Yang-Mills(-Higgs) matrix model (from spectral triples in NCG) Corfu Summer School, 2022

Carlos I. Pérez-Sánchez
ITP, University of Heidelberg

perez@thphys.uni-heidelberg.de

Based on:
$1912.13288 \mathrm{pl}^{\mathrm{pl}} ; 2007.10914 \mathrm{pl}^{\mathrm{pl}} ; \underline{2105.01025}^{\mathrm{pl}, \mathrm{de}} ; 2111.02858 \mathrm{pl}^{\mathrm{pl} \text {, } \mathrm{de}}$ pl TEAM Fundacja na Rzecz Nauki Polskiej
de ERC, indirectly \& DFG-Structures Excellence Cluster

Outline

- Motivating spectral triples
- Mathematics
- Physics
- Fuzzy or Matrix geometries as spectral triples
- The Yang-Mills(-Higgs) matrix model
- From noncommutative topology: differential noncommutative (nc) geometry $=$ nc topology [Gelfand, Najmark Mat. Sbornik' 43] + metric [Connes, NCG '94] \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$
- From noncommutative topology: differential noncommutative (nc) geometry $=$ nc topology [Gelfand, Najmark Mat. Sbornik '43] + metric [Connes, NCG '94] \{compact Hausdorff topological spaces\} \simeq \{unital commutative C^{*}-algebras $\}$

\{'noncommutative topological spaces'\} \simeq \{unital Colder *-algebras $\}$
- the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum of $\Omega \subset \mathbb{R}^{d}$
$\left(\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots\right)$

$$
\#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+o\left(\Lambda^{d / 2}\right)
$$

One cannot answer positively Marek Kac's 1966-question ${ }^{\dagger}$ from only this. But you can 'hear the shape of Ω ' knowing a spectral triple. [Connes, JNCG 2013] ([Glaser, Stern J. Geom. Phys. 2020 \& Connes, van Suijlekom CMP 2021] can hear an MP3; this talk is not unrelated)

- From noncommutative topology: differential noncommutative (nc) geometry $=$ nc topology [Gelfand, Najmark Mat. Sbornik '43] + metric [Connes, NCG '94] \{compact Hausdorff topological spaces\} \simeq \{unital commutative C^{*}-algebras $\}$

\{'noncommutative topological spaces'\} $\simeq\left\{\right.$ unital ${ }^{\prime}$ mmtative C^{*}-algebras $\}$
- the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum of $\Omega \subset \mathbb{R}^{d}$ $\left(\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots\right)$

$$
\#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+\mathrm{o}\left(\Lambda^{d / 2}\right)
$$

One cannot answer positively Marek Kac's 1966-question ${ }^{\dagger}$ from only this. But you can 'hear the shape of Ω ' knowing a spectral triple. [Connes, JNCG 2013] ([Glaser, Stern J. Geom. Phys. 2020 \& Connes, van Suijlekom CMP 2021] can hear an MP3; this talk is not unrelated)

- From noncommutative topology: differential noncommutative (nc) geometry $=$ nc topology [Gelfand, Najmark Mat. Sbornik' 43] + metric [Connes, NCG '94] \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$

\{'noncommutative topological spaces'\} \simeq \{unital ${ }^{\prime}$ mutative C^{*}-algebras $\}$
- the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum of $\Omega \subset \mathbb{R}^{d}$ $\left(\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots\right)$

$$
\begin{aligned}
& \text { [Gorchn, West, Wobpert. snort. Moth. '92] }{ }^{*} \\
& \#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+\mathrm{o}\left(\Lambda^{d / 2}\right)
\end{aligned}
$$

One cannot answer positively Marek Kac's 1966-question ${ }^{\dagger}$ from only this. But you can 'hear the shape of Ω ' knowing a spectral triple. [Cones, JNCG 2013] ([Glaser, Stern J. Geom. Phys. 2020 \& Tonnes, van Suijlekom CMP 2021] can hear an MP3; this talk is not unrelated)

Replace spin manifold (M, g) by $\left(C^{\infty}(\mathcal{M}), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

$$
\inf _{\gamma \text { as above }}\left\{\int_{\gamma} \mathrm{d} s\right\}=d(\boldsymbol{x}, \boldsymbol{y})
$$

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

$$
\left|\mathrm{ev}_{x}(f)-\mathrm{ev}_{y}(f)\right|
$$

Replace spin manifold (\mathcal{M}, g) by $\left(C^{\infty}(M), L^{2}(M, S), D_{\mathcal{M}}\right)$

Connes’ geodesic distance

$$
\sup _{f \in C^{\infty}(\mathcal{M})}\left\{\left|\operatorname{ev}_{x}(f)-\mathrm{ev}_{y}(f)\right|:\left\|D_{M} f-f D_{M}\right\| \leqslant 1\right\}
$$

Replace spin manifold (\mathcal{M}, g) by $\left(C^{\infty}(M), L^{2}(M, S), D_{\mathcal{M}}\right)$

