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To rethink some of the geometric tools of ‘tensor models’
invites us:

“The construction of tensor models was
motivated by the idea of generalizing
to higher dimensions the familiar rela-
tion of matrix models to random two-
dimensional geometries (...) The status
of this program is unclear, since it is not
clear that the rather special Feynman di-
agrams that are generated by (.. .)
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describe a useful class of random (...)
geometries” E. WirTen ] Phys. A 16

Can we import (further) tools from matrix/vector models?

1. DISCRETE SURFACES

+ To address the enumeration of surfaces constructed by
‘gluings of polygons’, we first address an simpler problem:
count gluings of a rooted polygon of 2p sides. By a glu-
ing, we mean pairings 7 € P2(2p) of its sides. We think
of 7 as chords inside the polygon; ‘rooted’ means that the
polygon is fixed while Zy, rotates the chord diagram

« from the (2p — 1)!I! = (2p)!/2Pp! = #P2(2p) gluings,
let ¢4(p) be the number of those having genus g. Call
Qp(NV) the generating series (a polynomial in this case) in

the sense
1 _
2 > ca(p)NZ,

g=0

QP(N) =

where the scalings in N (still just a formal variable to be
clarified) are by convenience. Notice that for g > 0, ¢y (p)
are higher genus generalizations of the Catalan number
co(p) = 1)1? (2:). For instance, N?Q3(N) = 5N? +
10N°

a further step is dropping the restriction of the polygons
having 2p-sides and summing over the number of sides

e =[] 0

J. Harer & D. Zacier Invent. Math. ’86. This generating
function contains all the information, since the coefficient
[P, NPT 729] Lrus gives the genus-g fraction of glu-
ings of 2p-agons for arbitrary p

1+22N+222

p>1

a matrix integral representation was relevant in one of
the many proofs of Eq. 1. With the trace Tr(H) =

Sost Havas
Qp(N) = §ys 0 (0)pa ¥ THHP) dpu(H) =: (5 Tr H*")g,

where dup(H) is the normalized Gauflian measure
du(H) = Ky exp[—(N/2) Tr H*|dH. While in order
to get Formula 1 one has to work more, the matrix inte-
gral representation is readily obtained via (H, s He a)c =
%5(1,0151;,0 and

<Hll1,b1 o

H (Ha; b, Hajb; )G

w€P2(2p) (i,5)em

. Ha2p1b2p>G =

if one allows connected ‘gluings’ of several polygons, the
natural concept is combinatorial map G = (J, ¢, ), where

= {1,...,h} is the set of A € 2N half-edges and
@, 7 € &n = Sp, being 7 free from fixed points and
72 = 1. The faces, edges and vertices of the map are
the cycles (denoted C) of ¢, 7 and v = ¢ o 7, respectively.
Thus #C(v) —#C(1) — #C(¢) = x(G) = 2—2g. For in-
stance, J = {1,...,6},¢ = (162435),7 = (14)(25)(36)
describe a map with x( @3 ) = 0, since v = (132)(465)

to generate maps, one introduces a potential V(z) =
Yo<kea te®®/k which yields a new partition function
Z = On Sy e NVUDAH.  Maps (with 0) are
counted by

(TrHY - T H™) = %, N*7297n (9
where the rus is computed with (P(H)) :=
27\ P(H)eNV ) AH. These can be obtained when
0O¢ := 0/0ty hits the partition function Z

. With€=(€27...

, £y, Tutte Equatlom‘tl:()h:il read

(9) (9) (g
7;1+1f72t Tl+7ll+2£ T+17162 ,,,,, loyeiiln

j=3
(h1) (h2) (9—1)
+ 2 { Z Tod " X T 0"+ Toau }‘
p,q with hi+ho=g

ptg=0-1 TwJ=t

+ to obtain these (with ¢1,¢2 + 1 # 0) one can use

Schwinger-Dyson equations (spE), sketched next: from
§d(Xe /") = 0,itholds { [ div X — +dS(X)]e /" = 0.
So (grad S(X)) = A(divX). For h — 0, the spe yield
{classical Eom)

+ Tutte Equations can be restated as differential operators,

Ly, k = —1,0,1,2... that annihilate the partition func-
tion 2’ = exp(N>t0)Z, LxZ' = 0. Omitting the cases

k=0,%1, Ly for k > 1 s given by
akao + 3G+ k)t 054k,

Z_] ik =3) 500
j=1 JEN

which satisfies the Witt algebraw, [£,, £4] = (p—¢)Lp+4
(if £_1,0,1 are added) for p, ¢ € Z>_1 i.e. non-central vit

