Matrix Model Techniques in JT-Gravity String Theory Journal Club

Carlos Perez-Sanchez, Uniwersytet Warszawski

First Seminar Series Talk

- SYK-Motivation
- Mixture of Sections 2 and 3 of Saad-Shenker-Stanford's JT-gravity as a Matrix Integral paper
- Terminology and motivation for 2D-quantum gravity and Topological Recursion talks (terminology)

SYK-model [D. Stanford; Strings 2017]

• model (quantum mechanics) for N Majorana fermions $\{\psi_{\alpha}\}_{\alpha=1}^{N}$ $\{\psi_{\alpha},\psi_{\beta}\} = \delta_{\alpha\beta}$

action

$$S[\psi_
ho] = \int \mathrm{d} au igg(rac{1}{2}\psi_lpha rac{\mathrm{d}\psi^lpha}{\mathrm{d} au} + rac{\mathrm{i}}{4!}J_{lpha\gamma\mu
u}\psi_lpha\psi_\gamma\psi_\mu\psi_
uigg)$$

coupling whose coupling constants satisfy $\langle J^2_{lpha\gamma\mu
u}
angle=J^2/N^3$

• simple diagramatics ("melons"). For the 2-point function

• simple diagramatics ("melons"). For the 2-point function

• simple diagramatics ("melons"). For the 2-point function

• Σ generating 1Pl (2-connected graphs) • $G(\tau) = \langle \psi_{\alpha}(\tau)\psi_{\alpha}(0) \rangle$ in Fourier space:

$$G(\omega) = \frac{1}{-i\omega - \Sigma(\omega)}$$

• strong coupling $\beta J \gg 1$ (or infrared regime)

 $G(\tau)\Sigma(\tau) = -1$,

• the solution in the termic circle $au \in (0,eta)$

$$G(x) \sim \frac{\operatorname{sgn}(\tau)}{\operatorname{sen}^{1/2}(x)}$$
 $(x \equiv \tan(\pi \tau / \beta))$

presents SL(2, \mathbb{R})-symmetry $x \mapsto \frac{ax+b}{cx+d}$

• maximizes chaos (\leftrightarrow to black hole in AdS₂ [Kitaev])

• strong coupling $\beta J \gg 1$ (or infrared regime)

 $G(\tau)\Sigma(\tau)=-1,$

• the solution in the termic circle $au \in (0,eta)$

$$G(x) \sim \frac{\operatorname{sgn}(\tau)}{\operatorname{sen}^{1/2}(x)}$$
 $(x \equiv \tan(\pi \tau / \beta))$

presents SL(2, \mathbb{R})-symmetry $x \mapsto \frac{ax+b}{cx+d}$

- maximizes chaos (\leftrightarrow to black hole in AdS₂ [Kitaev])
- low energy dynamics of SYK $\leftrightarrow \partial$ -description of 2D JT-gravity

$$\begin{split} I_{JT} &= -\frac{S_0}{2\pi} \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g} R + \int_{\partial \mathcal{M}} \sqrt{h} K \right] \\ &- \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g} \varphi(R+2) + \int_{\partial \mathcal{M}} \sqrt{h} \varphi(K-1) \right] \\ &\text{sets } R = -2 \end{split} \text{gives action for boundary} \end{split}$$

$$\begin{split} & \underset{IJT}{\text{topological term} = S_0 \chi(\mathcal{M})} \\ I_{JT} = - \frac{S_0}{2\pi} \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g} R + \int_{\partial \mathcal{M}} \sqrt{h} K \right] \\ & - \left[\frac{1}{2} \int_{\mathcal{M}} \sqrt{g} \varphi(R+2) + \int_{\partial \mathcal{M}} \sqrt{h} \varphi(K-1) \right] \\ & \underset{\text{sets } R = -2}{\text{sets } R = -2} \end{split}$$

• H = Hamiltonian at the boundary, $Z(\beta) = \text{Tr}(e^{-\beta H})$

• JT-gravity is a matrix model, $(e^{S_0})^{\chi} = e^{S_0(2-2g-n)}$ expansion exists; for n = 1 boundaries, a trumpet-expansion:

The (maps dual to) ribbon graphs might have boundary:

$$\mathcal{A}(\mathcal{G}) \sim L^{\chi(\mathcal{G})} = L^{2-2g-n}$$

n = # (boundaries) g = genus

• $L \times L$ independent random variables h_{ij}

$$H = (h_{ij})$$

• $L \times L$ independent random variables h_{ij}

$$H=(h_{ij})$$

 … invariant under O(L), U(L) or Sp(L), typically

• $L \times L$ independent random variables h_{ij}

$$H=(h_{ij})$$

- … invariant under O(L), U(L) or Sp(L), typically
- thus observables also invariants

$$\operatorname{Tr}(H^k)$$
, $R(E) = \operatorname{Tr} \frac{1}{E - H}$

for complex E

• $L \times L$ independent random variables h_{ij}

$$H=(h_{ij})$$

- ... invariant under O(L), U(L) or Sp(L), typically
- thus observables also invariants

$$\operatorname{Tr}(H^k)$$
, $R(E) = \operatorname{Tr} \frac{1}{E-H}$

for complex E

eigenvalue density

$$\rho(E) = \sum_{i=1}^{L} \delta(E - \lambda_i)$$

• $L \times L$ independent random variables h_{ij}

$$H=(h_{ij})$$

- … invariant under O(L), U(L) or Sp(L), typically
- thus observables also invariants

$$\operatorname{Tr}(H^k)$$
, $R(E) = \operatorname{Tr} \frac{1}{E - H}$

for complex E

eigenvalue density

$$\rho(E) = \sum_{i=1}^{L} \delta(E - \lambda_i)$$

• $L \times L$ independent random variables h_{ij}

$$H=(h_{ij})$$

- … invariant under O(L), U(L) or Sp(L), typically
- thus observables also invariants

$$\operatorname{Tr}(H^k)$$
, $R(E) = \operatorname{Tr} \frac{1}{E-H}$

for complex E

eigenvalue density

$$\rho(E) = \sum_{i=1}^{L} \delta(E - \lambda_i)$$

Assumption: One-cut or connected support as in

$$\rho_0(E) = \frac{1}{2\pi}\sqrt{4-E^2}$$

With
$$\mathcal{Z} = \int_{H \in M_L(\mathbb{C}), H^* = H} dH e^{-L\operatorname{Tr} V(H)}$$
 one determines:
 $\langle Z(\beta_1)...Z(\beta_n) \rangle = \frac{1}{\mathcal{Z}} \int dH e^{-L\operatorname{Tr} V(H)} Z(\beta_1)...Z(\beta_n).$

But it will turn out

$$R(E) = -\int_0^\infty d\beta e^{\beta E} Z(\beta),$$

$$R(E+i\epsilon) - R(E-i\epsilon) = -2\pi i \rho(E)$$

Convenient:

$$\langle R(E_1)...R(E_n)\rangle_{\text{conn.}} = \sum_{g=0}^{\infty} \frac{R_{g,n}(E_1,...,E_n)}{L^{2g+n-2}} \quad (L \to \infty)$$

Relation to Eynard's notation,

$$W_{g,n}(z_1,...,z_n) \sim R_{g,n}(-z_1^2,...,-z_n^2) \qquad z_i = \sqrt{-E_i}$$

Disc amplitude $R_{0,1}$ (with 1-cut assumption)

Diagonalization and integration

$$\mathcal{Z} = C_L \int \prod_{i < j}^{\text{repulsion}} (\lambda_i - \lambda_j)^2 \times \exp\left\{-L \sum_{j=1}^L V(\lambda_j)\right\} d^L \lambda$$
$$\exp(-\sum_j V_{\text{eff}}(\lambda_j))$$

• $V_{\rm eff}$ is an interesting interaction, e.g. known cases but also:

- birds on a wire [Šeba]
- buses without schedule [Krbálek-Šeba 2000,..., Warchot 2018]

•
$$V'_{\rm eff}(E) = 0 \Rightarrow V'(E) = 2 \int d\lambda \frac{\rho_0(\lambda)}{E-\lambda}$$
 (ρ_0 is L.O. in L of ρ)

•
$$V'_{\text{eff}}(E) = 0 \Rightarrow V'(E) = 2 \int d\lambda \frac{\rho_0(\lambda)}{E - \lambda}$$
 (ρ_0 is L.O. in L

• Migdal's "dispersion relations" trick: $\sigma(x) = \sqrt{(x - a_+)(x - a_-)}$

of ρ)