Connes’ geodesic distance

$$
\inf _{\gamma \text { as above }}\left\{\int_{\gamma} \mathrm{d} s\right\}=d(x, y)=\sup _{f \in C^{\infty}(\mathcal{M})}\left\{\left|\operatorname{ev}_{x}(f)-\operatorname{ev}_{y}(f)\right|:\left\|D_{\mathcal{M}} f-f D_{\mathcal{M}}\right\| \leqslant 1\right\}
$$

Motivation of spectral triples

- From physics to NCG: The Standard Model from the Spectral Action

$-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d e} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{a} g_{\nu}^{e}+$
${ }_{2}^{1} i g_{s}^{2}\left(\bar{q}_{i}^{\sigma} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}+\bar{G}^{a} \partial^{2} G^{a}+g_{s} f^{a b c} \partial_{\mu} \bar{G}^{a} G^{b} g_{\mu}^{c}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-$
$M^{2} W_{\mu}^{+} W_{\mu}^{-}-\frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{\mu}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}-$
$\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-\frac{1}{2} m_{h}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-M^{2} \phi^{+} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-$
$\frac{1}{2 \tau^{2}} M \phi^{0} \phi^{0}-\beta_{h}\left[\frac{2 M^{2}}{q^{2}}+\frac{2 M}{q} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right]+\frac{2 M^{4}}{g^{2}} \alpha_{h}-$
$i g c_{\omega}\left[\partial_{\nu} Z_{\mu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+\right.$
$\left.Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-i g s_{w}\left[\partial_{\nu} A_{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}\right.\right.$
$\left.W_{\nu}^{+} W_{\mu}^{-}\right)-A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.$
$\left.\left.W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+$
$g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-\right.$
$\left.A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left[A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-\right.$
$\left.2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right]-g \alpha\left[H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right]-\frac{1}{8} g^{2} \alpha_{h}\left[H^{4}+\right.$
$\left.\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right]-$
$g M W_{\mu}^{+} W_{\mu}^{-} H-\frac{1}{2} g_{c_{\mu}^{2}}^{M} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left[W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-\right.$
$\left.W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right]+\frac{1}{2} g\left[W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)-\right.$
$\left.W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right]+\frac{1}{2} g \frac{1}{c_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)-\right.$
$i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-$
$i g \frac{1-2 c_{w}^{2}}{2 c_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-$
$\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left[H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right]-\frac{1}{4} g^{2} \frac{1}{c^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left[H^{2}+\left(\phi^{0}\right)^{2}+\right.$
$\left.2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right]-\frac{1}{2} g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-$
$\frac{1}{2} i g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right.$
$\left.W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2} \frac{s_{w}}{c_{w}}\left(2 c_{w}^{2}-\right.$

1) $Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}-$
$\bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left[-\left(e^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\right.$
$\left.\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{j}^{\lambda} \gamma^{\mu} d_{3}^{\lambda}\right)\right]+\frac{i g}{4 c_{w}} Z_{\mu}^{0}\left[\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\right.$
$\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) u_{j}^{\lambda}\right)+\left(\vec{d}_{j}^{\lambda} \gamma^{\mu}(1-\right.$
$\left.\left.\left.\frac{8}{3} s_{w}^{2}-\gamma^{5}\right) d_{j}^{\lambda}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left[\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}(1+\right.\right.$
$\left.\left.\left.\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left[\left(\bar{e}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\lambda \kappa}^{\dagger} \gamma^{\mu}(1+\right.\right.$
$\left.\left.\left.\gamma^{5}\right) u_{j}^{\lambda}\right)\right]+\frac{i g}{2 \sqrt{2}} \frac{m^{\lambda}}{M}\left[-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{5}\right) e^{\lambda}\right)+\phi^{-}\left(e^{\lambda}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)\right]-$
$\frac{g}{2} \frac{m_{i}^{\lambda}}{M}\left[H\left(e^{\lambda} e^{\lambda}\right)+i \phi^{0}\left(e^{\lambda} \gamma^{5} e^{\lambda}\right)\right]+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left[-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}(1-\right.\right.$
$\left.\left.\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right]+\frac{i g}{2 M \sqrt{2}} \phi^{-}\left[m_{d}^{\lambda}\left(d_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}(1+\right.\right.$
$\left.\left.\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right]-\frac{g}{2} \frac{m_{u}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-$
$\frac{g}{2} \frac{m_{d}^{\lambda}}{M} H\left(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}\right)+\frac{i g}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)$

$$
\operatorname{Tr}(f(D / \Lambda))+\frac{1}{2}\left\langle J \tilde{\xi}, D_{A} \tilde{\xi}\right\rangle
$$

\# of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \longmapsto$ NCG $\quad \mapsto$ Classical Standard Model
[Connes, Lott, Nucl. Phys. B '91; . . . Chamseddine, Connes, Marcolli ATMP '07 (Euclidean)]

