AN INVITATION TO DIRAC ENSEMBLES IN (RANDOM FINITE) NONCOMMUTATIVE GEOMETRY

Séminaire de Physique Mathématique, Institut Camille Jordan, Université Lyon 1 by Carlos I. Pérez Sánchez ${ }^{1}$, Institut für Theoretische Physik, Universität Heidelberg

- Noncommutative geometry or NCG [Co94] trades geometry by algebra. If this algebra is noncommutative one can study the geometry of broader class of spaces (fractals, Penrose tilings,...)
- we focus on some nCG-methods in high energy physics; for details on this first half-page of motivation see [vS15, Mar18]. Other physical ncG-applications, e.g. to the quantum Hall effect and to topological insulators are not treated here, cf. [BvES94] and [BKR17] respectively
- the NCG-analogue of $\left(\operatorname{spin}^{c}\right)$ Riemannian geometry is called spectral triple $(\mathcal{A}, \mathcal{H}, D)$, which consists of a $*$-algebra \mathcal{A} represented on a Hilbert space \mathcal{H} and a self-adjoint operator D on \mathcal{H} obeying several axioms. Given a «nice» spin manifold M, one gets a spectral triple $\left(C^{\infty}(M), L^{2}(S), D_{M}\right)$ from the algebra $C^{\infty}(M)$ of smooth functions on M, the Hilbert space of square-integrable spinors and the canonical Dirac (ess. self-adj.) operator D_{M} on $L^{2}(S)$
- any commutative spectral triple is a manifold, due to Connes' reconstruction theorem (hard fact, here very imprecisely formulated). In the broader landscape where noncommutativity is allowed, the several concepts of dimension (metric, кo-theoretical...) need not to agree [Mar18]. There is, further, a spectral dimension set SpDim obtained from poles of ζ-functions $\zeta_{D}(z)=\operatorname{Tr}\left(|D|^{-z}\right)$ of the Dirac operator. For each $s \in \operatorname{SpDim}$ there is a well-defined volume and f, its integration. In terms of these, the asymptotic expansion (here only in powers, but log-terms can be present [KS12] for other geometries) of the Chamseddine-Connes spectral action in an «energy" parameter $N \gg 1$ reads:

$$
\operatorname{Tr} f(D / N) \sim \sum_{s \in \operatorname{SpDim} \cap \mathbb{R}_{+}} f_{s} N^{s} f|D|^{-s}+f(0) \zeta_{D}(0)+\ldots\left(f=\text { Laplace-Stieltjes t. of a measure on } \mathbb{R}_{+}\right)
$$

- for a 4-manifold the coefficients of the moments $f_{s}=\int_{0}^{\infty} f(v) v^{s-1} \mathrm{~d} v$ of f are

$$
\begin{aligned}
N^{4} f|D|^{-4} & =c_{4}(N) \operatorname{vol}(M) & & \text { [cosmological constant] } \\
N^{2} f|D|^{-2} & =c_{2}(N) \int R & & {[\text { Einstein-Hilbert] }} \\
\zeta_{D}(0) & =c_{0} \int\left(R^{*} R^{*}\right)+c_{0}^{\prime} \int C^{2} & & {[\text { Gauß-Bonnet }+ \text { conformal gravity] }}
\end{aligned}
$$

The Cartesian product of a finite spectral triple (i.e. one whose algebra is finite-dimensional algebra) with a commutative one allows to geometrically derive the (Lagrangian of the) Standard Model [CM07] on a Riemannian manifold, for a suitable finite spectral triple. However, the resulting theory is classical. As initiated by [BG16], there also with computer simulations, the aim is to define the partition function $\mathcal{Z}_{\text {NcG }}=\int_{\text {Dirac }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D / N)} \mathrm{d} D$ mentioned in [CM07, $\left.\$ 18\right]$. On a first approach, we circumvent analytic subtleties during quantization by using fuzzy geometries

- A fuzzy geometry of signature $\eta=\operatorname{diag}(\overbrace{+1, \ldots,+1}, \overbrace{-1, \ldots,-1})$ is based on $\mathcal{A}=M_{N}(\mathbb{C})$ and a Hilbert space $\mathcal{H}=($ irreducible $\mathbb{C} \ell(p, q)$-module $\mathbb{S}) \otimes M_{N}(\mathbb{C})$. Letting $\{A, B\}_{ \pm}=A B \pm B A$, the
spectral triple axioms force [Bar15] the Dirac operator to be

$$
D=\sum_{\mu} \gamma^{\mu} \otimes\left\{X_{\mu}, \cdot\right\}_{\epsilon_{\mu}}+\sum_{\mu, \nu, \rho} \underbrace{\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}}_{=: \gamma^{I} I=(\mu, \nu, \rho)} \otimes\left\{X_{\mu \nu \rho}, \cdot\right\}_{\epsilon_{\mu \nu \rho}}+\ldots, \quad X_{\mu}, X_{I}, \ldots \in M_{N}(\mathbb{C})
$$

- the traces of products of γ^{\prime} s can be organized diagrammatically, e.g.

