}{L_1} \log \frac{1 + e^{(L_3 + L_2 - L_1)/2}}{1 + e^{(L_3 + L_2 + L_1)/2}}, \text{ respectively} \end{aligned}$$

• keeping the coefficients of the volumes as amplitudes,

$$V_{g,n}(L) = \sum_{a_1,\dots,a_n \ge 0} F_{g,n}[a_1,\dots,a_n] \prod_{j=1}^n L_j^{2a_j},$$

Mirzakhani's TR and (3) lead to the Airy structure:

$$B_{j,k}^{i} = \frac{(2k+1)!}{(2i+1)!(2j+1)!} (2j+1) \theta_{k-j-i}$$
(4a)

$$C_{j,k}^{i} = \frac{(2j+1)!(2k+1)!}{(2i+1)!} \,\theta_{k+j+1-i}\,,\tag{4b}$$

where $\sum_{k+1 \ge 0} z^{2k} \theta_k / dz = 4\pi / \sin(2\pi z) dz^2 =: 1/y(z) dz^2$. But we need the initial A and D terms

· maps, or ribbon graphs, are useful to compute also intersection numbers. Kontsevich's '93 remarkable formula helps

$$\sum_{\substack{a_j \in \mathbb{Z}_{\ge 0}, \text{ for all } j \\ 1+\dots+a_n = \dim_{\mathbb{C}} \overline{\mathcal{M}}_{g,n}}} \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{a_1} \cdot \psi_2^{a_2} \cdots \psi_n^{a_n} \prod_{j=1}^n \frac{(2a_j - 1)!!}{\lambda_j^{2a_j + 1}}$$
$$= \sum_{G \text{ trivalent, of topology } (g,n)} \frac{2^{2g - 2 + n}}{\# \text{Aut}(G)} \prod_{e \in E(G)} \frac{1}{\lambda_{L(e)} + \lambda_{R(e)}}$$

there is a unique (1, 1)-graph:

 $G = \bigcap_{\lambda_1} \Rightarrow \frac{1}{\lambda^3} \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{2^1}{\# \operatorname{Aut}(G)} \frac{1}{(2\lambda)^3}$ $\operatorname{Aut}(G) = \{ \psi \in \mathfrak{S}_6 : \text{ commuting with } \phi \text{ and } \tau \}$ $= \{ id, (123)(456), (132)(465), \tau, \phi, \phi^{-1} \}$

then $\int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = 1/24$, so $D_1 = 1/24$. Penner '85 computed $V_{1,1}(0) = \zeta(2)$ implying $D_0 = \pi^2/6$. Else $D_k = 0$ for k > 1four graphs of (0, 3)-type $\Rightarrow A_{i_2,i_3}^{i_1} \neq 0$ iff $i_* = 0$ ($A_{0,0}^0 = 1$)

4. BACK TO JT-GRAVITY (NO LONGER ADDRESSED IN THE TALK)

- Recall $e^{-S_{JT}} = (e^{S_0})^{\chi(M)} e^{\frac{1}{2} \int_M \varphi(R+2) + \int_{\partial M} (K-1)}$. Whilst in the path-integral the green term leads to 'wiggles', the red one yields a 'functional $\int e^{ixy} dx \sim \delta(y)$ ', thus—unlike $V_{0,1}$, $V_{0,2}$ —the volume of all such stable M does exists
- in random matrix theory $\chi(M)$ is the exponent of N =matrix size, but 'double scaling' in such a way that density of eigenvalues keeps normalized implies N depends on e^{-S_0} , which shall replace 1/N as expansion parameter the relation to random matrix theory reads

$$R_{g}(E_{1},\ldots,E_{n}) = \int_{\mathbb{R}_{+}} V_{g,n}(L) \prod_{j=1}^{n} \frac{(-L_{j})}{2z_{j}} e^{-L_{j}z_{j}} dL_{j},$$

where $z_{j}^{2} = -E_{j}$ and if $R(E) = \langle \operatorname{Tr}[1/(E-H)] \rangle$ and

$$\langle R(E_1)\cdots R(E_n)\rangle_{\mathsf{c}} = \sum_{g\in\mathbb{Z}_{\geq 0}} (\mathrm{e}^{-S_0})^{2-2g-n} R_{g_n}(E_1,\ldots,E_n)$$

and the LHS is the connected part of the double-scaled ensemble with leading eigenvalue density

$$\rho_0(E) = \frac{\sinh(2\pi E^{1/2})}{(2\pi)^2}, \qquad y = -\pi i \rho_0(E)$$

which, in terms of z (with $z^2 = -E$), yields the function that generates the Mirzakhani-Airy structure (4)

• from inverting $R(E) = -\int_0^\infty \mathfrak{z}(\beta) e^{\beta E} d\beta$ one can compute the correlators $\langle \mathfrak{z}(\beta_1) \cdots \mathfrak{z}(\beta_n) \rangle_{c,\mathrm{IT}}$ where $\mathfrak{z}(\beta) = \mathrm{Tr}(\mathrm{e}^{-\beta H})$ and the random matrix is thought of as Hamiltonian at ∂M

• EYNARD-ORANTIN TR-theory: in terms of residues of $W_g(z_1,\ldots,z_n) = (-2z_1)\cdots(-2z_n)R_g(-z_1^2,\ldots,z_n^2)$ is

$$\begin{split} W_{g}(z_{1},K) &= \underset{z \to 0}{\operatorname{Res}} \left\{ \frac{1}{(z_{1}^{2}-z^{2})} \frac{1}{4y(z)} \left[W_{g-1}(z,-z,K) \right. \\ & \# K = n-1 \\ & + \underset{\substack{J_{1} \cup J_{2} = K \\ h_{1}+h_{2} = g}}{\operatorname{stable}} W_{h_{1}}(z,J_{1}) \times W_{h_{1}}(-z,J_{2}) \right] \right\} \end{split}$$

