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‚ Noncommutative geometry or NCG [Co94] trades geometry by algebra. If this algebra is noncommu-
tative one can study the geometry of broader class of spaces (fractals, Penrose tilings,...)

‚ we focus on some NCG-methods in high energy physics; for details on this first half-page of moti-
vation see [vS15, Mar18]. Other physical NCG-applications, e.g. to the quantum Hall effect and to
topological insulators are not treated here, cf. [BvES94] and [BKR17] respectively

‚ the NCG-analogue of (spinc) Riemannian geometry is called spectral triple pA,H, Dq, which con-
sists of a ˚-algebra A represented on a Hilbert spaceH and a self-adjoint operatorD onH obeying
several axioms. Given a «nice» spin manifold M , one gets a spectral triple pC8pMq, L2

pSq, DM q
from the algebra C8pMq of smooth functions onM , the Hilbert space of square-integrable spinors
and the canonical Dirac (ess. self-adj.) operator DM on L2

pSq

‚ any commutative spectral triple is a manifold, due to Connes’ reconstruction theorem (hard fact,
here very imprecisely formulated). In the broader landscape where noncommutativity is allowed,
the several concepts of dimension (metric, KO-theoretical...) need not to agree [Mar18]. There is,
further, a spectral dimension set SpDim obtained from poles of ζ-functions ζDpzq “ Trp|D|´zq of
the Dirac operator. For each s P SpDim there is a well-defined volume and

ş

- , its integration. In
terms of these, the asymptotic expansion (here only in powers, but log-terms can be present [KS12]
for other geometries) of the Chamseddine-Connes spectral action in an «energy» parameter N " 1
reads:

Tr fpD{Nq „
ÿ

sPSpDimXR`

fsN
s

ż

- |D|´s ` fp0qζDp0q ` . . . (f “ Laplace-Stieltjes t. of a measure on R`)

‚ for a 4-manifold the coefficients of the moments fs “
ş8

0
fpvqvs´1dv of f are

N4
ş

- |D|´4
“ c4pNqvolpMq [cosmological constant]

N2
ş

- |D|´2
“ c2pNq

ş

R [Einstein-Hilbert]

ζDp0q “ c0
ş

pR˚R˚q ` c10
ş

C2 [Gauß-Bonnet + conformal gravity]

The Cartesian product of a finite spectral triple (i.e. one whose algebra is finite-dimensional algebra)
with a commutative one allows to geometrically derive the (Lagrangian of the) Standard Model
[CM07] on a Riemannian manifold, for a suitable finite spectral triple. However, the resulting theory
is classical. As initiated by [BG16], there also with computer simulations, the aim is to define the
partition function ZNCG “

ş

Dirac e´
1
~ Tr fpD{NqdD mentioned in [CM07, §18]. On a first approach,

we circumvent analytic subtleties during quantization by using fuzzy geometries

‚ A fuzzy geometry of signature η “ diagp

p
hkkkkkikkkkkj

`1, . . . ,`1,

q
hkkkkkikkkkkj

´1, . . . ,´1q is based on A “ MN pCq and a
Hilbert space H “ (irreducible C`pp, qq-module Sq bMN pCq. Letting tA,Bu˘ “ AB ˘ BA, the

spectral triple axioms force [Bar15] the Dirac operator to be

D “
ÿ

µ

γµ b tXµ, ¨ uεµ `
ÿ

µ,ν,ρ

γµγνγρ
looomooon

“:γI I“pµ,ν,ρq

btXµνρ , ¨ uεµνρ ` . . . , Xµ, XI , . . . PMN pCq

‚ the traces of products of γ’s can be organized diagrammatically, e.g.

TrSpγ
µγνγαγρq “ dim S ¨

!

+ +

µ

ν

α

ρ + +

µ

ν

α

ρ+ +

µ

ν

α

ρ

)

where each labelled line µ—ν in a chord diagram χ amounts to ηµν . The diagram’s value is the
product of all its chords, with a general sign p´1q#tcrossings in χu. Generally, TrSpγ

I1γI2 ¨ ¨ ¨ q leads to
(multi)indices χI1I2.... For fpxq “

ř

m fmx
m, there is an expansion in chord diagrams

Tr fpDq “
ÿ

m

f2m

ÿ

I1,...,I2m
χPtn-chorded diagsu

n “ |I1| ` . . .` |I2m|

χI1...I2m
!