Motivation of spectral triples

- From physics to NCG: The Standard Model from the Spectral Action

$$
D_{F}=\left(\begin{array}{cccc:cccccccccccccc}
0 & 0 & \Upsilon_{\nu}^{*} & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{R}^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \Upsilon_{e}^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Upsilon_{\nu} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Upsilon_{s} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{u} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{d}^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \Upsilon_{u} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \Upsilon_{d} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Upsilon_{R} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{\nu}^{T} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{e}^{T} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{\nu} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\Upsilon}_{e} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{u}^{T} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{d}^{T} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{u} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{d} & 0 & 0
\end{array}\right) \in \mathcal{M}_{96}(\mathbb{C})_{\text {S.a }} \text { S. }
$$

\# of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \longmapsto$ NCG $\quad \mapsto$ Classical Standard Model
[Connes, Lott, Nucl. Phys. B '91; . . . Chamseddine, Connes, Marcolli ATMP '07 (Euclidean)]

Motivation of spectral triples

- From physics to NCG: The Standard Model from the Spectral Action

\# of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \longmapsto$ NCG $\quad \mapsto$ Classical Standard Model
[Connes, Lott, Nucl. Phys. B '91; . . . Chamseddine, Connes, Marcolli ATMP '07 (Euclidean)]
[Barrett J. Math. Phys. '07 (Lorenzian); Connes-Chamseddine JHEP '12; van Suijlekom's textbook NCG \cap HEP '15]

Towards a quantum theory of noncommutative spaces
«The far distant goal is to set up a functional integral evaluating spectral
observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\mu \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad$ »
[Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]

Towards a quantum theory of noncommutative spaces
«The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\psi \psi, D \psi\rangle+\rho(e, D)} \mathrm{d} \mathrm{d} \psi \mathrm{d} D \quad$ " [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]

$$
\text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral }
$$

$$
\int_{\text {Mrтам }} \mathrm{e}^{-\frac{1}{\hbar} S_{E H}[g]} \mathrm{d} g \xrightarrow{\text { Ensstein-Hilleert } \rightarrow \text { spectral }} \int_{\text {Drase }} \mathrm{e}^{-\frac{1}{\hbar} T r f(D)} \mathrm{d} D
$$

(hard to define for manifolds)
$f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(D) \rightarrow \infty$ at large argument

Towards a quantum theory of noncommutative spaces
«The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\psi \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad$ " [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]
functional integral $\xrightarrow[\text { paradigm shift }]{ }$ operator integral

$$
\int_{\text {мtrace }} \mathrm{e}^{-\frac{1}{\hbar} S_{E H}[g]} \mathrm{d} g \xrightarrow{\text { Enstein- Hilleet } \rightarrow \text { spectral }} \int_{\text {Dinace }} \mathrm{e}^{-\frac{1}{\hbar} T r f(D)} \mathrm{d} D
$$

(hard to define for manifolds)

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
$$

- Related: (Euclidean) quantum gravity via random noncommutative geometry

Towards a quantum theory of noncommutative spaces
«The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\psi \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad$ " [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]

$$
\text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral }
$$

$$
\int_{\text {мгтгіс }} \mathrm{e}^{-\frac{1}{\hbar} S_{E H}[g]} \mathrm{d} g \xrightarrow{\text { Einstein-Hillert } \rightarrow \text { spectral }} \int_{\text {Drase }} \mathrm{e}^{-\frac{1}{\hbar} T r f(D)} \mathrm{d} D
$$

(hard to define for manifolds)

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
$$

- Related: (Euclidean) quantum gravity via random noncommutative geometry

Quantum superposition of geometries

Towards a quantum theory of noncommutative spaces
«The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\psi \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad$ " [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]

$$
\text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral }
$$

$$
\int_{\text {мгтгіс }} \mathrm{e}^{-\frac{1}{\hbar} S_{E H}[g]} \mathrm{d} g \xrightarrow{\text { Einstein-Hillert } \rightarrow \text { spectral }} \int_{\text {Drase }} \mathrm{e}^{-\frac{1}{\hbar} T r f(D)} \mathrm{d} D
$$

(hard to define for manifolds)

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
$$

- Related: (Euclidean) quantum gravity via random noncommutative geometry

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is s.a.
- for each $a \in A_{\mathcal{M}},\left[D_{M}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is s.a.
- for each $a \in A_{\mathcal{M}},\left[D_{M}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent . .

Quantum Groups

Spectral triples von Neuma

NCG

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is s.a.
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent . . .

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- $\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}$

Quantum Groups

Spectral triples von Neumann
$(A, H, D) \quad C^{*}$-algebras

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is s.a.
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent . . .

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- $\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}^{o n}$
- Reconstruction Theorem: Roughly, commutative spectral triples ${ }^{+ \text {axioms }}$ are always Riemannian manifolds [Connes, JNCG '13] after efforts by [Figueroa, Gracia-Bondía, Várilly; Rennie, Várilly, '06]

Commutative spectral triples

 There exists a $(A, H, D)=$ Aspin manifold M yields- $\left(A_{M}, H_{M}, D_{M}\right)$- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is s.a.
- for each $a \in A_{\mathcal{M}},\left[D_{M}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent . . .

abstract
A spectral triple (A, H, D) consists of
- a *-algebra A commutative
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- $\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}$
- Reconstruction Theorem: Roughly, commutative spectral triples ${ }^{+ \text {axioms }}$ are always Riemannian manifolds [Connes, JNCG '13] after efforts by [Figueroa, Gracia-Bondía, Várilly; Rennie, Várilly, '06]

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action reads
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda){ }_{\text {[Chamseddine-Connes } C M P ' 97]}$
for a bump function f, Λ a scale

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action reads
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes CMP $\left.{ }^{9} 97\right]$

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action reads
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]
for a bump function f, Λ a scale
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple

$$
\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)
$$

- applications require (A, H, D) to have
 a reality $\mathrm{J}: H \rightarrow H$ antiunitary ${ }^{\text {axioms }}$, implementing a right A-action on H

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action reads
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes CMP $\left.{ }^{9} 97\right]$
for a bump function f, Λ a scale.
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)$
- applications require (A, H, D) to have a reality $\mathrm{J}: H \rightarrow H$ antiunitary ${ }^{\text {axioms }}$, implementing a right A-action on H
- connections: if S^{G} is a G-invariant functional on M

$$
\begin{array}{rl}
S^{G} & \leadsto S^{\operatorname{Maps}(M, G)} \\
\mathrm{d} & \leadsto \mathrm{~d}+\mathbb{A} \\
\mathbb{A}^{\prime}=u \mathbb{A} u^{-1}+u \mathrm{~d} u^{-1} & \mathbb{A} \in \Omega^{1}(M) \otimes \mathfrak{g} \\
u \in \operatorname{Maps}(M, G)
\end{array}
$$

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action reads
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]
for a bump function f, Λ a scale.
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)$
- applications require (A, H, D) to have a reality $J: H \rightarrow H$ antiunitary ${ }^{\text {axioms }}$, implementing a right A-action on H
- connections: if S^{G} is a G-invariant functional on M

$$
\begin{aligned}
& S^{G} \leadsto S^{\operatorname{Maps}(M, G)} \\
& \mathrm{d} \leadsto \mathrm{~d}+\mathbb{A} \quad \\
& \mathbb{A}^{\prime}=u \in \mathbb{A}^{-1} u^{1}(M) \otimes \mathfrak{g} u^{-1} \quad u \in \operatorname{Maps}(M, G)
\end{aligned}
$$

- given (A, H, D) and a Morita equivalent algebra $B\left(\right.$ i.e. $\left.\operatorname{End}_{A}(E) \cong B\right)$ yields new ($B, E \otimes_{A} H$, new D 's). For $A=B$, in fact a tower

$$
\left\{\left(A, H, D+\omega \pm J \omega J^{-1}\right)\right\}_{\omega \in \Omega_{D}^{1}(A)}
$$

$$
\begin{aligned}
D_{\omega} & \mapsto \operatorname{Ad}(u) D_{\omega} \operatorname{Ad}(u)^{*}=D_{\omega_{u}} \\
\omega & \mapsto \omega_{u}=u \omega u^{*}+u\left[D, u^{*}\right] \quad u \in \mathcal{U}(A)
\end{aligned}
$$

Main Result

Matrix Yang-Mills(-Higgs) functional [CP 2105.01025 Ann. Henri Poincaré 23 '22]. At all stages, it obeys spectral triple axioms (unlike e.g. [Alekseev, Recknagel, Schomerus, JHEP, 00]) and its partition function is a multi-matrix model.

Context of this talk in the Corfu Workshop

- altough string theory is not its origin, the model is similar to ІККт, ВМN
- it's related to the truncations W. van Suijlekom talked about on Wednesday (cf. also [D'Andrea, Landi, Lizzi, Lett. Math. Phys. 2022]) but our truncations are not spectral

(resist the temptation to compose differently coloured arrows)

Organisation

Quantum base geometries without matter fields

Aıм: Make sense of

$$
\mathcal{Z}=\int_{D \operatorname{IRAC}} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D
$$

- Plane ($\hbar, 1 / N, 0$) of 'base geometries'
- Plane $(\hbar, 0, F)=\lim _{N \rightarrow \infty}(\hbar, 1 / N, F)$
- Plane $(0,1 / N, F)=\lim _{\hbar \rightarrow 0}(\hbar, 1 / N, F)$ of classical geometries
[CP 2105.01025 Ann. Henri Poincaré 23 '22
\rightarrow CP '21]

Organisation

1 Matrix Geometries
[Barrett, J. Math. Phys. 2015]
2 Dirac ensembles [Barrett, Glaser, J. Phys. A 2016] and how to compute the spectral action [CP '19]
3 Gauge matrix spectral triples (this talk) [CP’ 21]

4 Functional Renormalisation [CP '20] and [CP '22] (not this talk)
II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
+axioms (omitted) that can be solved for $D \ldots$

