

A zero-dimensional Field Theory of Noncommutative Geometry

QFT-Seminar, Theoretisch-Physikalisches Institut der FSU, Jena

Carlos I. Pérez-Sánchez ITP, University of Heidelberg

www.thphys.uni-heidelberg.de/~perez/carlos.html perez@thphys.uni-heidelberg.de

Based on:

1912.13288; 2007.10914; 2102.06999; 2105.01025; 2111.02858 ERC, indirectly & DFG-Structures Excellence Cluster

Made in Jena: Jenaer Erklärung «Thm: # human subspecies » [Fischer-Hoßfeld-Krause-Richter, 2019]

Credits on individual pictures: T. Björklund (Zlatý Kůň woman), else Wikicommons-Authors: Kious et. al, Martin23230, Joe Roe

- 1st. challenge:
 - Whereas in quantum mechanics: path integrals <u>on</u> a fixed spacetime *M*

Quantum superposition of geometries

- 1st. challenge:
 - Whereas in quantum mechanics: path integrals <u>on</u> a fixed spacetime *M*
 - In quantum gravity: path integrals of spacetime, $Z = \int_{METRIC} e^{-\frac{1}{\hbar}S_{EH}[g]} dg$

Quantum superposition of geometries (small perturbations+ instantons)

- 1st. challenge:
 - Whereas in quantum mechanics: path integrals <u>on</u> a fixed spacetime *M*
 - In quantum gravity: path integrals of spacetime, $Z = \int_{METRIC} e^{-\frac{1}{\hbar}S_{EH}[g]} dg$

Quantum superposition of geometries (sm

(small perturbations+ instantons)

- 1st. challenge:
 - Whereas in quantum mechanics: path integrals <u>on</u> a fixed spacetime *M*
 - In quantum gravity: path integrals of spacetime, $Z = \int_{METRIC} e^{-\frac{1}{\hbar}S_{EH}[g]} dg$
- 2nd. challenge: replace C^{∞} -category discrete algebraic

single geometry \leftarrow paradigms \rightarrow

• Weyl's law (1911) on the Laplace spectrum of $\Omega \subset \mathbb{R}^d$ ($\lambda_0 \leq \lambda_1 \leq \lambda_2 \ldots$):

$$\#\{i: \lambda_i \leqslant \Lambda\} \sim \operatorname{vol} \Omega \cdot \Lambda^{d/2} + \operatorname{o}(\Lambda^{d/2})$$

• Weyl's law (1911) on the Laplace spectrum of $\Omega \subset \mathbb{R}^d$ ($\lambda_0 \leq \lambda_1 \leq \lambda_2 \dots$):

$$\#\{i: \lambda_i \leqslant \Lambda\} \sim \operatorname{vol} \Omega \cdot \Lambda^{d/2} + \operatorname{o}(\Lambda^{d/2})$$

• M. Kac's question: $=: \Omega_1, \Omega_2 := \bigcap \Omega_1 \not\cong \Omega_2 \xrightarrow{?}$ non-isospectral

• Weyl's law (1911) on the Laplace spectrum of $\Omega \subset \mathbb{R}^d$ ($\lambda_0 \leq \lambda_1 \leq \lambda_2 \dots$):

$$\#\{i:\lambda_i\leqslant\Lambda\}\sim\mathrm{vol}\,\Omega\cdot\Lambda^{d/2}+\mathrm{o}(\Lambda^{d/2})$$

- M. Kac's question: $=: \Omega_1, \Omega_2 := \bigcap \Omega_1 \not\cong \Omega_2 \xrightarrow{?}$ non-isospectral
- differential noncommutative (nc) geometry = nc topology + metric data
 {nice topological spaces} ~ {unital commutative C*-algebras}
 ↓
 {nice 'nc topological spaces'} ~ {unital commutative C*-algebras}

• Weyl's law (1911) on the Laplace spectrum of $\Omega \subset \mathbb{R}^d$ ($\lambda_0 \leq \lambda_1 \leq \lambda_2 \dots$):

$$\#\{i:\lambda_i\leqslant\Lambda\}\sim\mathrm{vol}\,\Omega\cdot\Lambda^{d/2}+\mathrm{o}(\Lambda^{d/2})$$

- M. Kac's question: $=: \Omega_1, \Omega_2 := \bigcap \Omega_1 \not\cong \Omega_2 \xrightarrow{?}$ non-isospectral
- - {nice 'nc topological spaces'} \simeq {unital *commutative* C*-algebras}
- spectral triples (A, H, D), cf. spin geometry $(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M})$ topology geometry

[Gordon, Webb, Wolpert, *Invent. Math.* '92 after Milnor, Sunada, Bérard, ...] [Connes, *JNCG* 2013] [Gelfand, Najmark *Mat. Sbornik* '43] [Connes, *NCG* '94]

PHYSICAL MOTIVATION OF SPECTRAL TRIPLES (DETERMINISTIC)

• Physics \cap Noncommutative Geometry \ni The Standard Model from the Spectral Action

 $- \frac{1}{2} \partial_\nu g^a_\mu \partial_\nu g^a_\mu - g_s f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu - \frac{1}{4} g^2_s f^{abc} f^{adc} g^b_\mu g^c_\nu g^d_\mu g^c_\nu +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_i^\sigma)g_u^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu\bar{G}^a G^b g_u^c - \partial_\nu W^+_a \partial_\nu W^-_a M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2\epsilon^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{$ $\frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} \frac{s}{2c^2}M\phi^0\phi^0 - \beta_h[\frac{2M^2}{g^2} + \frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h$ $i g c_w [\partial_\nu Z^0_\nu (W^+_\nu W^-_\nu - W^+_\nu W^-_\nu) - Z^0_\nu (W^+_\nu \partial_\nu W^-_\nu - W^-_\nu \partial_\nu W^+_\nu) +$ $Z^{0}_{\nu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\nu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\nu})] - igs_{w}[\partial_{\nu}A_{\mu}(W^{+}_{\nu}W^{-}_{\nu} W_{\nu}^{+} \tilde{W}_{\nu}^{-} = A_{\nu} (W_{\nu}^{+} \partial_{\nu} \tilde{W}_{\nu}^{-} - \tilde{W}_{\nu}^{-} \partial_{\nu} \tilde{W}_{\nu}^{+}) + A_{\mu} (\tilde{W}_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - \tilde{W}_{\nu}^{-} - \tilde{W}_{\nu}^{-} \partial_{\nu} \tilde{W}_{\nu}^{+}) + A_{\mu} (\tilde{W}_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - \tilde{W}_{\nu}^{-} - \tilde{W}_$ $[W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] = \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $g^2 c_w^2 (Z_a^0 \tilde{W}_a^+ Z_v^0 \tilde{W}_v^- - Z_a^0 \tilde{Z}_u^0 \tilde{W}_v^+ W_v^-) + g^2 s_w^2 (A_a \tilde{W}_a^+ A_v \tilde{W}_v^- A_{a}A_{a}W^{+}W^{-}_{a}) + g^{2}s_{w}c_{w}[A_{a}Z^{0}_{a}(W^{+}W^{-}_{a} - W^{+}W^{-}_{a}) 2A_{\mu}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - q\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{2}q^{2}\alpha_{\mu}[H^{4} +$ $(\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - \phi^{-}\partial_{\mu}\phi^{0}]$ $W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\nu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) W_{a}^{\prime}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)]+\frac{1}{2}g\frac{1}{2}(Z_{a}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)$ $ig_{s_w}^{s_w}MZ_{c}^{0}(W_{c}^{+}\phi^{-}-W_{c}^{-}\phi^{+}) + ig_{s_w}MA_{v}(W_{c}^{+}\phi^{-}-W_{c}^{-}\phi^{+}) \frac{1}{4}g^2 W_{\mu}^{+} W_{\mu}^{-} [H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 + (\phi^0)^2 + \phi^-] - \frac{1}{4}g^2 \frac{1}{2^2} Z_{\mu}^0 [H^2 +$ $2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2} g^2 \frac{s_w^2}{2} Z_u^0 \phi^0 (W_u^+ \phi^- + W_u^- \phi^+) -$