TrN
“

XI1XI2 ¨ ¨ ¨XI2m ˘ word backwards
‰

)

` double traces

‚ in terms of the k-tuple X “ pX1, . . . , Xkq, k “ 2p`q´1, the spectral action takes the form

Tr fpDq “ Trb2
N

 

1N b P `Qp1q bQp2q
(

where P,Q1, Q2 P C〈k〉 “ C〈X〉 .

For 2-dimensional fuzzy geometries pp` q “ 2q, allowed monomials are:

P P spantA,B,A2, B2, AB,ABAB,AABB,AAABAB,ABABAB, . . .u

Q1 bQ2 P spantAbA,B bB,B bABA,BAbBA . . .u (insertions of b in the words above)

which is obvious, as chord diagrams select these polynomials. However, for the spectral action of 4-
dimensional pp`q “ 4q fuzzy geometries determined in [Pér19] the allowed NC-polynomials are less
predictable. The «quantum spectral action» becomes a random k-matrix model Z “

ş

e´Tr fpDqdXLEB

over Hermitian and anti-Hermitian N ˆ N matrices. This partition function generates «worded»
maps; below, two planar maps m1 and m2 in the alphabet consisting of A and B are shown:

m1 m2A
A

BA

AA

A

A

B
B B

B B

B
B

B

B B

B
BB B

B

B

B

B
A

B

(ignore dashed circles by now)

‚ a gauge matrix spectral triple = fuzzy spectral triple ˆ finite spectral triple; the most general fluctuated
Dirac operator is (with Aµ P Ω1

DpMN pCqq “ t
ř

i airD, bis | ai, bi P Au, c PMnpCqs.a)

D “
ř

µ γ
µ
b
`

lµ
hkkkkkkkikkkkkkkj

rLµ b 1n, ¨ s `

aµ
hkkkkkkikkkkkkj

rAµ b c, ¨ s
˘

` γ b Φ`

(if flat; room for gravitation)
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

ř

µ,ν,σ γ
µγνγσ b xµνσ

‚ the operators lµ,aµ serve to define the fuzzy field strength Fµν “ rdµ,dνs. Here dµ “ lµ `aµ

is seen as fuzzy analogue of smooth covariant derivative Dµ “ Bµ ` Aµ (locally Aµ is a connection
on SUpnq-principal bundle and Fµν “ rDµ,Dνs its curvature)

‚ physically, «gauge matrix spectral triple» means that can have Yang-Mills on a fuzzy space (all de-
scribed in Connes’ spectral formalism). This is the meaning of
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THEOREM. [Pér21a] On the Cartesian spectral triple product of a flat Riemannian fuzzy geometry with
pMnpCq,MnpCq, DF q the spectral action for fpxq “ 1

2

řm
i“1 aix

i reads
1

4
Tr fpDq “ Sf

YM ` S
f
H ` S

f
g-H ` S

f
ϑ ` . . . .

Each sector is defined as follows (with fe the even part of f and ϑ “
ř

µ,ν η
µνdµdν ):

Sf
YMpl,aq :“ ´

a4

4
TrMNbMnpFµνF

µν
q

Sf
g-Hpl,a,Φq :“ ´a4 TrMNbMn

`

dµΦdµΦ
˘

Sf
HpΦq :“ TrMNbMn fepΦq

Sf
ϑpl,aq :“ TrMNbMn fe

`

ϑ1{2
˘

‚ term by term, these are the fuzzy version of SYMpAq “ ´ 1
4

ş

M
TrsupnqpFµνFµνqvol,the Higgs la-

grangian, and gauge-Higgs coupling Sg-H “ ´
ş

M
DµHpDµHqvol

‚ the obtained symmetry of the spectral action or gauge symmetry is G “ PUpNq ˆ PUpnq, the fuzzy
counterpart to the C8-gauge group DIFFpMq n MAPSrM, SUpnqs of Einstein-Yang-Mills theory.
Gauge invariance is due to Fµν“rfµν , ¨ s. The matrix fµν , which exists by Jacobi identity, is acted
upon by the gauge group as fµν ÞÑ fuµν “ ufµνu