II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
. . . +axioms (omitted) that can be solved for D...
- Fixing conventions for γ 's, D in even dimensions: [Barrett, J. Math. Phys. ' 15]

$$
D=\sum_{J} \Gamma_{\text {s.a. }}^{J} \otimes\left\{H_{J}, \cdot\right\}+\sum_{J} \Gamma_{\text {anti. }}^{J} \otimes\left[L_{J}, \cdot\right]
$$

multi-index J monot. increasing, $|J|$ odd, $H_{J}^{*}=H_{J}, L_{J}^{*}=-L_{J}$

II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
. . . +axioms (omitted) that can be solved for D...
- Fixing conventions for γ 's, D in even dimensions: [Barrett, J. Math. Phys. '15]

$$
D=\sum_{J} \Gamma_{\text {s.a. }}^{J} \otimes\left\{H_{J}, \cdot\right\}+\sum_{J} \Gamma_{\text {anti. }}^{J} \otimes\left[L_{J}, \cdot\right]
$$

multi-index J monot. increasing, $|J|$ odd, $H_{J}^{*}=H_{J}, L_{J}^{*}=-L_{J}$

- Examples: [Barrett, Glaser, J. Phys. A 2016]

$$
\begin{aligned}
& \text { - } D_{(1,1)}=\gamma^{1} \otimes[L, \cdot]+\gamma^{2} \otimes\{H, \cdot\} \\
& \text { - } D_{(0,4)}=\sum_{\mu} \gamma^{\mu} \otimes\left[L_{\mu}, \cdot\right]+\gamma^{\hat{\mu}} \otimes\left\{H_{\hat{\mu}}, \cdot\right\} \quad(\hat{\mu}=\operatorname{omit} \mu \text { from }(0123))
\end{aligned}
$$

so we will get double traces from $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}(\mathbb{C})}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{N}^{\otimes 2}$
Notation: $\operatorname{Tr}_{V} X$ is the trace of $X: V \rightarrow V, \operatorname{Tr}_{V} 1=\operatorname{dim} V$. So $\operatorname{Tr}_{N} 1=N$ but $\operatorname{Tr}_{M_{N}^{C}} 1=N^{2}$.

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{C}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

[CP '19] appeared two weeks after [Sati, Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{\mathcal{M}_{N}}$, and a tool to organize the first trace is chord diagrams:

[CP '19] appeared two weeks after [Sati, Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too
- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta_{1}^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

[CP '19] appeared two weeks after [Sati, Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too

- for dimension- d geometries, the combinatorial formula [CP' 19] reads

$$
\begin{aligned}
& \frac{1}{\operatorname{dim} \mathbb{S}} \operatorname{Tr}\left(D^{2 t}\right)= \sum_{I_{1}, \ldots, l_{2 t} \in \Lambda_{d}^{-}} \overbrace{\substack{\chi \in \Lambda_{d}, \mathrm{dx}{ }^{\prime} \neq 0 \text { on } \mathbb{R}^{d}}}^{\sum_{\substack{\text { decorated chord diags } \\
2 n=\sum_{i}\left|I_{i}\right|}} \chi^{I_{1} \ldots I_{2 t}}} \\
&\left.\times\left(\sum_{\Upsilon \in \mathscr{P}_{2 t}} \operatorname{sgn}\left(I_{\Upsilon}\right) \times \operatorname{Tr}_{N}\left(K_{l_{\Upsilon c}}\right) \times \operatorname{Tr}_{N}\left[\left(K^{T}\right)_{I_{\Upsilon}}\right]\right)\right\} \\
& \mathscr{P}_{2 t}=2^{\{1, \ldots, 2 t\}}, K_{l}^{*}= \pm K_{l}, \operatorname{sgn}\left(I_{\Upsilon}\right) \in \mathbb{Z}_{2}
\end{aligned}
$$

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

[CP '19] appeared two weeks after [Sati, Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too

- for dimension- d geometries, the combinatorial formula [CP' 19] reads

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

[CP '19] appeared two weeks after [Sati, Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too

- for dimension- d geometries, the combinatorial formula [CP' 19] reads

$$
\begin{aligned}
& \frac{1}{\operatorname{dim} \mathbb{S}} \operatorname{Tr}\left(D^{2 t}\right)= \sum_{I_{1}, \ldots, l_{2 t} \in \Lambda_{d}^{-}} \overbrace{\substack{\chi \in \Lambda_{d}, \mathrm{dx}{ }^{\prime} \neq 0 \text { on } \mathbb{R}^{d}}}^{\sum_{\substack{\text { decorated chord diags } \\
2 n=\sum_{i}\left|I_{i}\right|}} \chi^{I_{1} \ldots I_{2 t}}} \\
&\left.\times\left(\sum_{\Upsilon \in \mathscr{P}_{2 t}} \operatorname{sgn}\left(I_{\Upsilon}\right) \times \operatorname{Tr}_{N}\left(K_{l_{\Upsilon c}}\right) \times \operatorname{Tr}_{N}\left[\left(K^{T}\right) I_{\Upsilon}\right]\right)\right\} \\
& \mathscr{P}_{2 t}=2^{\{1, \ldots, 2 t\}}, K_{l}^{*}= \pm K_{l}, \operatorname{sgn}\left(I_{\Upsilon}\right) \in \mathbb{Z}_{2}
\end{aligned}
$$