$$\begin{split} & \frac{1}{2}(g^2\frac{2}{3n}Z_{n}^{2}H(W_{n}^{1})\phi - W_{n}(\phi^{1}) + \frac{1}{2}g^2s_{nn}A_{n}\phi^{0}(W_{n}^{1})\phi - \\ & W_{n}(\phi^{1}) + \frac{1}{2}(g^2s_{nn}A_{n}H(W_{n}^{2})\phi - W_{n}(\phi^{1})) - g^2\gamma_{n}(2s_{n}^{2}) - \\ & W_{n}(\phi^{1}) + \frac{1}{2}(g^2s_{nn}A_{n}A_{n}\phi^{1})\phi - \phi^{2}(\gamma^{1})H(\phi^{1}) - h^{2}(\gamma^{1})h^{2}) - \\ & W_{n}(\phi^{1}) + m_{n}^{2}(W_{n}^{1})(\phi^{1}) - M_{n}^{2}(\phi^{1}) - H_{n}^{2}(\phi^{1}) - h^{2}(\phi^{1})h^{2}) - \\ & W_{n}(\phi^{1}) + m_{n}^{2}(W_{n}^{1}) - H_{n}^{2}(\phi^{1}) - H_{n}^{2}(\phi^{1})$$

...this 'fits' in ${\rm Tr}(f(D/\Lambda)) + \frac{1}{2} \langle J \bar{\xi}, D_A \bar{\xi} \rangle$

NCG \rightarrow Classical Standard Model

of generations and $\mathbb{C} \oplus \mathbb{H} \oplus \mathcal{M}_3(\mathbb{C}) \rightarrow$

[Connes, Lott, *Nucl. Phys. B* '91; . . . Chamseddine, Connes, Marcolli *ATMP* '07 (Euclidean)] [Barrett *J. Math. Phys.* '07 (Lorenzian); Connes-Chamseddine *JHEP* '12; van Suijlekom's textbook NCG∩HEP '15]

PHYSICAL MOTIVATION OF SPECTRAL TRIPLES (DETERMINISTIC)

• Physics \cap Noncommutative Geometry \ni The Standard Model from the Spectral Action

of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}) \rightarrow \mathsf{NCG} \rightarrow \mathsf{Classical}$ Standard Model

[Connes, Lott, Nucl. Phys. B'91; ... Chamseddine, Connes, Marcolli ATMP'07 (Euclidean)] [Barrett J. Math. Phys. '07 (Lorenzian): Connes-Chamseddine IHEP '12: van Suiilekom's textbook NCG∩HEP '15]

Towards a quantum theory of noncommutative spaces « The far distant goal is to set up a functional integral evaluating (...) observables $\mathscr{S} \quad \langle \mathscr{S} \rangle = \int \mathscr{S} e^{-\operatorname{Tr} f(D/\Lambda) - \frac{1}{2} \langle J\psi, D\psi \rangle + \rho(e,D)} de d\psi dD \quad (*) \gg$

Towards a quantum theory of noncommutative spaces « The far distant goal is to set up a functional integral evaluating (...) observables $\mathscr{S} \quad \langle \mathscr{S} \rangle = \int \mathscr{S} e^{-\operatorname{Tr} f(D/\Lambda) - \frac{1}{2} \langle J\psi, D\psi \rangle + \rho(e,D)} de d\psi dD \quad (*) \gg$

[* Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007] [Connes; Monge-Kantorovich] $\inf_{\gamma:x \to y} \{ \int_{\gamma} ds \} =: d(x, y) = \sup_{f \in C^{\infty}(M)} \{ |f(x) - f(y)| : ||D_M f - fD_M|| \leq 1 \}$ where $f(x, y) = \sup_{f \in C^{\infty}(M)} \{ |f(x) - f(y)| : ||D_M f - fD_M|| \leq 1 \}$

 $\inf_{\gamma ext{ as above}} \{ \int_{\gamma} \mathrm{d}s \} = d(x,y)$

$$|\operatorname{ev}_{x}(f) - \operatorname{ev}_{y}(f)|$$

$$\sup_{f \in C^{\infty}(M)} \left\{ \left| \operatorname{ev}_{x}(f) - \operatorname{ev}_{y}(f) \right| : \left| \left| D_{M}f - fD_{M} \right| \right| \leq 1 \right\}$$

$$\inf_{\gamma \text{ as above}} \{ \int_{\gamma} \mathrm{d}s \} = d(x, y) = \sup_{f \in C^{\infty}(M)} \left\{ \left| \mathrm{ev}_{x}(f) - \mathrm{ev}_{y}(f) \right| : \left| \left| D_{\mathcal{M}}f - fD_{\mathcal{M}} \right| \right| \leq 1 \right\}$$

A spin manifold M yields (A_M, H_M, D_M)

- $A_M = C^{\infty}(M)$ is a comm. *-algebra
- $H_M := L^2(M, \mathbb{S})$ a repr. of A_M
- $D_{\mathcal{M}} = -i\gamma^{\mu}(\partial_{\mu} + \omega_{\mu})$ is s.a.
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^{\mu}] = -i\gamma^{\mu}$
- D_M has compact resolvent . . .

- a commutative *-algebra A
- a representation H of A
- a self-adjoint operator *D* on *H* with compact resolvent and such that
 [*D*, *a*] is bounded for each *a* ∈ *A*

•
$$\Omega^1_D(A) := \left\{ \sum_{\text{(finite)}} b[D, a] \mid a, b \in A \right\}$$

A spin manifold M yields (A_M, H_M, D_M)

- $A_M = C^{\infty}(M)$ is a comm. *-algebra
- $H_M := L^2(M, \mathbb{S})$ a repr. of A_M
- $D_{\mathcal{M}} = -i\gamma^{\mu}(\partial_{\mu} + \omega_{\mu})$ is s.a.
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^{\mu}] = -i\gamma^{\mu}$
- D_M has compact resolvent . . .

- a commutative *-algebra A
- a representation H of A
- a self-adjoint operator *D* on *H* with compact resolvent and such that
 [*D*, *a*] is bounded for each *a* ∈ *A*
- $\Omega^1_D(A) := \Big\{\sum_{\text{(finite)}} b[D,a] \mid a, b \in A \Big\}$
- RECONSTRUCTION THEOREM: Roughly, commutative spectral triples^{+axioms} are always Riemannian manifolds [Connes, *JNCG* '13] after efforts by [Figueroa, Gracia-Bondía, Várilly; Rennie, Várilly, '06]

A spin manifold M yields (A_M, H_M, D_M)

- $A_M = C^{\infty}(M)$ is a comm. *-algebra
- $H_M := L^2(M, \mathbb{S})$ a repr. of A_M
- $D_{\mathcal{M}} = -i\gamma^{\mu}(\partial_{\mu} + \omega_{\mu})$ is s.a.
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^{\mu}] = -i\gamma^{\mu}$
- D_M has compact resolvent . . .