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\rho}\right)=\operatorname{dim} \mathbb{S} \cdot\left\{\rho \gamma_{\alpha}^{\mu}{ }_{\nu+\rho}^{\mu} \bigoplus_{\alpha}^{\mu}+\rho \int_{\alpha}^{\mu} \sigma^{\nu}\right\}
$$

where each labelled line $\mu-\nu$ in a chord diagram χ amounts to $\eta^{\mu \nu}$. The diagram's value is the product of all its chords, with a general sign $(-1)^{\#\{\text { crossings in } \chi\}}$. Generally, $\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{I_{1}} \gamma^{I_{2}} \ldots\right)$ leads to (multi)indices $\chi^{I_{1} I_{2} \cdots}$. For $f(x)=\sum_{m} f_{m} x^{m}$, there is an expansion in chord diagrams

$$
\begin{aligned}
\operatorname{Tr} f(D)=\sum_{m} f_{2 m} \sum_{\substack{I_{1}, \ldots, I_{2 m} m \\
\chi \in\{n-c h o r d e d ~ d i a g s\} \\
n=\left|I_{1}\right|+\ldots+\left|I_{2 m}\right|}} \chi^{I_{1} \ldots I_{2 m}}\left\{\operatorname { T r } _ { N } \left[X_{I_{1}} X_{I_{2}} \cdots X_{I_{2 m}}\right.\right. & \pm \text { word backwards }]\} \\
& + \text { double traces }
\end{aligned}
$$

- in terms of the k-tuple $\mathbb{X}=\left(X_{1}, \ldots, X_{k}\right), k=2^{p+q-1}$, the spectral action takes the form

$$
\operatorname{Tr} f(D)=\operatorname{Tr}_{N}^{\otimes 2}\left\{1_{N} \otimes P+Q_{(1)} \otimes Q_{(2)}\right\} \quad \text { where } P, Q_{1}, Q_{2} \in \mathbb{C}_{\langle k\rangle}=\mathbb{C}\langle\mathbb{X}\rangle
$$

For 2-dimensional fuzzy geometries $(p+q=2)$, allowed monomials are:

$$
P \in \operatorname{span}\left\{A, B, A^{2}, B^{2}, A B, A B A B, A A B B, A A A B A B, A B A B A B, \ldots\right\}
$$

$$
Q_{1} \otimes Q_{2} \in \operatorname{span}\{A \otimes A, B \otimes B, B \otimes A B A, B A \otimes B A \ldots\} \text { (insertions of } \otimes \text { in the words above) }
$$

which is obvious, as chord diagrams select these polynomials. However, for the spectral action of 4dimensional $(p+q=4)$ fuzzy geometries determined in [Pér19] the allowed NC-polynomials are less predictable. The «quantum spectral action» becomes a random k-matrix model $\mathcal{Z}=\int \mathrm{e}^{-\operatorname{Tr} f(D)} \mathrm{d} \mathbb{X}_{\text {Leв }}$ over Hermitian and anti-Hermitian $N \times N$ matrices. This partition function generates «worded» maps; below, two planar maps \mathfrak{m}_{1} and \mathfrak{m}_{2} in the alphabet consisting of A and B are shown:

(ignore dashed circles by now)

- a gauge matrix spectral triple $=$ fuzzy spectral triple \times finite spectral triple; the most general fluctuated Dirac operator is $\left(\right.$ with $\left.A_{\mu} \in \Omega_{D}^{1}\left(M_{N}(\mathbb{C})\right)=\left\{\sum_{i} a_{i}\left[D, b_{i}\right] \mid a_{i}, b_{i} \in \mathcal{A}\right\}, c \in M_{n}(\mathbb{C})_{\mathrm{s} . \mathrm{a}}\right)$

$$
D=\sum_{\mu} \gamma^{\mu} \otimes(\overbrace{\left[L_{\mu} \otimes 1_{n}, \cdot\right]}^{\ell_{\mu}}+\overbrace{\left[A_{\mu} \otimes c, \cdot\right]}^{a_{\mu}})+\gamma \otimes \Phi+\overbrace{\sum_{\mu, \nu, \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \otimes x_{\mu \nu \sigma}}^{\text {(if flat; room for gravitation) }}
$$