Multimatrix models with multi-traces

- The chord-diagram description holds in general dim. and signature [CP '19]

$$
\begin{aligned}
\mathcal{Z} & =\int_{\text {DIRAC }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D \quad(\hbar=1) \\
& =\int_{\mathcal{M}_{p, q}} \mathrm{e}^{-N \operatorname{Tr}_{N} P-\operatorname{Tr}_{N}^{\otimes 2}\left(Q_{(1)} \otimes Q_{(2)}\right)} \mathrm{d} \mathbb{X}_{\text {Les }}
\end{aligned}
$$

- $\mathbb{X} \in M_{p, q}=$ products of $\mathfrak{s u}(N)$ and \mathcal{H}_{N}
- $d \mathbb{X}_{\text {Les }}$ is the Lebesgue measure on $M_{p, q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k\rangle}=\mathbb{C}\langle\mathbb{X}\rangle$ nc-polynomials
- $\mathcal{Z}_{\text {fовмм }}$ leads to colored ribbon graphs

$$
g_{1} \operatorname{Tr}_{N}(A B B B A B) \leftrightarrow
$$

$g_{2} \operatorname{Tr}_{N}^{\otimes 2}(A A B A B A \otimes A A)$

Multimatrix models with multi-traces

- The chord-diagram description holds in general dim. and signature [CP '19]

$$
\begin{aligned}
\mathcal{Z} & =\int_{\text {DIRAC }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D \quad(\hbar=1) \\
& =\int_{M_{p, q}} \mathrm{e}^{-N \operatorname{Tr}_{\mathrm{N}} P-\operatorname{Tr}_{N}^{\otimes 2}\left(Q_{(1)} \otimes Q_{(2)}\right)} \mathrm{d} \mathbb{X}_{\text {LeB }}
\end{aligned}
$$

- $\mathbb{X} \in M_{p, q}=$ products of $\mathfrak{s u}(N)$ and \mathcal{H}_{N}
- $d \mathbb{X}_{\text {LeB }}$ is the Lebesgue measure on $M_{p, q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k\rangle}=\mathbb{C}\langle\mathbb{X}\rangle$ nc-polynomials
- $\mathcal{Z}_{\text {formal }}$ leads to colored ribbon graphs

$g_{2} \operatorname{Tr}_{N}^{\otimes 2}(A A B A B A \otimes A A)$

- Multitrace: 'touching interactions' [Klebanov, PRD ‘95], 'stuffed maps’ [Borot Ann. Inst. Henri Poincaré D '14], AdS/CFT [Witten, hep-th/0112258], wormholes [Ambjorn-Jurkiewicz-Loll-Vernizzi, JHEP '01]
- Ribbon graphs: Enumeration of maps [Brezin, Itzykson, Parisi, Zuber, CMP '78], here 'face-worded'

More on this: [CP' 20, CP' 22]
III. Yang-Mills-Higgs matrix theory

III. Yang-Mills-Higgs matrix theory
${ }_{\wedge} F$ ('finite geometries')
Almost-commutative manifolds
(classical)

$$
\mathcal{Z}_{\text {AC }} \stackrel{?}{=} \int_{\text {DRRAC }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D
$$

(hard for almost-commutative manifolds)

III. Yang-Mills-Higgs matrix theory

Definition [CP’ 21]. A gauge matrix spectral triple $G_{f} \times F$ is the spectral triple product of a matrix geometry G_{f} with a finite geometry $F=\left(A_{F}, H_{F}, D_{F}\right)$, $\operatorname{dim} A_{F}<\infty$.

Lemma-Definition [CP’ 21]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is
$D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+\jmath_{\mu}\right)}^{D_{\text {gauge }}}+\overbrace{\gamma \otimes \Phi}^{d_{\mu}}, \quad a_{\mu}=$ 'gauge potential', $x_{\mu}=$ spin connection?
The field strength is given by $\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]$

Lemma-Definition [CP’ 21]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is
$D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+\jmath_{\mu}\right)}^{D_{\text {gauge }}}+\overbrace{\gamma \otimes \Phi}^{D_{\mu}}, \quad a_{\mu}=$ 'gauge potential', $x_{\mu}=$ spin connection?
The field strength is given by $\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]$
Lemma. The gauge group $\mathrm{G}(\mathcal{A}) \cong \mathcal{U}(\mathcal{A}) / \mathcal{U}(Z(\mathcal{A})) \cong \mathrm{PU}(N) \times \mathrm{PU}(n)$ acts as follows

$$
\mathrm{F}_{\mu \nu} \mapsto \mathrm{F}_{\mu \nu}^{u}=u \mathrm{~F}_{\mu \nu} u^{*} \quad \text { for all } u \in \mathrm{G}(\mathcal{A})
$$