2. ‘GEOMETRY’ AND TENSOR MODELS

+ Let’s begin by geometry: having gravitation as purpose,

we are interested in PL-manifolds, as there the path inte-
gral seems better controlled. In fact, Alexander theorem—
and refined (independent) versions by Ramirez, Mon-
tesinos and Hilden—states that connected, closed ori-
entable 3-manifolds are covers over S® branched along a
link/knot (which is far from unique). This holds in general
dimension D, the branching over S taking place always
at codimension-2 subset of that sphere

Fig. 1 (L) T2 as branched over S? (C&R) Barycentric subdivision D = 2,3



one can always ‘color’ those triangulations by barycen-
tic subdivision. Tensor Models computes integrals of the
form

[B(#,g)e™ " Prrtrirdg dg

which are performed over functions ¢, ¢ : {1,...,N}* —
C satisfying that for each argument 1 < p,¢,r < N
the evaluation ¢pqr = ¢(p,q,r) transforms indepen-

dently under U(N). Interesting for B(¢, ¢) are U(N)3-
invariants, aka ‘bubbles’

2 3 _ _ _
... = ¢a1a2a3¢a1b263¢b1b2b3¢b1a2b3¢0102C3¢C1C203

which we rather specify via (regularly) 3-colored (vertex-
bipartite) graphs
those invariants form a basis for the interactions,

S(¢,¢) = 28,U(N)3-inv. 18 B(8, ) being tg formal vari-
ables.

ZN = Sexp _A\YQS(QS &)]d(ﬁ dq; € C[[{tB}B tricolored]]
QO: Is there a Harer—Zagzer functzon for tensor integrals anal-
ogous to (1 + 2)N /(1 — 2)™ for matrix integrals?

amplitude of a Feynman graph G, now having D + 1 col-
ors, scales ~ N#faces(G)—D(D+1)#vertices(G)/4 5 4 interpreting
G as the gluing A(G) of #V (G) of equilateral D-simplices

whose boundaries are glued following the edges of G
- By

one can relate the amplitudes to Regge—Elnstein-Hilbert
action (which in some units reads) Sren(A(G)) =
ZD simplices o VO](U) - Zcodim 2 simpl. T 5(T)VOI(T)’ being
8(7) the deficiency angle at 7

Q1: While in D = 2 the equilateral condition is irrele-
vant, in D > 3 it seems only extremely convenient. Can
one for D =3 ﬁnd an association of geomelric parameters

Pp(ay,...,ap) € {angles, areas, lengths,... } that respects the
1/N expansion?

For invariants (bubbles) A, B and v € Vi (A),w € Va(B),
AxB= Z (A uB)\{u, w}|

ueVy(A)

glue colorwise (rooted at )

which in topologically boils down to connected sums:

A

AxB'=" Y [ A ——— el = B
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HANDOUT: FROM VECTORS AND MATRICES TO TENSORS

. broken edges
it Apw = A\{v,w}{glr;jb;ﬁ;r for w € V,(A), the

loop or Schwinger-Dyson Equations can be expressed as
LavZNn =0, where

E.A,v _ Z N#Edges(zm—»v) H [ _ %;]
)

weVo (A) peTo(Av,w

+ ) ts

Bes tB*A

so for connected A, £ 4, can be of second degree, e.g. for

A = (170, if v, w are the middle vertices
23
Similar graph operations describe the Polchinski equation
T. Krajewski & R. Toriumi J. Phys. A°16 (Wetterich’s is w.i.p.)
by R. Gurau Niucl. Phys. B 12 these operators satisfy
[L:A,’U7 ﬁB,w] = £A*B,’U - ﬁB*A,w

this Guriu algebra restricts to w1 algebra [L¢,, Lo, ] =
(p—q)Lc,,, for p,q € Zz1 if we restrict to cycles,

Q2: Can one find a recursion (satisfied by the correlators) in
tensor models, even though it is not topological?

3. AIRY STRUCTURES AND TOPOLOGICAL RECURSION (TR)

Airy structures M. KoNTseviCH & Y. SoiBELMAN *17 capture the
essence of TR

* Let W* be the vector space with basis {¢;}4_,. If hisa

formal variable, a (quantum) Airy structure on W is a fam-
ily of operators {Ly}x on Sym(W*)[[A, h~']] where Ly
reads

2
—%(t,Akt) — h(t, B¥o) — f

5 (@, C*0) + h(éx — Di)
and such that [Li,L;] = hY, f;Lk, being f*, A¥,
B* C* € M4(C), where A* and C* are symmetric, while
1 is skew-symmetric for each & (not a matrix index nor
exponent, abusing on notation)

