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Noncommutative geometry or NcG [Co94] trades geometry by algebra. If this algebra is noncommu-
tative one can study the geometry of broader class of spaces (fractals, Penrose tilings,...)

we focus on some NcG-methods in high energy physics; for details on this first half-page of moti-
vation see [vS15, Mar18]. Other physical nce-applications, e.g. to the quantum Hall effect and to
topological insulators are not treated here, cf. [BVES94] and [BKR17] respectively

the NcG-analogue of (spin°) Riemannian geometry is called spectral triple (A, H, D), which con-
sists of a #-algebra A represented on a Hilbert space 7 and a self-adjoint operator D on H obeying
several axioms. Given a «nice» spin manifold M, one gets a spectral triple (C* (M), L*(S), D)
from the algebra C* (M) of smooth functions on M, the Hilbert space of square-integrable spinors
and the canonical Dirac (ess. self-adj.) operator Dys on L*(S)

any commutative spectral triple is a manifold, due to Connes’ reconstruction theorem (hard fact,
here very imprecisely formulated). In the broader landscape where noncommutativity is allowed,
the several concepts of dimension (metric, ko-theoretical...) need not to agree [Mar18]. There is,
further, a spectral dimension set SpDim obtained from poles of (-functions {p(z) = Tr(|D|™*) of
the Dirac operator. For each s € SpDim there is a well-defined volume and §, its integration. In
terms of these, the asymptotic expansion (here only in powers, but log-terms can be present [KS12]
for other geometries) of the Chamseddine-Connes spectral action in an «energy» parameter N >» 1
reads:

T f(D/N)~ Y SN f DI~ + F(0)¢n(0) +

seSpDimnR

. (f = Laplace-Stieltjes t. of a measure on R )

(v)v*"*dw of f are

[cosmological constant]

for a 4- manlfold the coePﬁments of the moments fs = So
NS D] = ex(N)vol(M)

N*§ DI = c2(N)§R
(p(0) = co S(R*R*) + ¢ § C?

[Einstein-Hilbert]
[GauB-Bonnet + conformal gravity]

The Cartesian product of a finite spectral triple (i.e. one whose algebra is finite-dimensional algebra)
with a commutative one allows to geometrically derive the (Lagrangian of the) Standard Model
[CMO07] on a Riemannian manifold, for a suitable finite spectral triple. However, the resulting theory
is classical. As initiated by [BG16], there also with computer simulations, the aim is to define the
partition function Zyee = ;. €~ % T F(D/N) 4 D mentioned in [CM07, §18]. On a first approach,

we circumvent analytic subtleties during quantization by using fuzzy geometries
p q
———
A fuzzy geometry of signature n = diag(+1,...,+1,—1,...,—1) is based on A = My(C) and a
(irreducible C¢(p, g)-module S) ® Mn (C). Letting {A, B}+ = AB + BA, the
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spectral triple axioms force [Bar15] the Dirac operator to be

D= ZW Xy eu + 2 VY X pwps  Yepup + o

KV, p

XH,XH...EMN(C)

=iy I=(p,v,p)

the traces of products of 7’s can be organized diagrammatically, e.g.

u n u
Trs(7"9"v*7”) = dimS - { /’\a\l/i»/’ i I/Jr/’/&/l/ }

where each labelled line y—v in a chord diagram x amounts to n*. The diagram’s value is the

product of all its chords, with a general sign (—1)#{osin&in X} Generally, Trg(y/27'2 - - - ) leads to

(multi)indices x"*"2. For f(z) = 3, fma™, there is an expansion in chord diagrams

Z fom Z X1t { Try [ X1, X1, -+ X1, = word backwards]}

.....

xe{n chorded dlags}
= L]+ ...+ [T2m]

+ double traces

in terms of the k-tuple X = (X1, ...
Tr f(D) = TI'%2 {11\7 ® P+ Q(l) ® Q(g)} where P,Q1,Q2 € C<k>
For 2-dimensional fuzzy geometries (p + ¢ = 2), allowed monomials are:

P e span{A, B,A* B’ AB, ABAB, AABB, AAABAB,ABABARB, ...}
Q1 ®Q2espan{A® A, BR®B,BRABA BAQ BA..

. Xk), k = 2PT97" the spectral action takes the form

= C(X).

} (insertions of ® in the words above)

which is obvious, as chord diagrams select these polynomials. However, for the spectral action of 4-
dimensional (p+¢ = 4) fuzzy geometries determined in [Pér19] the allowed nc-polynomials are less
predictable. The «quantum spectral action» becomes a random k-matrix model 2 = {e~ ™/ P)AX e
over Hermitian and anti-Hermitian N x N matrices. This partition function generates «worded»
maps; below, two planar maps m; and my in the alphabet consisting of A and B are shown:
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a gauge matrix spectral triple = fuzzy spectral triple x finite spectral triple; the most general fluctuated
Dirac operator is (with A, € Qp(Mn(C)) = {3, ai[D, bi] | ai, bi € A}, c € My(C)s.a)