- a commutative *-algebra A
- a representation H of A
- a self-adjoint operator *D* on *H* with compact resolvent and such that
 [*D*, *a*] is bounded for each *a* ∈ *A*
- $\Omega^1_D(A) := \Big\{\sum_{\text{(finite)}} b[D,a] \mid a, b \in A \Big\}$
- RECONSTRUCTION THEOREM: Roughly, commutative spectral triples^{+axioms} are always Riemannian manifolds [Connes, *JNCG* '13] after efforts by [Figueroa, Gracia-Bondía, Várilly; Rennie, Várilly, '06]

A spin manifold M yields (A_M, H_M, D_M)

- $A_M = C^{\infty}(M)$ is a comm. *-algebra
- $H_M := L^2(M, \mathbb{S})$ a repr. of A_M
- $D_{\mathcal{M}} = -i\gamma^{\mu}(\partial_{\mu} + \omega_{\mu})$ is s.a.
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^{\mu}] = -i\gamma^{\mu}$
- D_M has compact resolvent . . .

- a commutative *-algebra A
- a representation H of A
- a self-adjoint operator *D* on *H* with compact resolvent and such that
 [*D*, *a*] is bounded for each *a* ∈ *A*
- $\Omega^1_D(A) := \Big\{\sum_{\text{(finite)}} b[D,a] \mid a, b \in A \Big\}$
- RECONSTRUCTION THEOREM: Roughly, commutative spectral triples^{+axioms} are always Riemannian manifolds [Connes, *JNCG* '13] after efforts by [Figueroa, Gracia-Bondía, Várilly; Rennie, Várilly, '06]

• On a spectral triple (*A*, *H*, *D*) the (bosonic) classical action reads

• On a spectral triple (*A*, *H*, *D*) the (bosonic) classical action reads

spin geometries or

 $C^{\infty}(M)$

• On a spectral triple (*A*, *H*, *D*) the (bosonic) classical action reads

- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $(C^{\infty}(M, A_F), H_M \otimes H_F, D_M \otimes 1_F + \gamma_5 \otimes D_F)$
- applications require (A, H, D) to have a *reality J* : H → H antiunitary ^{axioms}, implementing a right A-action on H

• On a spectral triple (*A*, *H*, *D*) the (bosonic) classical action reads

 $S(D) = {\sf Tr}_H \left[f \left(\left. D \middle/ \Lambda \right.
ight)
ight]$ [Chamseddine-Connes CMP '97]

- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $(C^{\infty}(M, A_F), H_M \otimes H_F, D_M \otimes 1_F + \gamma_5 \otimes D_F)$
- applications require (A, H, D) to have a *reality J* : H → H antiunitary ^{axioms}, implementing a right A-action on H

• *connections*: if *S^G* is a *G*-invariant functional on *M*

 $S^{G} \leadsto S^{\operatorname{Maps}(M,G)}$ $d \leadsto d + \mathbb{A} \qquad \mathbb{A} \in \Omega^{1}(M) \otimes \mathfrak{g}$ $\mathbb{A}' = u \mathbb{A} u^{-1} + u d u^{-1} \qquad u \in \operatorname{Maps}(M,G)$

• given (A, H, D) and $A \simeq_{m} B$ (i.e. $\operatorname{End}_{A}(E) \cong B$) yields $(B, E \otimes_{A} H, D$'s). For A = B, a tower $\{(A, H, D + \omega \pm J\omega J^{-1})\}_{\omega \in \Omega_{D}^{1}(A)}$ $D_{\omega} \mapsto \operatorname{Ad}(u) D_{\omega} \operatorname{Ad}(u)^{*} = D_{\omega_{u}}$ $\omega \mapsto \omega_{u} = u\omega u^{*} + u[D, u^{*}]$ $u \in \mathcal{U}(A)$

Spectral Action

Classical

$$S(D) = \operatorname{Tr} f(D/N) \quad \text{(bosons)}$$

$$\sim \sum_{s \in \operatorname{SpDim} \cap \mathbb{R}_+} f_s N^s \int |D|^{-s} + f(0)\zeta(0) \dots$$

Quantum

$$\mathcal{Z}_{AC} \stackrel{?}{=} \int_{\text{Dirac}} e^{-\frac{1}{\hbar} \operatorname{Tr} f(D/N)} \mathrm{d} D$$

(hard to define for almost-comm. manifolds)

[Chamseddine, Connes, Marcolli ATMP '07] using heat kernel expansion, for 4-manifolds:

 $N^4 \int |D|^{-4} = c_4(N) \operatorname{vol}(M)$ [cosmological constant]

$$N^2 \int |D|^{-2} = c_2(N) \int R$$

[Einstein-Hilbert]

 $\zeta_D(0) = c_0 \int (R^* R^*) + c'_0 \int C^2$ [Gauß-Bonnet + conformal gravity]

First result

Matrix Yang-Mills(-Higgs) functional obeying spectral triple axioms; its partition function is a multi-matrix model. Red arrow is a more general $C(\mathbb{S}^2) \twoheadrightarrow \langle \bigoplus, \bigoplus, \ldots, \bigotimes \rangle$

[CP Ann. Henri Poincaré 23, 2022 arXiv: 2105.01025]

Second result

• which is the low-energy limit?

$$``\langle \bigcirc, \bigcirc, \ldots, \bigotimes \rangle" = M_N(\mathbb{C}) \xrightarrow{?} C^{\infty}(M)$$

- adopting the functional renormalisation group (FRG) viewpoint I failed
- but still, as a corollary: important step in the computation of the FRG for general multimatrix models

Multimatrix models with multi-traces

- A chord-diagram formula computes the spectral action (in any signature) $\mathcal{Z} = \int_{\mathsf{D}_{\mathsf{IRAC}}} \mathrm{e}^{-\mathsf{Tr}_H f(D)} \mathrm{d}D \quad (\hbar = 1)$ $= \int_{\mathcal{M}_{\text{D},q}} \mathrm{e}^{-N \operatorname{\mathsf{Tr}}_N P - \operatorname{\mathsf{Tr}}_N^{\otimes 2}(Q_{(1)} \otimes Q_{(2)})} \mathrm{d} \mathbb{X}_{\text{LEB}}$
- $\mathbb{X} \in \mathcal{M}_{p,q}$ = products of $\mathfrak{su}(N)$ and \mathcal{H}_N
- dX_{LEB} is the Lebesgue measure on $M_{p,q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k \rangle} = \mathbb{C} \langle \mathbb{X} \rangle$ nc-polynomials
- $\mathcal{Z}_{\text{FORMAL}}$ leads to colored ribbon graphs

 $g_1 \operatorname{Tr}_N(ABBBAB) \leftrightarrow$

Chord-diagram is what it sounds like: [CP '19, CP '21, CP '22a, CP '22b]

Multimatrix models with multi-traces

- A chord-diagram formula computes the spectral action (in any signature) $\mathcal{Z} = \int_{\mathsf{D}_{\mathsf{D}}\mathsf{r}_{\mathsf{H}}} \mathrm{e}^{-\mathsf{Tr}_{\mathsf{H}}f(D)} \mathrm{d}D \quad (\hbar = 1)$ $= \int_{\mathcal{M}_{\text{D},q}} \mathrm{e}^{-N \operatorname{\mathsf{Tr}}_N P - \operatorname{\mathsf{Tr}}_N^{\otimes 2}(Q_{(1)} \otimes Q_{(2)})} \mathrm{d} \mathbb{X}_{\text{LEB}}$
- $\mathbb{X} \in \mathcal{M}_{p,q}$ = products of $\mathfrak{su}(N)$ and \mathcal{H}_N
- dX_{LEB} is the Lebesgue measure on $M_{p,q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k \rangle} = \mathbb{C} \langle \mathbb{X} \rangle$ nc-polynomials
- $\mathcal{Z}_{\text{FORMAL}}$ leads to colored ribbon graphs

 $g_2 \operatorname{Tr}_N^{\otimes 2}(AABABA \otimes AA) \leftrightarrow$

Chord-diagram is what it sounds like: [CP '19, CP '21, CP '22a, CP '22b]