- the operators ℓ_{μ}, a_{μ} serve to define the fuzzy field strength $\mathscr{F}_{\mu \nu}=\left[d_{\mu}, d_{\nu}\right]$. Here $d_{\mu}=\ell_{\mu}+a_{\mu}$ is seen as fuzzy analogue of smooth covariant derivative $\mathbb{D}_{\mu}=\partial_{\mu}+\mathbb{A}_{\mu}$ (locally \mathbb{A}_{μ} is a connection on $\mathrm{SU}(n)$-principal bundle and $\mathbb{F}_{\mu \nu}=\left[\mathbb{D}_{\mu}, \mathbb{D}_{\nu}\right]$ its curvature)
- physically, "gauge matrix spectral triple» means that can have Yang-Mills on a fuzzy space (all described in Connes' spectral formalism). This is the meaning of

[^0]Theorem. [Pér21a] On the Cartesian spectral triple product of a flat Riemannian fuzzy geometry with $\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)$ the spectral action for $f(x)=\frac{1}{2} \sum_{i=1}^{m} a_{i} x^{i}$ reads

$$
\frac{1}{4} \operatorname{Tr} f(D)=S_{\mathrm{YM}}^{\ell}+S_{\mathrm{H}}^{\ell}+S_{\mathrm{g}-\mathrm{H}}^{\ell}+S_{\vartheta}^{\ell}+\ldots
$$

Each sector is defined as follows (with f_{e} the even part of f and $\vartheta=\sum_{\mu, \nu} \eta^{\mu \nu} d_{\mu} d_{\nu}$):

$$
\begin{aligned}
S_{\mathrm{YM}}^{\ell}(\ell, a) & :=-\frac{a_{4}}{4} \operatorname{Tr}_{M_{N} \otimes M_{n}}\left(\mathscr{F}_{\mu \nu} \mathscr{F}^{\mu \nu}\right) \\
S_{\mathrm{g}-\mathrm{H}}^{\ell}(\ell, a, \Phi) & :=-a_{4} \operatorname{Tr}_{M_{N} \otimes M_{n}}\left(d_{\mu} \Phi d^{\mu} \Phi\right) \\
S_{\mathrm{H}}^{\ell}(\Phi) & :=\operatorname{Tr}_{M_{N} \otimes M_{n}} f_{\mathrm{e}}(\Phi) \\
S_{\vartheta}^{\ell}(\ell, a) & :=\operatorname{Tr}_{M_{N} \otimes M_{n}} f_{\mathrm{e}}\left(\vartheta^{1 / 2}\right)
\end{aligned}
$$

- term by term, these are the fuzzy version of $S_{\mathrm{YM}}(\mathbb{A})=-\frac{1}{4} \int_{M} \operatorname{Tr}_{\mathfrak{s u}(n)}\left(\mathbb{F}_{\mu \nu} \mathbb{F}^{\mu \nu}\right)$ vol, the Higgs lagrangian, and gauge-Higgs coupling $S_{\mathrm{g}-\mathrm{H}}=-\int_{M} \mathbb{D}_{\mu} H \overline{\left(\mathbb{D}^{\mu} H\right)}$ vol
- the obtained symmetry of the spectral action or gauge symmetry is $\mathcal{G}=\mathrm{PU}(N) \times \mathrm{PU}(n)$, the fuzzy counterpart to the C^{∞}-gauge group $\operatorname{Diff}(M) \ltimes \operatorname{Maps}[M, \mathrm{SU}(n)]$ of Einstein-Yang-Mills theory. Gauge invariance is due to $\mathscr{F}_{\mu \nu}=\left[\mathrm{f}_{\mu \nu}, \cdot\right]$. The matrix $\mathrm{f}_{\mu \nu}$, which exists by Jacobi identity, is acted upon by the gauge group as $\mathrm{f}_{\mu \nu} \mapsto \mathrm{f}_{\mu \nu}^{u}=u \mathrm{f}_{\mu \nu} u^{*}, u \in \mathcal{G}$
- the functional renormalization flow in the time $t=\log N$ can be used to find fixed points-zeroes of the β-functions $\beta_{g}=\partial_{t} g(N)$ for each coupling g-that likely signal a phase transition (to a continuum? See $[\mathrm{KP} 21]$ for other approach). Wetterich equation $\partial_{t} \Gamma=\frac{1}{2} \operatorname{STr}\left\{\partial_{t} R_{N} /\left(R_{N}+\operatorname{Hess} \Gamma\right)\right\}$ for the effective action Γ (generating function of edge 2-connected graphs, with an infrared regulator R_{N}) is used to determine the β-functions
- in the formalism for (multi)matrix models [Pér20], the Hessian's entries Hess ${ }_{a, b}=\partial_{a} \partial_{b}$ are in sense of NC-derivative $\partial_{a}: \mathbb{C}_{\langle k\rangle} \rightarrow \mathbb{C}_{\langle k\rangle} \otimes \mathbb{C}_{\langle k\rangle}$ given on the basis by

