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To rethink some of the geometric tools of ‘tensor models’
invites us:

“The construction of tensor models was
motivated by the idea of generalizing
to higher dimensions the familiar rela-
tion of matrix models to random two-
dimensional geometries p. . .q The status
of this program is unclear, since it is not
clear that the rather special Feynman di-
agrams that are generated by p. . .q

Ñ Ñ

describe a useful class of random p. . .q
geometries” E. WITTEN J. Phys. A ‘16

Can we import (further) tools from matrix/vector models?

1. DISCRETE SURFACES

‚ To address the enumeration of surfaces constructed by
‘gluings of polygons’, we first address an simpler problem:
count gluings of a rooted polygon of 2p sides. By a glu-
ing, we mean pairings π P P2p2pq of its sides. We think
of π as chords inside the polygon; ‘rooted’ means that the
polygon is fixed while Z2p rotates the chord diagram

‚ from the p2p ´ 1q!! “ p2pq!{2pp! “ #P2p2pq gluings,
let cgppq be the number of those having genus g. Call
QppNq the generating series (a polynomial in this case) in
the sense

QppNq “
1

N2

ÿ

gě0

cgppqN2´2g ,

where the scalings in N (still just a formal variable to be
clarified) are by convenience. Notice that for g ą 0, cgppq

are higher genus generalizations of the Catalan number
c0ppq “ 1

p`1

`
2p
p

˘
. For instance, N2Q3pNq “ 5N2

`

10N0

‚ a further step is dropping the restriction of the polygons
having 2p-sides and summing over the number of sides

1 ` 2zN ` 2z
ÿ

pě1

QppNq

p2p´ 1q!!
pNzq

p
“

„
1 ` z

1 ´ z

ȷN

(1)

J. HARER & D. ZAGIER Invent. Math. ’86. This generating
function contains all the information, since the coefficient
rzp`1, Np`1´2g

s 1
2
RHS gives the genus-g fraction of glu-

ings of 2p-agons for arbitrary p

‚ a matrix integral representation was relevant in one of
the many proofs of Eq. 1. With the trace TrpHq “řN

a“1Ha,a,

QppNq “
ş
MN pCqs.a.

1
N
TrpH2p

q dµpHq “: ⟨ 1
N

TrH2p⟩G,

where dµpHq is the normalized Gaußian measure
dµpHq “ KN exp

“
´pN{2qTrH2

‰
dH . While in order

to get Formula 1 one has to work more, the matrix inte-
gral representation is readily obtained via ⟨Ha,bHc,d⟩G “
1
N
δa,dδb,c and

⟨Ha1,b1 ¨ ¨ ¨Ha2p,b2p⟩G “
ÿ

πPP2p2pq

ź

pi,jqPπ

⟨Hai,biHaj ,bj ⟩G

‚ if one allows connected ‘gluings’ of several polygons, the
natural concept is combinatorial map G “ pJ, ϕ, τq, where
J “ t1, . . . , hu is the set of h P 2N half-edges and
ϕ, τ P Sh “ Sh, being τ free from fixed points and
τ2 “ 1. The faces, edges and vertices of the map are
the cycles (denoted C) of ϕ, τ and υ “ ϕ ˝ τ , respectively.
Thus #Cpυq´#Cpτq´#Cpϕq “ χpGq “ 2´2g. For in-
stance, J “ t1, . . . , 6u, ϕ “ p162435q, τ “ p14qp25qp36q

describe a map with χp q “ 0, since υ “ p132qp465q

‚ to generate maps, one introduces a potential V pxq “ř
0ăkďd tkx

k
{k which yields a new partition function

Z “ CN

ş
MN pCqs.a.

e´NV pHqdH . Maps (with B) are
counted by

⟨TrHℓ1 ¨ ¨ ¨TrHℓn⟩ “:
ř

gě0N
2´2g´nT pgq

ℓ1,ℓ2,...,ℓn

where the LHS is computed with ⟨P pHq⟩ :“

Z´1
ş
P pHqeNV pHqdH . These can be obtained when

Bℓ :“ B{Btℓ hits the partition function Z

‚ with ℓ “ pℓ2, . . . , ℓnq, Tutte Equations
ˇ̌
t1“0,t2“´1

read

T pgq

ℓ1`1,ℓ “

dÿ

j“3

tj ¨ T pgq

ℓ1`j´1,ℓ `

kÿ

c“2

ℓc ¨ T pgq

ℓ1`ℓc´1,ℓ2,...,xℓc,...,ℓn

`
ÿ

p,q with
p`q“ℓ1´1

! ÿ

h1`h2“g
IŸJ“ℓ

T ph1q

p,I ˆ T ph2q

q,J ` T pg´1q

p,q,ℓ

)