Lemma-Definition [CP’ 21]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(\mathcal{M}_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is
$D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+\jmath_{\mu}\right)}^{D_{\text {gauge }}}+\overbrace{\gamma \otimes \Phi}^{d_{\mu}}, \quad a_{\mu}=$ 'gauge potential', $x_{\mu}=$ spin connection?
The field strength is given by $\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]$
Lemma. The gauge group $\mathrm{G}(\mathcal{A}) \cong \mathcal{U}(\mathcal{A}) / \mathcal{U}(Z(\mathcal{A})) \cong \mathrm{PU}(N) \times \mathrm{PU}(n)$ acts as follows

$$
\mathrm{F}_{\mu \nu} \mapsto \mathrm{F}_{\mu \nu}^{u}=u \mathrm{~F}_{\mu \nu} u^{*} \quad \text { for all } u \in \mathrm{G}(\mathcal{A})
$$

The proof uses [§6 of W. van Suijlekom, Noncommutative Geometry and Particle Physics, 2015]

$$
\text { ...finally, the Spectral Action with } f(x)=\sum_{m \leqslant 4} f_{m} x^{m} \text { reads... }
$$

Meaning
RANDOM MATRIX CASE, FLAT $d=4$ Riem.

$$
\mathrm{Tr}=\text { TRACE OF OPS. } M_{N} \otimes \mathcal{M}_{n} \rightarrow \mathcal{M}_{N} \otimes \mathcal{M}_{n}
$$

Derivation

Gauge potential
Covariant derivative

$$
\ell_{\mu}=\left[L_{\mu} \otimes 1_{n}, \cdot\right]
$$

$$
a_{\mu}=\left[A_{\mu}, \cdot\right]
$$

$$
d_{\mu}=\ell_{\mu}+a_{\mu}
$$

$$
\begin{gathered}
\partial_{i} \\
\mathbb{A}_{i} \\
\mathbb{D}_{i}=\partial_{i}+\mathbb{A}_{i}
\end{gathered}
$$

Meaning

Derivation

Gauge potential
Covariant derivative

Field strength

Yang-Mills action
Higgs field
Higgs potential
Gauge-Higgs coupling
$f(x)=\sum_{k<5} f_{k} x^{k}$

Random matrix case, flat $d=4$ Riem.

$$
\mathrm{Tr}=\text { TRACE OF OPS. } M_{N} \otimes M_{n} \rightarrow M_{N} \otimes M_{n}
$$

$$
\ell_{\mu}=\left[L_{\mu} \otimes 1_{n}, \cdot\right]
$$

$$
a_{\mu}=\left[A_{\mu}, \cdot\right]
$$

$$
d_{\mu}=\ell_{\mu}+a_{\mu}
$$

$$
\begin{gathered}
{\left[d_{\mu}, d_{\nu}\right]=\overbrace{\left[\ell_{\mu}, \ell_{\nu}\right]}^{\neq 0}+} \\
{\left[\ell_{\mu}, a_{\nu}\right]-\left[\ell_{\nu}, a_{\mu}\right]+\left[a_{\mu}, a_{\nu}\right]}
\end{gathered}
$$

$$
-\frac{1}{4} \operatorname{Tr}\left(\mathscr{F}_{\mu \nu} \mathscr{F}^{\mu \nu}\right)
$$

$$
\Phi
$$

$$
\begin{gathered}
\operatorname{Tr}\left(f_{2} \Phi^{2}+\Phi^{4}\right) \\
-\operatorname{Tr}\left(d_{\mu} \Phi d^{\mu} \Phi\right)
\end{gathered}
$$

Smooth operator

$$
\begin{gathered}
\partial_{i} \\
\mathbb{A}_{i} \\
\mathbb{D}_{i}=\partial_{i}+\mathbb{A}_{i} \\
{\left[\mathbb{D}_{i}, \mathbb{D}_{j}\right]=\overbrace{\left[\partial_{i}, \partial_{j}\right]}^{\equiv 0}+} \\
\partial_{i} \mathbb{A}_{j}-\partial_{j} \mathbb{A}_{i}+\left[\mathbb{A}_{i}, \mathbb{A}_{j}\right]
\end{gathered}
$$

$$
-\frac{1}{4} \int_{M} \operatorname{Tr}_{\mathfrak{s u}(n)}\left(\mathbb{F}_{i j} \mathbb{F}^{i j}\right) \mathrm{vol}
$$

$$
h
$$

$$
\begin{gathered}
\int_{M}\left(-\mu^{2}|h|^{2}+\lambda|h|^{4}\right) \mathrm{vol} \\
-\int_{M}\left|\mathbb{D}_{i} h\right|^{2} \mathrm{vol}
\end{gathered}
$$

Meaning

RANDOM MATRIX CASE, FLAT $d=4$ Riem.

$$
\mathrm{Tr}=\text { TRACE OF OPS. } M_{N} \otimes M_{n} \rightarrow M_{N} \otimes M_{n}
$$

Derivation

$$
\ell_{\mu}=\left[L_{\mu} \otimes 1_{n}, \cdot\right]
$$

Smooth operator

$$
\partial_{i}
$$

Gauge potential
Covariant derivative

$$
\begin{array}{cc}
a_{\mu}=\left[A_{\mu} \cdot\right] & \mathbb{A}_{i} \\
d_{\mu}=\ell_{\mu}+a_{\mu} & \mathbb{D}_{i}=\partial_{i}+\mathbb{A}_{i}
\end{array}
$$