•
$$V'_{\text{eff}}(E) = 0 \Rightarrow V'(E) = 2 \int d\lambda \frac{\rho_0(\lambda)}{E-\lambda}$$
 ($\rho_0 \text{ is L.O. in } L \text{ of } \rho$)

• Migdal's "dispersion relations" trick: $\sigma(x) = \sqrt{(x-a_+)(x-a_-)}$

• residue theorem for $R_{0,1}/\sqrt{\sigma}$ yields

$$\begin{split} R_{0,1}(E) &= \oint_{E} \frac{d\lambda}{2\pi i} \frac{R_{0,1}(\lambda)}{\lambda - E} \sqrt{\frac{\sigma(E)}{\sigma(\lambda)}} \\ &= -\int_{\mathcal{C}} \frac{d\lambda}{2\pi i} \frac{R_{0,1}(\lambda)}{\lambda - E} \sqrt{\frac{\sigma(E)}{\sigma(\lambda)}} \quad \text{(contour deformed)} \\ &= -\frac{1}{2} \int_{\mathcal{C}} \frac{d\lambda}{2\pi i} \frac{V'(\lambda)}{\lambda - E} \sqrt{\frac{\sigma(E)}{\sigma(\lambda)}} \quad {}_{\text{by } R_{0,1}(E + i\epsilon) + R_{0,1}(E - i\epsilon) = V'(E)} \end{split}$$

so expanding

$$\frac{1}{E} \stackrel{E \to \infty}{\sim} \int_{\mathcal{C}} \frac{d\lambda}{2\pi i} \frac{V'(\lambda)}{\sqrt{\sigma(\lambda)}} + \frac{1}{2E} \int_{\mathcal{C}} \frac{d\lambda}{2\pi i} \frac{\lambda V'(\lambda)}{\sqrt{\sigma(\lambda)}}$$

can be solved for a_{\pm} and determine the disk amplitude

Loop equations $\rightarrow R_{1,1}$ ('lid')

Departing from the loop equations

$$0 = \int d^{L} \lambda \frac{\partial}{\partial \lambda_{a}} \left[\mathcal{O}_{a}(\lambda) \prod_{i < j} (\lambda_{i} - \lambda_{j})^{2} \mathrm{e}^{-L \sum_{j} V(\lambda_{j})} \right]$$

for $\mathcal{O}_a(\boldsymbol{\lambda}) = rac{1}{E - \lambda_a}$

$$0 = \sum_{a} \left\langle \frac{1}{(E - \lambda_{a})^{2}} + \sum_{j \neq a} \frac{1}{\sum_{a \neq j} \frac{1}{\lambda_{a} - \lambda_{j}}} \frac{2}{\lambda_{a} - \lambda_{j}} - \frac{LV'(\lambda_{a})}{E - \lambda_{a}} \right\rangle$$

Underbracket gives crossed terms, $\sum_{j \neq a} \frac{1}{(E - \lambda_a)(E - \lambda_j)}$ so

$$\left\langle \left(\operatorname{Tr} \frac{1}{E - H} \right)^2 - L \operatorname{Tr} \frac{V'(H)}{E - H} \right\rangle = 0$$

$$\left\langle \left(\frac{1}{L}\operatorname{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\operatorname{Tr}\frac{V'(H)}{E-H}\right\rangle = 0$$

•
$$\frac{1}{L}$$
Tr $\frac{1}{E-H} = R_{0,1} + \frac{1}{L^2}R_{1,1} + \dots$

$$\left\langle \left(\frac{1}{L}\mathrm{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\mathrm{Tr}\frac{V'(H)}{E-H}\right\rangle = 0$$

•
$$\frac{1}{L} \operatorname{Tr} \frac{1}{E-H} = R_{0,1} + \frac{1}{L^2} R_{1,1} + \dots$$

• $\langle R(E)^2 \rangle = \langle R(E)^2 \rangle_{\text{conn.}} + \langle R(E) \rangle_{\text{conn.}}^2$ (at LO)

$$\left\langle \left(\frac{1}{L}\mathrm{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\mathrm{Tr}\frac{V'(H)}{E-H}\right\rangle = 0$$