Multimatrix models with multi-traces

- A chord-diagram formula computes the spectral action (in any signature) $\mathcal{Z} = \int_{\text{DIRAC}} e^{-\operatorname{Tr}_H f(D)} dD \quad (\hbar = 1)$
 - $= \int_{\mathcal{M}_{p,q}} \mathrm{e}^{-N\operatorname{\mathsf{Tr}}_N P \operatorname{\mathsf{Tr}}_N^{\otimes 2}(Q_{(1)} \otimes Q_{(2)})} \mathrm{d} \mathbb{X}_{\text{Leb}}$
- $\mathbb{X} \in \mathcal{M}_{p,q} = \text{products of } \mathfrak{su}(N) \text{ and } \mathcal{H}_N$
- $\mathrm{d}\mathbb{X}_{\scriptscriptstyle\mathsf{LeB}}$ is the Lebesgue measure on $M_{p,q}$
- *P*, $Q_{(i)}$ in $\mathbb{C}_{\langle k \rangle} = \mathbb{C} \langle \mathbb{X} \rangle$ nc-polynomials
- $\mathcal{Z}_{\text{\tiny FORMAL}}$ leads to colored ribbon graphs

 $g_2 \operatorname{Tr}_N^{\otimes 2}(AABABA \otimes AA) \quad \leftrightarrow$

• Ribbon graphs: Enumeration of maps, here 'face-worded'

 Multitrace: 'touching interactions' [Klebanov, Phys. Rev. D. '95], wormholes
 [Ambjørn-Jurkiewicz-Loll-Vernizzi, JHEP '01], 'stuffed maps' [Borot Ann. Inst. Henri Poincaré Comb. Phys. Interact. '14], AdS/CFT [Witten, hep-th/0112258]

Chord-diagram is what it sounds like: [CP '19, CP '21, CP '22a, CP '22b]

$$\mathcal{Z}_{AC} \stackrel{?}{=} \int_{Dirac} e^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} dD$$

(hard for almost-commutative manifolds)

Barrett's matrix geometries \subset spectral triples

 $\begin{aligned} A &= M_N(\mathbb{C}) & \implies \text{a bit more precise?} \\ H &= \mathbb{S} \otimes M_N(\mathbb{C}) \\ D &= \gamma^\mu \otimes \mathbb{X}_\mu + \gamma^{\alpha_1 \alpha_2 \alpha_3} \otimes \mathbb{X}_{\alpha_1 \alpha_2 \alpha_3} + \dots \end{aligned}$

$$\mathcal{Z}_{AC} \stackrel{?}{=} \int_{Dirac} e^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} dD$$

(hard for almost-commutative manifolds)

Barrett's matrix geometries \subset spectral triples

 $\begin{aligned} A &= M_N(\mathbb{C}) & \implies \text{a bit more precise?} \\ H &= \mathbb{S} \otimes M_N(\mathbb{C}) \\ D &= \gamma^\mu \otimes \mathbb{X}_\mu + \gamma^{\alpha_1 \alpha_2 \alpha_3} \otimes \mathbb{X}_{\alpha_1 \alpha_2 \alpha_3} + \dots \end{aligned}$

DEFINITION [CP' 21]. A gauge matrix spectral triple $G_{f} \times F$ is the spectral triple product of a matrix geometry G_{f} with a finite geometry $F = (A_{F}, H_{F}, D_{F})$, dim $A_{F} < \infty$.

(LEMMA-)DEFINITION [CP' 21]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

 $F = (M_n(\mathbb{C}), M_n(\mathbb{C}), D_F)$

and G_{ℓ} Riemannian (d = 4) fuzzy geometry on $M_N(\mathbb{C})$, whose fluctuated Dirac op. is

 $D_{\omega} = \sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes (\ell_{\mu} + a_{\mu}) + \gamma^{\hat{\mu}} \otimes (x_{\mu} + s_{\mu})}^{D_{\text{gauge}}} + \overbrace{\gamma \otimes \Phi}^{D_{\text{Higgs}}}, \quad a_{\mu} = \text{`gauge potential'}, x_{\mu} = \text{spin connection?}$ The *field strength* is given by $\mathscr{F}_{\mu\nu} := [\overbrace{\ell_{\mu} + a_{\mu}}^{\mathcal{L}}, \ell_{\nu} + a_{\nu}] =: [\mathsf{F}_{\mu\nu}, \cdot]$ (LEMMA-)DEFINITION [CP' 21]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

 $F = (M_n(\mathbb{C}), M_n(\mathbb{C}), D_F)$

and G_{ℓ} Riemannian (d = 4) fuzzy geometry on $M_N(\mathbb{C})$, whose fluctuated Dirac op. is

 $D_{\omega} = \sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes (\ell_{\mu} + a_{\mu}) + \gamma^{\hat{\mu}} \otimes (x_{\mu} + s_{\mu})}^{D_{\text{Higgs}}} + \overbrace{\gamma \otimes \Phi}^{D_{\text{Higgs}}}, \quad a_{\mu} = \text{`gauge potential'}, x_{\mu} = \text{spin connection?}$ The *field strength* is given by $\mathscr{F}_{\mu\nu} := [\overbrace{\ell_{\mu} + a_{\mu}}^{\mathcal{L}}, \ell_{\nu} + a_{\nu}] =: [\mathsf{F}_{\mu\nu}, \cdot]$

Lemma. The gauge group $G(\mathcal{A}) \cong \mathcal{U}(\mathcal{A})/\mathcal{U}(Z(\mathcal{A})) \cong \mathrm{PU}(N) \times \mathrm{PU}(n)$ acts as follows

$$\mathsf{F}_{\mu\nu} \mapsto \mathsf{F}^{u}_{\mu\nu} = u\mathsf{F}_{\mu\nu}u^{*}$$
 for all $u \in \mathsf{G}(\mathcal{A})$

M	EAN	ING

RANDOM MATRIX CASE, FLAT d = 4 Riem.
Tr = trace of OPS. $M_N \otimes M_n \to M_N \otimes M_n$ Smooth operator
 ∂_i $\ell_{\mu} = [L_{\mu} \otimes 1_n, \cdot]$ ∂_i $a_{\mu} = [A_{\mu}, \cdot]$ A_i $d_{\mu} = \ell_{\mu} + a_{\mu}$ $\mathbb{D}_i = \partial_i + \mathbb{A}_i$

Derivation

Gauge potential

Covariant derivative

Meaning	Random matrix case, flat $d = 4$ Riem. Tr = trace of ops. $M_N \otimes M_n \rightarrow M_N \otimes M_n$	Smooth operator
Derivation	$\mathscr{C}_{\mu} = \begin{bmatrix} L_{\mu} \otimes 1_n, & \cdot \end{bmatrix}$	∂_i
Gauge potential	$a_{\mu} = [A_{\mu}, \ \cdot \]$	\mathbb{A}_i
Covariant derivative	${\mathscr d}_\mu = {\mathscr C}_\mu + a_\mu$	$\mathbb{D}_i = \partial_i + \mathbb{A}_i$
Field strength	$\begin{bmatrix} \mathcal{d}_{\mu}, \mathcal{d}_{\nu} \end{bmatrix} = \overbrace{\begin{bmatrix} \ell_{\mu}, \ell_{\nu} \end{bmatrix}}^{\notin 0} + \\ \begin{bmatrix} \ell_{\mu}, a_{\nu} \end{bmatrix} - \begin{bmatrix} \ell_{\nu}, a_{\mu} \end{bmatrix} + \begin{bmatrix} a_{\mu}, a_{\nu} \end{bmatrix}$	$\begin{bmatrix} \mathbb{D}_i, \mathbb{D}_j \end{bmatrix} = \overbrace{\left[\partial_i, \partial_j\right]}^{\equiv 0} + \\ \partial_i \mathbb{A}_j - \partial_j \mathbb{A}_i + \begin{bmatrix} \mathbb{A}_i, \mathbb{A}_j \end{bmatrix}$
Yang-Mills action	$-rac{1}{4}\operatorname{Tr}(\mathscr{F}_{\mu u}\mathscr{F}^{\mu u})$	$-\frac{1}{4}\int_{\mathcal{M}}Tr_{\mathfrak{su}(n)}(\mathbb{F}_{ij}\mathbb{F}^{ij})\mathrm{vol}$
Higgs field	Φ	h
Higgs potential	${\sf Tr}(f_2\Phi^2+\Phi^4)$	$\int_{\mathcal{M}} \left(-\mu^2 h ^2 + \lambda h ^4 \right) \mathrm{vol}$
Gauge-Higgs coupling	$-\operatorname{Tr}(\mathscr{d}_{\mu}\Phi\mathscr{d}^{\mu}\Phi)$	$-\int_{\mathcal{M}} \mathbb{D}_i h ^2 \mathrm{vol}$