The Lie algebra condition implies that A, seen as a tensor,
is fully symmetric; that f; = B} , — nyk; and three 1x-
relations described next. To the six vertices one associates
letters. Red edges have indices that run. Further, the in-
dices of each letter O at the vertices O%"@is determined in
the sense of the arrow, starting at the shaded edge. The

x-relation for (vi,vs,...,v6) = (B,B,B,B,C, A) is

that 3¢ B +BkaA] + B A ks (0 = J)-
symmetric. Slm1lar relations hold for (vi,va,...,v6) =
(B,A,B,B,B,A)and (C, B, B,C,C, B).

i Olfn &k i k
+ % (22)

J v L j 1

1

Tum  (Kontsevich-Soibelman) There exists a unique
Bt F e Sym(W*)[[A]] such that {L;e" = 0};21. .4
Proof sketch of uniqueness (cf. G. Borot Rev. Math. Phys. 20).
Expand ' = 3 _, Y Yirpi=n Fonllltr/nl,
with I = (il,...,in) € {1,..,,d}n and tr = til "'tin
in multi-index notation, and read off the coefficient of
R X tiy -+ ti, /(n — 1)l in exp(—F)L;, exp(F) = 0.
Tl’lis yields F’()’3|:’L'17’L'27 ’ig] Al; is and F171[’L'1] = Dil
for x = —1, while for higher —x, Fy.n[i1,42,...,in] is
determined by recursion and equals (cf. last page)

n
Z B:/I//J, Ffl n— 1[(1 i2: cee ~im-, e ,in,] (g :=#Jq.a=1,2)
m=2
C;lb{ g-1n+1[a,b,iz, ... in] (3)
+ Z Fhy 44, [a@ ']1] X Fhy 145, [b: -]2] }
hi1+ha=g

Jiwda={iz,...,in}

« adj. ‘topological’ explained by excisions of ‘pair of pants’

unstable Fo1:=0 Foo:=0

: Fiq = <§
I

X =2 Fo,4=§ Fi2 =

Fos —3 Fi3 :V Fyq —

x=-1 Fo,3=@

N

+ the boundaries above are not oriented; but, parenthet-

ically, the aBcp-terms could stem from a TQrT F
Bords — Vectc

A=F(D). B=F(I3). ¢ = F(L). D= F(<3)



4. THE VOLUME OF THE MODULI SPACE M ,, (L)

* Tgm(L) = {metrics on X,
L;}/{conformal maps}, with L = (L,. ..

: length of boundary b; =
bl L"’L)

« Tgn = {Diff(3,,n) that keep labels}/{isotopies to ids, ,, }
* Myn(L) =T,

+ decomposition of a stable surface £, in simple closed
curves yields p Y-pieces, each having Buler number —1,
sop = —x(Xg,n). From the 3p geodesic boundaries, n are
not glued, so there are 2(p—n) = 3g+n — 3 :=dy n in-
ner pairings of cycles, whose lengths ¢; can coincide. The
twisting angle 6; of one cycle with respect to the other is
another parameter

o {€;,0,};-1,.. 3g+n—3 are in fact the Fenchel-Nielsen coor-
dinates of J;,,.. The form wwe = 3}, d€; A d; is Tg,n-

invariant, as shown by WorLpERT 55, and ws " /dg,!
defines the volume form of My (L) and V, (L) =
vol[Mg,n(L)]

+ Mirzaknani JAMS *07 TR states that Vj ,41(Lo, L) equals

n(L)/T g5 = Teichmiiller/mapping class

BMirz(LU7Lm,£)Vg,n(£,L1,...7f;,...,Ln)dZ
m>0 R4
1
5 | OvinlLo, 6, O) Vot maa (6.6 Lns ., L)
2 R2
+ Z Vi 144 (4, Jl)Vh2,1+]'2(‘€/aJ2)} dldf/,

h1+h2=9n
Jywda={L;}"_

where Bumirz(L1, L2, L3) and Cwmirz(L1, L2, Ls) are given
by
Ls [1 + e(L3+L2*L1)/2][1 + e(LS*LZ*Ll)/2:|

L1 log [1 + e(Ls+L2+L1)/2][1 + e(Ls—L2+L1)/2]

LoLs 1 4 eLa+tLle—L1)/2
and 2 I log1+e(L3+L2+Ll)/2,

respectively

+ keeping the coefficients of the volumes as amplitudes,
o 2a
VQv"(L): Z Fg,n[a17---7an]HLJ ’
j=1

Mirzakhani’s Tr and (3) lead to the Airy structure:

; 2% +1)! .