$$
X_{j_{1}} \ldots X_{j_{p}} \mapsto \delta_{j_{1}}^{a} 1 \otimes X_{j_{2}} \cdots X_{j_{p}}+\delta_{j_{2}}^{a} X_{j_{1}} \otimes X_{j_{3}} \cdots X_{j_{p}}+\ldots+\delta_{j_{p}}^{a} X_{j_{1}} \cdots X_{j_{p-1}} \otimes 1
$$

and Voiculescu's cyclic derivative $\mathscr{D}_{b}: \mathbb{C}_{\langle k\rangle} \rightarrow \mathbb{C}_{\langle k\rangle}, \mathscr{D}_{b}=\partial_{b} \circ \operatorname{Tr}_{N}$. Multi-traces cause a larger image of the Hessian's entries, namely

$$
\mathcal{B}_{k, N}:=\left(\mathbb{C}_{\langle k\rangle} \otimes \mathbb{C}_{\langle k\rangle}\right) \oplus\left(\mathbb{C}_{\langle k\rangle} \boxtimes \mathbb{C}_{\langle k\rangle}\right) \quad \text { let us abbreviate this } \mathcal{B} \text {, which as vector space is } \mathbb{C}_{\langle k\rangle}^{\otimes 2} \oplus \mathbb{C}_{\langle k\rangle}^{\otimes 2}
$$

Ribbon graphs together with the one-loop structure of Wetterich equation reveal the algebra for \mathcal{B} : for any word P, Q, U, W [Pér21b],

$$
\left.\begin{array}{rlrl}
(U \otimes W) \star(P \otimes Q) & =P U \otimes W Q, & (U \boxtimes W) \star(P \otimes Q) & =U \boxtimes P W Q \\
(U \otimes W) \star(P \boxtimes Q) & =W P U \boxtimes Q, & (U \boxtimes W) \star(P \boxtimes Q) & =\operatorname{Tr}(W P) U \boxtimes Q \\
\operatorname{Tr}_{\mathcal{B}}(P \boxtimes Q) & =\operatorname{Tr}_{N}(P Q), & & \operatorname{Tr}_{\mathcal{B}}(P \otimes Q)
\end{array}\right)=\operatorname{Tr}_{N} P \times \operatorname{Tr}_{N} Q,
$$

which, together with bilinearity, define the \boxtimes symbol. Functional renormalization of k-matrix models takes place in $M_{k}(\mathcal{B})$ in the sense that the geometric series in Hess Γ in the rhs of Wetterich equation is computed with the algebra (1) on $k \times k$ matrices with entries in \mathcal{B}, and $\mathrm{STr}=\operatorname{Tr}_{M_{k}(\mathcal{B})}$.
Example. Consider two operators $O_{1}=\frac{\bar{g}_{1}}{2}\left[\operatorname{Tr}_{N}\left(\frac{A^{2}}{2}\right)\right]^{2}$ and $O_{2}=\bar{g}_{2} \operatorname{Tr}_{N}(A B C)$ in a Hermitian 3-matrix model. Suppose that we wish to determine the $\bar{g}_{1} \bar{g}_{2}^{2}$-coefficient of the rhs of Wetterich equation. Then

where a «filled half-edge»» means that that half-edge is contracted in the (field theoretically) one-loop

$$
\begin{aligned}
& \text { graph, and an «empty ribbon» that it is not. We also have } \\
& \qquad \operatorname{Hess} O_{2}=\bar{g}_{2}\left(\begin{array}{ccc}
0 & C \otimes 1_{N} & B \otimes 1_{N} \\
1_{N} \otimes C & 0 & A \otimes 1_{N} \\
1_{N} \otimes B & 1_{N} \otimes A & 0
\end{array}\right) \Rightarrow\left[\left(\operatorname{Hess} O_{2}\right)^{\star 2}\right]_{1,1}=\bar{g}_{2}^{2}(\overbrace{C \otimes C}+\overbrace{B \otimes B}) .
\end{aligned}
$$