III. Functional renormalisation in random matrices

Motivation from '2D-Quantum Gravity'

discrete surfaces	\leftrightarrow	matrix integrals $\mathcal{Z}(\lambda)$ [B. Eynard, <i>Counting Surfaces</i> '16]
smooth surface	\leftrightarrow	$\langle area \rangle$ finite & mesh $\mathfrak{a} \to 0$
all topologies	\leftrightarrow	$\mathcal{Z}(\lambda) = \sum_{g} N^{2-2g} \mathcal{Z}_{g}(\lambda)$
↑		$(\lambda_{\rm c}-\lambda)^{(2-2g)/ heta}$
double-scaling limit		$N(\lambda_{ m c}-\lambda)^{1/ heta}=C$
lin. RG-flow near a fixed point	\leftrightarrow	$\begin{split} \lambda(N) &= \lambda_{\rm c} + (N/C)^{-\theta} \\ \theta &= -(\partial \beta/\partial \lambda) _{\lambda_{\rm c}} \end{split}$

- Chosen bare action $S = \Gamma_{N-\Lambda}$
- Full effective action $\Gamma = \Gamma_{N=0}$
- Interpolating action $\Gamma_{N=\Lambda-\rho}$ (projected & truncated)
- RG-flow with truncation and projection
- Moduli of Dirac operators \hookrightarrow theory space
- RG-flow without truncation nor projection ---->
- Rest of coupling constants g_{\dots}

[Eichhorn-Koslowski, Phys. Rev. D. '13]

III. Functional renormalisation in random matrices

Motivation from '2D-Quantum Gravity'

discrete surfaces	\leftrightarrow	matrix integrals $\mathcal{Z}(\lambda)$ [B. Eynard, <i>Counting Surfaces</i> '16]	
smooth surface	\leftrightarrow	$\langle area \rangle$ finite & mesh $\mathfrak{a} \to 0$	
all topologies	\leftrightarrow	$\mathcal{Z}(\lambda) = \sum_{g} N^{2-2g} \mathcal{Z}_{g}(\lambda)$	
↑		$(\lambda_{\rm c}-\lambda)^{(2-2g)/ heta}$	
double-scaling limit		$N(\lambda_{ m c}-\lambda)^{1/ heta}=C$	
lin. RG-flow near a fixed point	\leftrightarrow	$\begin{split} \lambda(N) &= \lambda_{\rm c} + (N/C)^{-\theta} \\ \theta &= -(\partial \beta/\partial \lambda) _{\lambda_{\rm c}} \end{split}$	

Notation

• Wick's theorem [L. Isserlis *Biometrika* 1918]: for zero-mean x_i 's, ...

$$\mathbb{E}[x_{j_1}\cdots x_{j_{2n}}] := \langle x_{j_1}\cdots x_{j_{2n}} \rangle = \sum_{\substack{\pi \in P_2(2n) \\ (\text{pairings})}} \prod_{(p,q)\in\pi} \langle x_{j_p} x_{j_q} \rangle$$

- k = number of Hermitian matrices of size $N, X_1^{(N)}, \ldots, X_k^{(N)}$
- Ribbon graphs: For $\langle (X_{\mu}^{(N)})_{i,j}(X_{\rho}^{(N)})_{l,m} \rangle = N^{-1}\delta_{\mu\rho}\delta_{im}\delta_{jl}$ $\mu, \rho = 1, \dots, k; i, \dots, m = 1, \dots, N$

$$(gN) \cdot \left\langle \operatorname{Tr}_{N} \left(X_{1}^{(N)} X_{2}^{(N)} X_{1}^{(N)} X_{2}^{(N)} X_{3}^{(N)} X_{4}^{(N)} X_{3}^{(N)} X_{4}^{(N)} \right) \right\rangle = \bigvee_{g} \sim N^{\chi(\Sigma_{g})|_{g=2}} = N^{-2}$$

Functional Renormalisation for k-matrix models (w/multitrace-measures)

Quantum theories 'flow' with energy, here in RG-time $t = \log N$, $1 \ll N < N$. E.g. for k = 2 and with bare action

$$S[A, B] = \mathscr{N} \operatorname{Tr}_{\mathscr{N}} \left\{ \frac{1}{2} A^2 + \frac{1}{2} B^2 + g_{A^4} \frac{1}{4} A^4 + g_{B^4} \frac{1}{4} B^4 + \frac{1}{2} g_{ABAB} ABAB \right\} \quad A, B \text{ with } A^{\dagger} = A, B^{\dagger} = B$$

radiative corrections 'generate' *effective vertices*, e.g. generates $Tr \otimes Tr(ABBA \otimes 1)$.

$$\Gamma_{N}[A,B] = \operatorname{Tr}_{N}\left\{\underbrace{\frac{Z_{A}}{2}A^{2} + \frac{Z_{B}}{2}B^{2} + \bar{g}_{A^{4}}\frac{1}{4}A^{4} + \bar{g}_{B^{4}}\frac{1}{4}B^{4} + \frac{1}{2}\bar{g}_{ABAB}ABAB}_{I} + \underbrace{\frac{Z_{A}}{2}\bar{g}_{ABA}BABA}_{I} + \frac{1}{2}\bar{g}_{ABA}BBAA + \frac{1}{2}\bar{g}_{A|A}\operatorname{Tr}_{N}(A) \times A + \dots\right\}$$

Functional Renormalisation for k-matrix models (w/multitrace-measures)

Quantum theories 'flow' with energy, here in RG-time $t = \log N$, $1 \ll N < N$. E.g. for k = 2 and with bare action

$$S[A, B] = \mathscr{N} \operatorname{Tr}_{\mathscr{N}} \left\{ \frac{1}{2} A^2 + \frac{1}{2} B^2 + g_{A^4} \frac{1}{4} A^4 + g_{B^4} \frac{1}{4} B^4 + \frac{1}{2} g_{ABAB} ABAB \right\} \quad A, B \text{ with } A^{\dagger} = A, B^{\dagger} = B$$

radiative corrections 'generate' *effective vertices*, e.g. (\bigcirc) generates $Tr \otimes Tr(ABBA \otimes 1)$.

Comment on the FRGE on the ABAB-model: [CP J. High Energ. Phys 2021]

gral. situation (yet, without multitraces)

One then sums over the product of all g_j 's appearing in such 1-loops. These polynomials span the β -function for O.