Bjr = m (27 +1)Ok—j—i  (4a)
2+ DIk + 1)!
(20 + 1)!
where Y, ... ,2%0k/dz = Ar/sin(2mz)dz® =

1/y(z)dz>. But we need the initial A and D terms

C i Oktjti—i, (4b)

HANDOUT: FROM VECTORS AND MATRICES TO TENSORS

+ the remarkable formula in M. Konrsevicn Anal. and Appl, 91
uses maps, or ribbon graphs, to compute also intersection
numbers

aj€Lx,forall j g,n j=1 A]

ai+...+anp=dimg ./Wg,n

- 3

G trivalent, of topology (g,n)

22g 24n

#ut H

c€E(G)

* e.g. there is a unique (1,1)-graph:

TN 1 2! 1
G= @0 = 33 Sﬂm Y = #Aut(G) (20)3
Aut(G) = {¢p € &6 : commuting with ¢ and 7}

= {id, (123)(456), (132)(465), 7, ¢, ¢~ '}
then {7 1 = 1/24,50 D1 = 1/24. PENNER '85 com-
puted V1,1(0) = ¢(2) implying Dy = 7°/6. Else Dy, = 0
for k > 1. Four graphs of (0, 3)-type = AZ; iy # 0iff
ix =0 (A8,0 = 1)

* Q3: Is there a geometric object enumerated by tensor models?

5. TowarDs BOREL SUMMABILITY IN 1/N

As a perspective for Borel summability in tensor models
it is convenient to mention two essential techniques which
together are the essence of the Loop Vertex Expansion V. Ri-
vasseau [HEP ’07. In L. FerpINAND, R. GURAU, C.P & F. VIGNES-
ToURNERET 2209.09045 BS in 1/N is addressed for the cumu-
lants of the vector model (defined below).

» The Hubbard-Stratonovich transformation

22
2

2
i iy

_ 1
- {dye
Vo 2 Y
allows to transform the N-dimensional integral in the par-
tition function of the O(IV)-vector model
602N AV

- —3¢o—sk
Z(g,1/N,J) fRNe 2 8 (2n)N/2

into an integral where N appears only as a parameter, and
not as the dimension of the dimension of the integration
domain, thus allowing for analytic continuation. With

R(0,2) = (1—/Z0) "
7§da

N N [§
A , 1 N7 J) = Je o5 log R(o,9/N)+5 R(o,9/N) J-J
(9,1/N3.J) o

* Brydges-Kennedy—Abdesselam-Rivasseau proved

Z 2 4F

B(1) — B(0) = F

(BKAR)

non-empty forests
F with n vertices

ay a2 (lnﬁ (2aj_1)”
o 1 2 n 2a;+1

AL(e) + )\R(e)

3

1,0¢e R(3) the vectors with 1’s and 0’s as constant entries,
respectively. The BKAR formula holds for any smooth

. n
function @ : R(3) - C, where the ‘measure’ over a for-
est and a ‘forest’ derivative are given by

[] due (5a)

eeE(F)

dF :=

R I L)
— = D(z) (5b)
or (Lamyei(r) O%im o (F)
with parameters given by
’LU(F)” = min{ue}eEE(F), e along the path i — j (SC)

and w(F);; = 0 if such path does not exist. For instance,
for n = 3, the forest expansion of ®(1, 1, 1) reads

®
$(0,0,0) o o (6)
0P (x) ®
j dui2
oT12 z=(u12,0,0) Can)

! 0P
+ J duggﬂ
0 0223 |2=(0,u23,0)

1
+j du23(3’<1>(a:)

0 0x23

©
®—®

z=(0,0,u13)

)
d d
JJ 23 umﬁxuar%
z=(min{uzg,u13},u23,413)

20(z)
dugsd
jj 128 u13(956230113
®

2
J J duizduig ———— "2 (x) oo

0x120213 z=(u12,min{ui2,u13},u13)

L&

z=(u12,u23,min{ui2,u23})

AN

to have the cumulants, one needs the logarithm of this par-
tition function. Performing Gaufian integration

i=1

Tij=

where [X(z)]ii = 1 and [X(x)]ij = mi; for i # j,
one can use for the function in square-brackets BKAR-
formula. Then log Z will be the restriction from forests to
trees.

Q4: Are tensor models 1/N Borel summable?

[1 { log R(e"”, g) + R(c, g)J J}] ©p’

1



HANDOUT: FROM VECTORS AND MATRICES TO TENSORS

.

7.

n=2 stable ’1:1
ir‘n—l +

h1+ha=g
J1 UJQ =L\{i1}