Field strength

$$
\begin{array}{cc}
{\left[d_{\mu}, d_{\nu}\right]=\overbrace{\left[\ell_{\mu}, \ell_{\nu}\right]}^{\not \equiv 0}+} & {\left[\mathbb{D}_{i}, \mathbb{D}_{j}\right]=\overbrace{\left[\partial_{i}, \partial_{j}\right]}^{\equiv 0}+} \\
{\left[\ell_{\mu}, a_{\nu}\right]-\left[\ell_{\nu}, a_{\mu}\right]+\left[a_{\mu}, a_{\nu}\right]} & \partial_{i} \mathbb{A}_{j}-\partial_{j} \mathbb{A}_{i}+\left[\mathbb{A}_{i}, \mathbb{A}_{j}\right]
\end{array}
$$

$$
-\frac{1}{4} \operatorname{Tr}\left(\mathscr{F}_{\mu \nu} \mathscr{F}^{\mu \nu}\right) \quad-\frac{1}{4} \int_{M} \operatorname{Tr}_{\mathfrak{s u}(n)}\left(\mathbb{F}_{i j} \mathbb{F}^{i j}\right) \operatorname{vol}
$$

Higgs field
Higgs potential
Gauge-Higgs coupling
Φ

$$
\begin{array}{cc}
\Phi & h \\
\operatorname{Tr}\left(f_{2} \Phi^{2}+\Phi^{4}\right) & \int_{M}\left(-\mu^{2}|h|^{2}+\lambda|h|^{4}\right) \mathrm{vol} \\
-\operatorname{Tr}\left(d_{\mu} \Phi d^{\mu} \Phi\right) & -\int_{M}\left|\mathbb{D}_{i} h\right|^{2} \mathrm{vol}
\end{array}
$$

and propagators and $\sim\left(\ell_{\mu}\right)_{i j}\left(\ell_{\nu}\right)_{j m}\left(\ell^{\mu}\right)_{m l}\left(\ell^{\nu}\right)_{l i} \leftrightarrow_{v_{0}} \xlongequal[u_{v_{2}} \sim]{v_{1}}$

Conclusion

- $\operatorname{spin} M \times\{$ finite spectral triple $\} \equiv$ almost-commutative
(reproduces classical Standard Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP 19] computes spectral action

Conclusion

- $\operatorname{spin} M \times\{$ finite spectral triple $\} \equiv$ almost-commutative
(reproduces classical Standard Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP 19] computes spectral action
- fuzzy \times finite $=$ gauge matrix spectral triple, it is $\mathrm{PU}(n)$-Yang-Mills(-Higgs) if the fin. geom. algebra is $M_{n}(\mathbb{C})$; partition func. is a k-matrix model, k large. Gaußians

$$
\mathcal{Z}_{\text {cauce Matrix }}=\int_{\text {Diracs }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D=\int_{\text {base } \times \text { YM } \times \text { Higgs }} \mathrm{e}^{-S_{\text {gauge }}-S_{\mathrm{H}}-S_{\text {gauge-H }}-S_{\Phi}} \mathrm{d} \mu_{\mathrm{G}}(L) \mathrm{d} \mu_{\mathrm{G}}(A) \mathrm{d} \Phi
$$

$$
\text { with }(L, A, \phi) \in[\mathfrak{s u}(N)]^{\times 4} \times\left[\mathscr{N}_{N, n}^{\text {gauge }}\right]^{\times 4} \times \mathscr{N}_{N, n}^{\mathrm{Higgs}}
$$

- small step towards [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007] closerelatives of $u_{s}(N)$ © $u(n)$《 The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\mu \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad>$

Conclusion

- $\operatorname{spin} \mathcal{M} \times\{$ finite spectral triple $\} \equiv$ almost-commutative
(reproduces classical Standard Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP 19] computes spectral action
- fuzzy \times finite $=$ gauge matrix spectral triple, it is $\operatorname{PU}(n)$-Yang-Mills(-Higgs) if the fin. geom. algebra is $M_{n}(\mathbb{C})$; partition func. is a k-matrix model, k large.

$$
\begin{array}{r}
\mathcal{Z}_{\text {CAUCE MATRIX }}=\int_{\text {DIRACS }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D=\int_{\text {base } \times \text { YM } \times \text { Higgs }} \mathrm{e}^{-S_{\text {gauge }}-S_{\mathrm{H}}-S_{\text {gauge }-\mathrm{H}}-S_{\oplus}} \mathrm{d} \mu_{\mathrm{G}}(L) \mathrm{d} \mu_{\mathrm{G}}(A) \mathrm{d} \Phi \\
\quad \text { with }(L, A, \phi) \in[\mathfrak{s u}(N)]^{\times 4} \times\left[\mathcal{N}_{N, n}^{\text {gauge }}\right]^{\times 4} \times \mathscr{N}_{N, n}^{\text {Higgs }}
\end{array}
$$

- small step towards [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]
« The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{d} e \mathrm{~d} \psi \mathrm{~d} D \quad \gg$ Thanks!