Two steps

1. Understanding the FRGE

[CP 2007.10914, Ann. Henri Poincaré 2021]

- prove Wetterich Equation, or FRGE; its proof determines the algebra that governs geometric series in the Hessian of Γ
- [A. Eichhorn, T. Koslowski, *Phys. Rev. D* '13] oriented us, but the proof of the FRGE dictates an **algebra not reported there**
- β-equations found for a sextic truncation (48 running operators). For the unique real solution g* leading to a single relevant direction (positive e.v. of -(∂β_i/∂g_j)_{i,j}|_{g*}) yields bego to β-functions

$$g^*_{A^4} = 1.002 imes \left(g^*_{A^4} |_{[Kazakov-Zinn-Justin, Nucl. Phys. B `99]}
ight)$$

2. Unicity (using a ribbon graph argument) [CP 2111.02858 *Lett. Math. Phys.* 2022]

- write down Wetterich Equation " $\dot{\Gamma} = \frac{1}{2} \operatorname{Tr}_{M_k(\mathcal{A})} \left\{ \dot{R}_N / [\Gamma^{(2)} + R_N] \right\}$ "
- assume an expansion of its rhs in unitary-invariant operators (≠ exact RG)
- impose the one-loop structure and solve for the algebra $\mathcal{A} = \mathcal{A}_{k,N}$
- determine from it the algebra that computes Wetterich equation; it is unique and the one reported before in [CP' 21] (cf. left column)

• *nc-derivative* $\partial_A : \mathbb{C}_{\langle k \rangle} \to \mathbb{C}_{\langle k \rangle}^{\otimes 2}$ sums over 'replacements of A by \otimes ' [Turnbull+Rota-Sagan-Stein+Voiculescu]:

$$\partial_A(PAAR) = P \otimes AR + PA \otimes R$$
, but
 $\partial_A(ALGEBRA) = 1 \otimes LGEBRA + ALGEBR \otimes 1$

• this is not enterely abstract, just 'take entries' of the matrices:

$$\frac{\partial}{\partial A_{b,c}}(W)_{a,d} = (\partial_A W)_{ab;cd}$$

• $W \in \mathbb{C}_{\langle k \rangle}$, the *nc-Hessian* [CP '21] Hess $\operatorname{Tr}_N W \in M_k(\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle})$ has entries are Hess_{*b*,*a*} Tr $W = (\partial_{X_b} \circ \partial_{X_a}) \operatorname{Tr}_N W$. Are computed by 'cuts': e.g. W = ABAABABB

• products of traces \Rightarrow extend by \boxtimes , $\mathcal{A}_k = (\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle}) \oplus (\mathbb{C}_{\langle k \rangle} \boxtimes \mathbb{C}_{\langle k \rangle})$

 $\operatorname{Hess}_{a,b}(\operatorname{Tr} P \cdot \operatorname{Tr} Q) = \operatorname{Tr} P \cdot \operatorname{Hess}_{a,b}[\operatorname{Tr} Q] + (\partial_{X_a} \operatorname{Tr} P) \boxtimes (\partial_{X_b} \operatorname{Tr} Q) + (P \leftrightarrow Q)$

• products of traces \Rightarrow extend by \boxtimes , $\mathcal{A}_k = (\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle}) \oplus (\mathbb{C}_{\langle k \rangle} \boxtimes \mathbb{C}_{\langle k \rangle})$

 $\operatorname{\mathsf{Hess}}_{a,b}(\operatorname{\mathsf{Tr}} P \cdot \operatorname{\mathsf{Tr}} Q) = \operatorname{\mathsf{Tr}} P \cdot \operatorname{\mathsf{Hess}}_{a,b}[\operatorname{\mathsf{Tr}} Q] + (\partial_{X_a} \operatorname{\mathsf{Tr}} P) \boxtimes (\partial_{X_b} \operatorname{\mathsf{Tr}} Q) + (P \leftrightarrow Q)$

• Wetterich Eq. governs the functional RG with time $t = \log N$

.

$$\partial_{t}\Gamma_{N}[\mathbb{X}] = \frac{1}{2}\operatorname{Tr}_{k} \otimes \operatorname{Tr}_{\mathcal{A}_{n}} \left\{ \frac{\partial_{t}R_{N}}{\operatorname{Hess}\Gamma_{N}[\mathbb{X}] + R_{N}} \right\}$$

$$\stackrel{\text{piecewise cte. } R_{N}}{=} \sum_{k=0}^{\infty} \overline{h}_{k}(N, \eta_{1}, \dots, \eta_{n}) \times \underbrace{\frac{1}{2}(-1)^{k}\operatorname{Tr}_{\mathcal{M}_{k}(\mathcal{A})}\left\{ (\operatorname{Hess}\Gamma_{N}^{\operatorname{INT}}[\mathbb{X}])^{\star k} \right\}}_{\operatorname{regulator-independent part}}$$

$$\operatorname{rom} \underbrace{\bigvee_{q}}^{P_{\operatorname{Hess}}} \underbrace{\operatorname{Tr}_{\mathcal{A}_{n}}(P \otimes Q)}_{q} = \operatorname{Tr}_{N}P \cdot \operatorname{Tr}_{N}Q, \operatorname{Tr}_{\mathcal{A}_{n}}(P \boxtimes Q) = \operatorname{Tr}_{N}(PQ)$$

THM. [CP '22] If the RG-flow is computable in terms of U(N)-invariants, the algebra of Functional Renormalisation is $M_k(\mathcal{A}_{k,N}, \star)$ where

$$\mathcal{A}_{k,N} = (\mathbb{C}_{\langle k \rangle}^{(N)} \otimes \mathbb{C}_{\langle k \rangle}^{(N)}) \oplus (\mathbb{C}_{\langle k \rangle}^{(N)} \boxtimes \mathbb{C}_{\langle k \rangle}^{(N)})$$

whose product in hom. elements reads:

$$\begin{split} (U \otimes W) \star (P \otimes Q) &= PU \otimes WQ, \\ (U \boxtimes W) \star (P \otimes Q) &= U \boxtimes PWQ, \\ (U \otimes W) \star (P \boxtimes Q) &= WPU \boxtimes Q, \\ (U \boxtimes W) \star (P \boxtimes Q) &= \operatorname{Tr}_N (WP) U \boxtimes Q, \\ \text{and traces } \operatorname{Tr}_k \otimes \operatorname{Tr}_{A_k} \\ \operatorname{Tr}_{\mathcal{A}_n} (P \otimes Q) &= \operatorname{Tr}_N P \cdot \operatorname{Tr}_N Q, \\ \operatorname{Tr}_{\mathcal{A}_n} (P \boxtimes Q) &= \operatorname{Tr}_N (PQ). \end{split}$$

Remark: To be more precise, any occurrence of the free algebra in $A_{k,N}$ should be replaced by the algebra of 'trace polynomials' (e.g. $\operatorname{Tr}_N(X_1X_3)X_2 + N\operatorname{Tr}_N(X_2^2)$) [D. Jekel-W. Li-D. Shlyakhtenko, '21]

Example: a Hermitian 3-matrix model

Consider two operators $O_1 = \frac{\bar{g}_1}{2} [\text{Tr}_N(\frac{A^2}{2})]^2$ and $O_2 = \bar{g}_2 \text{Tr}_N(ABC)$. We compute $g_1g_2^2$ -coefficients:

$$\operatorname{Hess}_{I,J} O_1 = \delta_I^J \delta_I^A \overline{g}_1 \{ \underbrace{\operatorname{Tr}_N (A^2/2) \cdot [1_N \otimes 1_N]}_{\swarrow} + \underbrace{A \boxtimes A}_{\checkmark} \},$$

where a 'filled ribbon' means contracted in the one-loop graph, and 'empty ribbon' uncontracted.

$$\operatorname{Hess} O_2 = \overline{g}_2 \begin{bmatrix} 0 & C \otimes 1_N & B \otimes 1_N \\ 1_N \otimes C & 0 & A \otimes 1_N \\ 1_N \otimes B & 1_N \otimes A & 0 \end{bmatrix} \Rightarrow [\operatorname{Hess} O_2]^{\star 2} = \overline{g}_2^2 \begin{bmatrix} \overbrace{C \otimes C}^{\bullet} + \overbrace{B \otimes B} & B \otimes A & C \otimes A \\ A \otimes B & A \otimes A + C \otimes C & C \otimes B \\ A \otimes C & B \otimes C & B \otimes B + A \otimes A \end{bmatrix}.$$