We extract the coefficient $\left[\bar{g}_{1} \bar{g}_{2}^{2}\right] \operatorname{STr}\left\{\operatorname{Hess} O_{1}\left[\operatorname{Hess} O_{2}\right]^{\star 2}\right\}$ which equals

$$
\begin{aligned}
& \operatorname{Tr}_{\mathcal{B}}\left\{\left[\operatorname{Tr}_{N}\left(A^{2} / 2\right) \times\left(1_{N} \otimes 1_{N}\right)+A \boxtimes A\right] \star(C \otimes C+B \otimes B)\right\} \\
& =\operatorname{Tr}_{N}\left(A^{2} / 2\right) \times\left[\operatorname{Tr}_{N}^{2} C+\operatorname{Tr}_{N}^{2} B\right]+\operatorname{Tr}_{N}(A C A C+A B A B)
\end{aligned}
$$

which are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\left\{\frac{\downarrow}{\pi}, \pi\right\}$ with any of $\{\mathbb{\pi}, \mathbb{Z}\}$. A less simple situation is the NCG-motivated 2-matrix model (truncated to ~ 40 operators) considered in [Pér20]. Even though we should eventually get rid of the R_{N}-dependence, it is reassuring to recognize the critical coupling value $1 / 4 \pi$ from the exact Kazakov-Zinn-Justin solution to the $A B A B$ two-matrix model (a simplified version of Di Francesco's meander matrix model).

Outlook:

- understand each point in the cube, and find a path to reach the continuum
- develop the BV-formalism to quantize the gauge theory of [Pér21a]
- 'turn on' the spin connection and re-analyze all as a model with gravity

References

[Co94] A. Connes, Noncommutative geometry Academic Press, Inc. or alainconnes.org (1994).
[BG16] J. W. Barrett and L. Glaser, J. Phys. A49 (2016) 245001 [1510.01377].
Mar18] M. Marcolli, Noncommutative cosmology. World Scientific, (2018) 10.1142/10335.
$\begin{array}{ll}\text { [vS15] Walter D. van Suijlekom. Noncommutative geometry and particle physics Springer, (2015) or from the site of the book's author. } \\ \text { [CM07] } & \text { A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives. AMS }\end{array}$
[BvES94] J. Bellissard, A. van Elst and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35 (1994) 5373.
[BKR17]
[Pér19]
[Pér20]
[KS12] J. Kellendonk and J. Savinien, Special triples from stationary Bratteli diagrams, Michigan Math.J. 65 (4) (2016) [1210.7360]
C. Bourne, J. Kellendonk and A. Rennie, The K-Theoretic Bulk-Edge Correspondence for Topological Insulators, Ann. Henri Poincare 18 1833-1866 (2017) [1604.02337].
C. I. Pérez-Sánchez, Computing the spectral action for fuzzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models, [1912.13288].
C. 1. Perez-Sanchez, On multimatrix models motivated by random Noncommutative Geometry I: the Functional Renormalization Group as a flow in the free algebra, Ann. Henri Poincaré 22 3095-3148 (2021) [2007. 10914].
C. I. Pérez-Sánchez, On ") II: A Yang-Mills-Higgs matrix model, [2105.01025].
C. I. Pérez-Sánchez, A ribbon graph derivation of the algebra of functional renormalization for random multi-matrices with mult
[2111. o2858].
J. W. Barrett, Matrix geometries and fuzzy spaces as finite spectral triples, J. Math. Phys. 56 (2015) 082301 [1502.05383].
J. W. Barrett, Matrix geometries and fuzzz spaces as finite spectral triples, J. Math. Phys. 56 (2015) 082301 [1502.05383].
M. Khalkhali and N. Pagliaroli, Phase Transition in Random Noncommutative Geometries J. Phys. A 54 (2021) 035202 [2006. 02891].

[^0]: ${ }^{1}$ perez@thphys.uni-heidelberg.de Hyperlinked handout www. thphys.uni-heidelberg.de/~perez/carlos.html (cliquer sur le Drapeau\|!pour la version française du site d'internet) under «talks».