•
$$\frac{1}{L}$$
Tr $\frac{1}{E-H} = R_{0,1} + \frac{1}{L^2}R_{1,1} + \dots$

• $\langle R(E)^2 \rangle = \langle R(E)^2 \rangle_{\text{conn.}} + \langle R(E) \rangle_{\text{conn.}}^2$ (at LO)

completing the square:

$$\left(R_{0,1}(E) - \frac{V'(E)}{2}\right)^2 = \frac{V'(E)^2}{4} - \left\langle\frac{1}{L}\mathrm{Tr}\frac{V'(E) - V'(H)}{E - H}\right\rangle_0$$

$$\left\langle \left(\frac{1}{L}\mathrm{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\mathrm{Tr}\frac{V'(H)}{E-H}\right\rangle = 0$$

•
$$\frac{1}{L}$$
Tr $\frac{1}{E-H} = R_{0,1} + \frac{1}{L^2}R_{1,1} + \dots$

• $\langle R(E)^2 \rangle = \overline{\langle R(E)^2 \rangle_{\text{conn.}} + \langle R(E) \rangle_{\text{conn.}}^2}$ (at LO)

completing the square:

$$\left(R_{0,1}(E) - \frac{V'(E)}{2}\right)^2 = \frac{V'(E)^2}{4} - \left\langle\frac{1}{L}\operatorname{Tr}\frac{V'(E) - V'(H)}{E - H}\right\rangle_0 =: f(E)$$

yields for $y = R_{0,1}(E) - \frac{V'(E)}{2}$ the spectral curve

 $y^2 = f(E)$

$$\left\langle \left(\frac{1}{L}\mathrm{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\mathrm{Tr}\frac{V'(H)}{E-H}\right\rangle = 0$$

•
$$\frac{1}{L}$$
Tr $\frac{1}{E-H} = R_{0,1} + \frac{1}{L^2}R_{1,1} + \dots$

•
$$\langle R(E)^2 \rangle = \langle R(E)^2 \rangle_{\text{conn.}} + \langle R(E) \rangle_{\text{conn.}}^2$$
 (at LO)

completing the square:

$$\left(R_{0,1}(E) - \frac{V'(E)}{2}\right)^2 = \frac{V'(E)^2}{4} - \left\langle\frac{1}{L}\operatorname{Tr}\frac{V'(E) - V'(H)}{E - H}\right\rangle_0 =: f(E)$$

yields for $y = R_{0,1}(E) - \frac{V'(E)}{2}$ the spectral curve

$$y^2 = f(E)$$

Next to LO in
$$L$$
 of $\left\langle \left(\frac{1}{L}\operatorname{Tr}\frac{1}{E-H}\right)^2 - \frac{1}{L}\operatorname{Tr}\frac{V'(H)}{E-H} \right\rangle = 0$ yields similarly[Exercise]
 $2y(E)R_{1,1}(E) = -R_{0,2}(E,E) - \left\langle \frac{1}{L}\operatorname{Tr}\frac{V'(E) - V'(H)}{E-H} \right\rangle_{L^{-2}}$ terms

• Combinatorial derivative $\operatorname{Tr} \frac{V'(E) - V'(H)}{E - H}$ is not singular at endpoints: so dispersion relations (again) yield

$$R_{1,1}(E)\sqrt{\sigma(E)} = \sum_{\pm} \oint_{a_{\pm}} \frac{d\lambda}{2\pi i} \frac{R_{0,2}(\lambda,\lambda)}{\lambda - E} \frac{\sqrt{\sigma(\lambda)}}{2y(\lambda)}.$$

• to find
$$R_{0,2}$$
 one uses the loop insertion operators
 $\frac{d}{dV(E)} = -\sum_{n=0}^{\infty} \frac{1}{E^{n+1}} \frac{\partial}{\partial v_n}$ acted on the free energy F_L :

$$R_{*,s}(E_1,...,E_s) = \frac{d}{dV(E_s)} \cdots \frac{d}{dV(E_1)} F_L$$

so $R_{0,2}(E_1,E_2) = \frac{d}{dV(E_2)} \frac{d}{dV(E_1)} F_L = -\sum_{n=0}^{\infty} \frac{1}{E_2^{n+1}} \partial_{v_n} R_{0,1}(E_1)$

This method works for all higher $R_{g,n}$'s!