 $\left[\overline{g}_1\overline{g}_2^2\right]\mathsf{STr}\{\mathsf{Hess}\,O_1\star\left[\mathsf{Hess}\,O_2\right]^{\star 2}\}=\mathsf{Tr}_N\left(A^2/2\right)\times\left[\left(\mathsf{Tr}_N\,C\right)^2+\left(\mathsf{Tr}_N\,B\right)^2\right]+\mathsf{Tr}_N\left(ACAC+ABAB\right).$

These are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\{-, -, -, -, -\}$ with any of $\{\times, \times\}$

CONCLUSION: SOME PROGRESS

- 1 Matrix Geometries [Barrett, J. Math. Phys. '15]
- 2 Dirac Ensembles [Barrett-Glaser, J. Phys
 A, '16] and how to compute the spectral action [CP '19]
- 3 Gauge matrix spectral triples [CP '22a]
- Functional Renormalisation
 (Wetterich equation) in formal random matrix theory [CP '21a, CP '21b] and [CP '22b]

References: [CP J. Noncommut. Geom. 2023] on the spectral action, [CP Ann. Henri Poincaré 2022] on Yang-Mills-Higgs. Related: [CP Ann. Henri Poincaré 2021] on Wetterich Eq., [CP J. High Energ. Phys 2021] [CP Lett. Math. Phys. 2022] on algebra and FRG

CONCLUSION

- small step towards [Eq. 1.892, Connes, Marcolli, NCG, QFT and motives, 2007]
 - \ll The far distant goal is to set up a functional integral evaluating spectral

observables $\mathscr{S} \quad \langle \mathscr{S} \rangle = \int \mathscr{S} e^{-\operatorname{Tr} f(D/\Lambda) - \frac{1}{2} \langle J\psi, D\psi \rangle + \rho(e,D)} de d\psi dD \quad \gg$

Outlook (Physics)

- Random/Quantum YM
- Missing is a fully mathematically correct FRG for arbitrary regulator
- Tensor Models & FRG (MSc. thesis of Leena Tharwat, on the job market)
- Software for Graph Theory & FRG (MSc. thesis of. Niels Gehring)

Thanks for listening!

References: [CP J. Noncommut. Geom. 2023] on the spectral action, [CP Ann. Henri Poincaré 2022] on Yang-Mills-Higgs. Related: [CP Ann. Henri Poincaré 2021] on Wetterich Eq., [CP J. High Energ. Phys 2021] [CP Lett. Math. Phys. 2022] on algebra and FRG

Classical Dirac operators (assume d even)

- *M* (spacetime) will be a closed, Riemannian manifold
- if *M* is spin, there is a vector bundle \mathbb{S} with fibers satisfying $\operatorname{End}(\mathbb{S}_x) \cong \mathbb{C}\ell(d)$ $(x \in M)$. The sections $\Gamma(\mathbb{S})$ are spinors
- the Levi-Civita connection ∇^{LC} can be also lifted to the *spin connection* ∇^s: Γ(S) → Ω¹(M) ⊗ Γ(S)

 $\nabla^{s} c(\omega) \psi = c(\nabla^{Lc} \omega) \psi + c(\omega) \nabla^{s} \psi$ $\psi \in \Gamma(\mathbb{S}), \omega \in \Omega^{1}(M)$

being c Clifford multiplication, basically $c(\mathrm{d} x^\mu)=\gamma^\mu$

 on the space of square integrable spinors L²(M, S) there is an (ess.) self-adjoint operator, the *Dirac operator*,

$$D_{\mathcal{M}} = -\mathrm{i} c \circ \nabla^{s} \stackrel{\mathrm{loc.}}{=} -\mathrm{i} \sum_{\mu=1}^{d} \gamma^{\mu} (\partial_{\mu} + \omega_{\mu})$$

and by Leibniz rule

$$[D_{\mathcal{M}}, a] = -\mathrm{i}c(\mathrm{d}a) \ a \in C^{\infty}(\mathcal{M})$$

which is bounded

back to 'spectral triples' 🛹

Sketch of the Standard Model derivation from NCG [Chamseddine, Connes, Marcolli ATMP '07]

One starts with the $M \times_{s.t.} F$ and $\mathcal{A}_{LR} = \mathbb{C} \oplus \mathbb{H}_L \oplus \mathbb{H}_R \oplus \mathcal{M}_3(\mathbb{C})$

- $F = (A_{LR}, \mathcal{M}_F^{\#generations}, D_F), \mathcal{M}_F$ an A_{LR} -module
- \mathcal{M}_F has to be of the form $\mathcal{M}_F = \mathcal{E} \otimes \mathcal{E}^o$, with

 $\mathcal{E} = (2_L \otimes 1^o) \oplus (2_R \otimes 1^o) \oplus (2_L \otimes 3^o) \oplus (2_L \otimes 3^o), \quad \dim_{\mathbb{C}} \mathcal{E} = 16$

• Thus the $\mathcal{H}_F \cong \mathbb{C}^{32 \times 3}$. The 96 × 96 matrix D_F can have off-diagonal elements only for the maximal subalgebra

 $\mathcal{A}_F = \mathbb{C} \oplus \mathbb{H} \oplus \mathcal{M}_3(\mathbb{C})$

- Lie group part of $\mathrm{SU}(\mathcal{A}_F) = \mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$

Sketch of the Standard Model derivation from NCG

With $Q : \mathbb{C} \hookrightarrow \mathbb{H}$, $Q_{\lambda} = \operatorname{diag}(\lambda, \overline{\lambda})$ and $Q_{\lambda} |\pm\rangle = \pm \lambda |\pm\rangle$,

• Weak hypercharge:
$$\begin{array}{c|cccc} \nu & e & u & d \\ \hline Y & |+\rangle \otimes 1^{o} & |-\rangle \otimes 1^{o} & |+\rangle \otimes 3^{o} & |-\rangle \otimes 3^{o} \\ \hline L & -1 & -1 & +1/3 & +1/3 \\ \hline R & 0 & -2 & +4/3 & -2/3 \end{array}$$

- SU(2)-adjoint action is 2 on \mathcal{H}_L or trivial in the \mathcal{H}_R sector
- SU(3)-adjoint action is the color action on \mathcal{H}_q and trivial on \mathcal{H}_ℓ

 $\operatorname{Lie}(\operatorname{SU}(\mathcal{A}_F)) = \operatorname{U}(1)_Y \times \operatorname{SU}(2)_L \times \operatorname{SU}(3)_{\operatorname{color}}$

• All D_F such that $(\mathcal{A}_F, \mathcal{H}_F, D_F)$ is a spectral triple are

 $D_F(\Upsilon_R, \Upsilon_\nu, \Upsilon_e, \Upsilon_u, \Upsilon_d)$ dim{ Dirac operators} = 31 = # Yukawa coupl. in ν MSM

Fermionic Spectral Action

 The fermionic part is not treated here but is essentially given by [not needed here]

$$S_f(D) = \frac{1}{2} \langle J\psi \mid D\psi \rangle$$

where ψ are classical fermions, J implements charge-conjugation (J fixes the spin structure)