[ @y (if flat; room for gravitation)
D=, "®([Lu®ln, - 1+[Ax®¢, - ]) +7®@ P+ X, T 790 R Tpvo
the operators £, @, serve to define the fuzzy field strength ., = (&, 2.). Here &,y = €, + @,

is seen as fuzzy analogue of smooth covariant derivative D, = 0, + A, (locally A, is a connection
on SU(n)-principal bundle and F,,, = [Dy,, D, ] its curvature)

physically, «gauge matrix spectral triple» means that can have Yang-Mills on a fuzzy space (all de-
scribed in Connes’ spectral formalism). This is the meaning of
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TueoreM. [Pér21a] On the Cartesian spectral triple product of a flat Riemannian fuzzy geometry with
(M (C), M (C), Dr) the spectral action for f(z) = § >, aix’ reads
1
1 T (D) =S+ Sh+ S+ S+
Each sector is defined as follows (with fe the even part of f and 9 = I ", dy):
SCM(fa{Z’) = *% Trary @M (Fuv FH)
—as Ty o, (4,244 ®)

)
SEH(®@) = Trayem, fo(®)
)

= TI"MN®Mn fe (791/2)

term by term, these are the fuzzy version of Syn(A) = =1 §,, Treu(n) (Fu F*)vol the Higgs la-

grangian, and gauge-Higgs coupling Sg.u = — §,, D, H (D*H )vol

the obtained symmetry of the spectral action or gauge symmetry is G = PU(N) x PU(n), the fuzzy
counterpart to the C*-gauge group Dier(M) x Maps[ M, SU(n)] of Einstein-Yang-Mills theory.
Gauge invariance is due to #,,=[f.., - |. The matrix f,,,,, which exists by Jacobi identity, is acted
upon by the gauge group as f,, — fj, = uf,,u*, ue g

the functional renormalization low in the time t = log N can be used to find fixed points—zeroes of
the B-functions B, = d;g(V) for each coupling g—that likely signal a phase transition (to a contin-
uum? See [KP21] for other approach). Wetterich equation &,I' = 1STr{0: Rn/(Rn +HessI')} for
the effective action I' (generating function of edge 2-connected graphs, with an infrared regulator
Ry) is used to determine the S-functions

in the formalism for (multi)matrix models [Pér20], the Hessian’s entries Hess,,, = 0,05 are in sense
of Nc-derivative 0a : Cy — Cxy ® Ciy given on the basis by

le ...ij Hd;lll@XjQ---ij +6;’2le ®Xj3---ij +...+5;lej1 ---ij71 ®1

and Voiculescu’s cyclic derivative @y : Cxy — Ciy, Do = 0 o Trn. Multi-traces cause a larger
image of the Hessian’s entries, namely

Bk,N = (C(M ® (C(k>) &) ((C(k) X (C(k)) let us abbreviate this 3, which as vector space is C| ,;7 D C'

Ribbon graphs together with the one-loop structure of Wetterich equation reveal the algebra for
B: for any word P, Q, U, W [Pér21b],

UW)*(PRQ)=PURWQ, URW)*x(PRQ)=UXPWQ, (1a)
U@W)x(PRQ)=WPUKQ, (URW)*(PRQ)=Tr(WP)URQ, (1b)
Trs(P X Q) = Ten (PQ) , Trs(P®Q) = Tea P x Tiv Q, (1c)

which, together with bilinearity, define the X symbol. Functional renormalization of k-matrix models
takes place in My, (B) in the sense that the geometric series in Hess I in the rhs of Wetterich equation
is computed with the algebra (1) on k x k matrices with entries in 3, and STr = Tras, ().

Exampre. Consider two operators O1 = %[TrN(A;)]Q and Oz = g2 Try (ABC') in a Hermitian
3-matrix model. Suppose that we wish to determine the g: g3-coeficient of the rhs of Wetterich
equation. Then

X X

J A~ 2
HeSSI,Jol = 0701 gl{TrN(A /2)[1N®1N]+A®A},

where a «filled half-edge» means that that half-edge is contracted in the (field theoretically) one-loop

graph, and an «empty ribbon» that it is not. We also have
—

0 C®Ily BRly
HessOQ:g2<1N®c 0 A®1N> = [(Hess02)?], | =33(C®C+B®B).
IN®B IN®A 0O ’

We extract the coefficient [g1g3STr{Hess O [Hess O2]**} which equals
Trs {[TrN(A2/2) x (In®@1yn) + AR A+ (CQ®C + B@B)}
= Trn (A%/2) x [Try C + Trx B] + Trn (ACAC + ABAB),
which are effective vertices of the four one-loop graphs that can be formed with the contractions of

(the filled ribbon half-edges of) any of {—4-, 4=} with any of {}X, )¢} . A less simple situation

is the Nc-motivated 2-matrix model (truncated to ~ 40 operators) considered in [Pér20]. Even
though we should eventually get rid of the Ry-dependence, it is reassuring to recognize the criti-
cal coupling value 1/47 from the exact Kazakov-Zinn-Justin solution to the ABAB two-matrix
model (a simplified version of Di Francesco’s meander matrix model).

F (‘finite geometries’)

Classical geometry

single geometry paradigm)

OUTLOOK:
+ understand each point in the cube, and find a
path to reach the continuum

+ develop the BV-formalism to quantize the
matrix geometries gauge theory Of [Pér21a]

* ‘turn on’ the spin connection and re-analyze
all as a model with gravity

triples
omery)
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