Higher topologies and Topological Recursion

- new coordinate $z^2 = x = -E$, the locus $(x(z), y(z)) \subset \mathbb{C}^2$ is the spectral curve, which is a hyperelliptic curve $(y = R_{0,1}(E) \frac{V'(E)}{2})$ is polynomial
- ◆ Saad-Shenker-Stanford ↔ Eynard's notation:

$$W_{g,n}(z_1,...,z_n) = (-1)^n 2^n z_1 ... z_n R_{g,n}(-z_1^2,...,-z_n^2) \qquad z_i = \sqrt{-E_i}$$
$$W_{0,1}(z) = 2zy(z), \qquad W_{0,2}(z_1,z_2) = \frac{1}{(z_1 - z_2)^2}$$

 $\ \ \, \bullet \ \ \, {\rm excluding} \ (I=J,h=g) \ \, {\rm and} \ (I'=J,h'=g) \ {\rm in} \ \Sigma', \ \ \,$

$$W_{g,n}(z_1, \overline{z_2, \dots, z_n}) = \operatorname{Res}_{z \to 0} \left\{ \frac{1}{(z_1^2 - z^2)} \frac{1}{4y(z)} \left[W_{g-1,n+1}(z, -z, J) + \sum_{I \cup I' = J; h+h'=g}^{\prime} W_{h,1+|I|}(z, I) W_{h',1+|I'|}(-z, I') \right] \right\}$$

... but rather, it's two different ways to choose a cycle and pinch it:

$$W_{g,n}(z_0, \overline{z_1, \dots, z_{n-1}}) = \operatorname{Res}_{z \to 0} \left\{ \frac{1}{(z_0^2 - z^2)} \frac{1}{4y(z)} \left[W_{g-1, n+1}(z, -z, J) \right] \right\}$$

The TR machinery

• input, the density of ev./spectral curve: e.g. $\rho_0^{\text{total}}(E) = \frac{e^{S_0}}{\pi}\sqrt{E}, E > 0$ or y = z • output, the $W_{g,n}$'s:

$$\begin{split} W_{0,1} &= 2z_{1}^{2}, \\ W_{0,2} &= \frac{1}{(z_{1}-z_{2})^{2}}, \\ W_{0,3} &= \frac{1}{2z_{1}^{2}z_{2}^{2}z_{3}^{2}} \\ W_{1,1} &= \frac{1}{16z_{1}^{4}}, \\ W_{1,2} &= \frac{5z_{1}^{4}+3z_{1}^{2}z_{2}^{2}+5z_{2}^{4}}{32z_{1}^{6}z_{2}^{6}} \\ W_{2,1} &= \frac{105}{1024z_{1}^{10}}. \end{split}$$

• input, the density of ev./spectral curve: e.g. $y = \frac{\sin(2\pi z)}{4\pi}$

• output, the $W_{g,n}$'s:

$$\begin{split} W_{0,1} &= 2z_1 \frac{\sin(2\pi z_1)}{4\pi}, \\ W_{0,2} &= \frac{1}{(z_1 - z_2)^2}, \\ W_{0,3} &= \frac{1}{z_1^2 z_2^2 z_3^2} \\ W_{1,1} &= \frac{3 + 2\pi^2 z_1^2}{24 z_1^4}, \\ W_{1,2} &= \frac{5(z_1^4 + z_2^4) + 3z_1^2 z_2^2 + 4\pi^2 (z_1^4 z_2^2 + z_2^4 z_1^2) + 2\pi^4 z_1^4 z_2^4}{8z_1^6 z_2^6} \\ W_{2,1} &= \left(\frac{105}{128 z_1^{10}} + \frac{203\pi^2}{192 z_1^8} + \frac{139\pi^4}{192 z_1^6} + \frac{169\pi^6}{480 z_1^4} + \frac{29\pi^8}{192 z_1^2}\right). \end{split}$$

Relation to volumes $V_{g,n}$ of the moduli of genus g bordered Riemann surfaces with geodesic n boundaries of lengths b_i ,

$$W_{g,n}(z_1,\ldots,z_n) = \int_0^\infty b_1 \mathrm{d}b_1 \mathrm{e}^{-b_1 z_1} \cdots \int_0^\infty b_n \mathrm{d}b_n \mathrm{e}^{-b_n z_n} V_{g,n}(b_1,\ldots,b_n).$$
Mirzakhani