Dirac F_{SM} operator

back to spectral standard model 🛹

$$\operatorname{Tr}(A)\operatorname{Tr}(A^{3}) = 3 \cdot \begin{pmatrix} \operatorname{Tr} A \cdot (A \otimes 1 + 1 \otimes A) = 0 \\ +1 \boxtimes A^{2} + A^{2} \boxtimes 1 \\ 0 = 0 \end{pmatrix}$$

$$\operatorname{Tr}(A)\operatorname{Tr}(A^{3}) = 3 \cdot \begin{pmatrix} \operatorname{Tr}(A) (1 \otimes (ABB) + \operatorname{Tr}(A) 1 \otimes ABB + \operatorname{Tr}(A) (1 \otimes (AAB) + (BAA) \otimes 1 + BBA) + \operatorname{Tr}(A) (ABB) \otimes 1 + A \otimes AB + B \otimes A^{2} + A^{2} \otimes B + BA \otimes A^{2} + A^{2} \otimes A^{2} + A^{2} \otimes B + BA \otimes A^{2} + A^{2} \otimes B + BA \otimes A^{2} + A^{2} \otimes A + A^{2} \otimes A^{2} + A^{2} \otimes A + B \otimes A^{2} + A^{2} \otimes B + AB \otimes A^{2} + A^{2} \otimes B + A^{2} \otimes A^{2} + A^{2} \otimes B + A^{2} \otimes A^{2} +$$

Table: Some Hessians of operators. Here $Tr = Tr_N$

 β -functions of NCG two-matrix models, signature $\eta = \text{diag}(e_1, e_2)$

$$\begin{split} 2h_1(a_4+c_{22}+2d_{2|02}+6d_{2|2}) &= \eta_a\\ 2h_1(b_4+c_{22}+6d_{02|02}+2d_{2|02}) &= \eta_b\\ -h_1[e_a(a_4-c_{1111})+2d_{1|12}+6d_{1|3}] + d_{1|1}(\eta+1) &= \beta(d_{1|1})\\ -h_1[e_b(b_4-c_{1111})+6d_{01|03}+2d_{01|21}] + d_{01|01}(\eta+1) &= \beta(d_{01|01}) \end{split}$$

The next block encompasses the connected quartic couplings:

$$\begin{aligned} & h_2 \left(4a_4^2 + 4c_{22}^2 \right) + a_4 (2\eta + 1) \\ & -h_1 (24a_6e_a + 4c_{42}e_b + 4d_{02|4}e_b + 4d_{2|4}e_a) = \beta(a_4) \\ & h_2 \left(4b_4^2 + 4c_{22}^2 \right) + b_4 (2\eta + 1) \\ & -h_1 (24b_6e_b + 4c_{24}e_a + 4d_{02|04}e_b + 4d_{2|04}e_a) = \beta(b_4) \\ & -h_1 \left(2e_ac_{1212} + e_b2c_{2121} + 3e_ac_{24} + 3e_bc_{42} + e_ad_{02|22} + e_bd_{2|22} \right) \\ & +h_2 \left(2a_4c_{22} + 2b_4c_{22} + 2e_ae_bc_{1111}^2 + 2e_ae_bc_{22}^2 \right) + c_{22}(2\eta + 1) = \beta(c_{22}) \end{aligned}$$

back to main presentation 🛹

$$\begin{aligned} 2h_2(6a_4a_6 + e_ae_bc_{22}c_{42}) + a_6(3\eta + 2) &= \beta(a_6) \\ 2h_2(6b_4b_6 + e_ae_bc_{22}c_{24}) + b_6(3\eta + 2) &= \beta(b_6) \\ 4h_2\{a_4c_{3111} + e_ae_b[c_{22}(c_{1311} + 2c_{3111}) \\ -c_{1111}(2c_{2121} + c_{42})]\} + c_{3111}(3\eta + 2) &= \beta(c_{3111}) \\ 2h_2[2a_4c_{2121} + e_ae_b(-2c_{1111}c_{3111} \\ +4c_{2121}c_{22} + c_{22}c_{24})] + c_{2121}(3\eta + 2) &= \beta(c_{2121}) \\ n_2[a_4c_{24} + 3b_4c_{24} + 2e_ae_b(c_{22}(3b_6 + c_{2121} + c_{24} + c_{42}) \\ -c_{1111}c_{1311})] + c_{24}(3\eta + 2) &= \beta(c_{24}) \\ 4h_2\{b_4c_{1311} + e_ae_b[c_{22}(2c_{1311} + c_{3111}) \\ -c_{1111}(2c_{1212} + c_{24})]\} + c_{1311}(3\eta + 2) &= \beta(c_{1311}) \\ 2h_2[2b_4c_{1212} + e_ae_b(c_{22}(4c_{1212} + c_{42}) \\ -2c_{1111}c_{1311})] + c_{1212}(3\eta + 2) &= \beta(c_{1212}) \end{aligned}$$

ł

FUZZY OR MATRIX GEOMETRIES

A *fuzzy geometry* of signature (p, q), so $\eta = \text{diag}(+_p, -_q)$, consists of

- $A = M_N(\mathbb{C})$
- $H = \mathbb{S} \otimes M_N(\mathbb{C})$, with \mathbb{S} a $\mathbb{C}\ell(p, q)$ -module

... +axioms (omitted) that can be solved for D...

FUZZY OR MATRIX GEOMETRIES

A *fuzzy geometry* of signature (p, q), so $\eta = \text{diag}(+_p, -_q)$, consists of

- $A = M_N(\mathbb{C})$
- $H = \mathbb{S} \otimes M_N(\mathbb{C})$, with \mathbb{S} a $\mathbb{C}\ell(p, q)$ -module

... +axioms (omitted) that can be solved for $D \dots$

• Fixing conventions for γ 's, D in even dimensions: [Barrett, J. Math. Phys. '15]

$$D = \sum_{J} \Gamma_{\text{s.a.}}^{J} \otimes \{H_{J}, \cdot\} + \sum_{J} \Gamma_{\text{anti.}}^{J} \otimes [L_{J}, \cdot]$$

multi-index J monot. increasing, |J| odd, $H_J^* = H_J$, $L_J^* = -L_J$

FUZZY OR MATRIX GEOMETRIES

A *fuzzy geometry* of signature (p, q), so $\eta = \text{diag}(+_p, -_q)$, consists of

- $A = M_N(\mathbb{C})$
- $H = \mathbb{S} \otimes M_N(\mathbb{C})$, with \mathbb{S} a $\mathbb{C}\ell(p, q)$ -module

... +axioms (omitted) that can be solved for D...

• Fixing conventions for γ 's, D in even dimensions: [Barrett, J. Math. Phys. '15]

$$D = \sum_{J} \Gamma_{\text{s.a.}}^{J} \otimes \{H_{J}, \cdot\} + \sum_{J} \Gamma_{\text{anti.}}^{J} \otimes [L_{J}, \cdot]$$

multi-index J monot. increasing, |J| odd, $H_J^* = H_J$, $L_J^* = -L_J$

⊲⇒back

• Examples:

SC

-
$$D_{(1,1)} = \gamma^1 \otimes [L, \cdot] + \gamma^2 \otimes \{H, \cdot\}$$

- $D_{(0,4)} = \sum_{\mu} \gamma^{\mu} \otimes [L_{\mu}, \cdot] + \gamma^{\hat{\mu}} \otimes \{H_{\hat{\mu}}, \cdot\}$ ($\hat{\mu} = \text{omit } \mu \text{ from (0123)}$)
by we will get double traces from $\text{Tr}_H = \text{Tr}_{\mathbb{S}} \otimes \text{Tr}_{\mathcal{M}_N(\mathbb{C})} = \text{Tr}_{\mathbb{S}} \otimes \text{Tr}_N^{\otimes 2}$

Notation:
$$\operatorname{Tr}_V X$$
 is the trace of $X : V \to V$, $\operatorname{Tr}_V 1 = \dim V$. So $\operatorname{Tr}_N 1 = N$ but $\operatorname{Tr}_{\mathcal{M}_N^{\mathbb{C}}} 1 = N^2$.