˚, u P G
‚ the functional renormalization flow in the time t “ logN can be used to find fixed points—zeroes of

the β-functions βg “ BtgpNq for each coupling g—that likely signal a phase transition (to a contin-
uum? See [KP21] for other approach). Wetterich equation BtΓ “ 1

2
STr

 

BtRN{pRN`Hess Γq
(

for
the effective action Γ (generating function of edge 2-connected graphs, with an infrared regulator
RN ) is used to determine the β-functions

‚ in the formalism for (multi)matrix models [Pér20], the Hessian’s entries Hessa,b “ BaBb are in sense
of NC-derivative Ba : C〈k〉 Ñ C〈k〉 b C〈k〉 given on the basis by

Xj1 . . . Xjp ÞÑ δaj11bXj2 ¨ ¨ ¨Xjp ` δ
a
j2Xj1 bXj3 ¨ ¨ ¨Xjp ` . . .` δ

a
jpXj1 ¨ ¨ ¨Xjp´1 b 1

and Voiculescu’s cyclic derivative Db : C〈k〉 Ñ C〈k〉, Db “ Bb ˝ TrN . Multi-traces cause a larger
image of the Hessian’s entries, namely

Bk,N :“ pC〈k〉 b C〈k〉q ‘ pC〈k〉 � C〈k〉q let us abbreviate this B, which as vector space is Cb2
〈k〉 ‘ Cb2

〈k〉.

Ribbon graphs together with the one-loop structure of Wetterich equation reveal the algebra for
B: for any word P,Q,U,W [Pér21b],

pU bW q ‹ pP bQq “ PU bWQ, pU �W q ‹ pP bQq “ U � PWQ , (1a)

pU bW q ‹ pP �Qq “WPU �Q , pU �W q ‹ pP �Qq “ TrpWP qU �Q , (1b)

TrBpP �Qq “ TrN pPQq , TrBpP bQq “ TrN P ˆ TrN Q , (1c)

which, together with bilinearity, define the � symbol. Functional renormalization of k-matrix models
takes place inMkpBq in the sense that the geometric series in Hess Γ in the rhs ofWetterich equation
is computed with the algebra (1) on k ˆ k matrices with entries in B, and STr “ TrMkpBq.

EXAMPLE. Consider two operators O1 “
ḡ1
2
rTrN p

A2

2
qs

2 and O2 “ ḡ2 TrN pABCq in a Hermitian
3-matrix model. Suppose that we wish to determine the ḡ1ḡ

2
2-coefficient of the rhs of Wetterich

equation. Then

HessI,J O1 “ δJI δ
A
I ḡ1t

hkkkkkkkkkkkkkikkkkkkkkkkkkkj

TrN pA
2
{2qr1N b 1N s`

hkkikkj

A�Au ,

where a «filled half-edge» means that that half-edge is contracted in the (field theoretically) one-loop
graph, and an «empty ribbon» that it is not. We also have

HessO2 “ ḡ2

ˆ

0 Cb1N Bb1N

1NbC 0 Ab1N

1NbB 1NbA 0

˙

ñ
“

pHessO2q
‹2
‰

1,1
“ ḡ2

2

`

..
hkkikkj

C b C `

..
hkkikkj

B bB
˘

.

We extract the coefficient rḡ1ḡ
2
2sSTrtHessO1rHessO2s

‹2
u which equals

TrB
!

rTrN pA
2
{2q ˆ p1N b 1N q `A�As ‹ pC b C `B bBq

)

“ TrN pA
2
{2q ˆ rTr2

N C ` Tr2
N Bs ` TrN pACAC `ABABq ,

which are effective vertices of the four one-loop graphs that can be formed with the contractions of
(the filled ribbon half-edges of ) any of

 .. , .. (

with any of
 

,
(

. A less simple situation
is the NCG-motivated 2-matrix model (truncated to „ 40 operators) considered in [Pér20]. Even
though we should eventually get rid of the RN-dependence, it is reassuring to recognize the criti-
cal coupling value 1{4π from the exact Kazakov–Zinn-Justin solution to the ABAB two-matrix
model (a simplified version of Di Francesco’s meander matrix model).

OUTLOOK:
‚ understand each point in the cube, and find a

path to reach the continuum
‚ develop the BV-formalism to quantize the

gauge theory of [Pér21a]
‚ ‘turn on’ the spin connection and re-analyze

all as a model with gravity
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