‚ to obtain these (with t1, t2 ` 1 ‰ 0) one can use
Schwinger-Dyson equations (SDE), sketched next: fromş
dpXe´S{ℏ

q “ 0, it holds
ş “

divX´ 1
ℏdSpXq

‰
e´S{ℏ

“ 0.
So ⟨gradSpXq⟩ “ ℏ⟨divX⟩. For ℏ Ñ 0, the SDE yield
⟨classical EOM⟩

‚ Tutte Equations can be restated as differential operators,
Lk, k “ ´1, 0, 1, 2 . . . that annihilate the partition func-
tion Z 1

“ exppN2t0qZ , LkZ 1
“ 0. Omitting the cases

k “ 0,˘1, Lk for k ą 1 is given by

k´1ÿ

j“1

jpk ´ jq

N2
BjBk´j `

2k

N2
BkB0 `

ÿ

jPN
pj ` kqtjBj`k,

which satisfies the Witt algebraw, rLp,Lqs “ pp´qqLp`q

(if L´1,0,1 are added) for p, q P Zě´1 i.e. non-central vir

2. ‘GEOMETRY’ AND TENSOR MODELS

‚ Let’s begin by geometry: having gravitation as purpose,
we are interested in PL-manifolds, as there the path inte-
gral seems better controlled. In fact, Alexander theorem—
and refined (independent) versions by Ramirez, Mon-
tesinos and Hilden—states that connected, closed ori-
entable 3-manifolds are covers over S3 branched along a
link/knot (which is far from unique). This holds in general
dimension D, the branching over SD taking place always
at codimension-2 subset of that sphere

Ó 3:1

„ S2

„ T2
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Fig. 1 (L) T2 as branched over S2 (C&R) Barycentric subdivision D “ 2, 3
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‚ one can always ‘color’ those triangulations by barycen-
tic subdivision. Tensor Models computes integrals of the
form ş

Bpϕ, ϕ̄qe´N2ϕ̄pqrϕpqrdϕ dϕ̄

which are performed over functions ϕ, ϕ̄ : t1, . . . , Nu
3

Ñ

C satisfying that for each argument 1 ď p, q, r ď N
the evaluation ϕpqr “ ϕpp, q, rq transforms indepen-
dently under UpNq. Interesting for Bpϕ, ϕ̄q are UpNq

3-
invariants, aka ‘bubbles’

1

32

“ ϕa1a2a3 ϕ̄a1b2c3ϕb1b2b3 ϕ̄b1a2b3ϕc1c2c3 ϕ̄c1c2a3

which we rather specify via (regularly) 3-colored (vertex-
bipartite) graphs

‚ those invariants form a basis for the interactions,
Spϕ, ϕ̄q “

ř
B,UpNq3-inv. tB Bpϕ, ϕ̄q being tB formal vari-

ables.

ZN “
ş
expr´N2Spϕ, ϕ̄qsdϕ dϕ̄ P CrrttBuB,tricoloredss

‹ Q0: Is there a Harer-Zagier function for tensor integrals anal-
ogous to p1 ` zq

N
{p1 ´ zq

N for matrix integrals?
‚ amplitude of a Feynman graph G, now having D` 1 col-

ors, scales „ N#facespGq´DpD`1q#verticespGq{4 and interpreting
G as the gluing ∆pGq of #V pGq of equilateralD-simplices
whose boundaries are glued following the edges of G

˝ ‚ ñ
d

d

2

0

1
1

2

0

d

d

1one can relate the amplitudes to Regge-Einstein-Hilbert
action (which in some units reads) SREHp∆pGqq “ř

D simplices σ volpσq ´
ř

codim 2 simpl. τ δpτqvolpτq, being
δpτq the deficiency angle at τ

‹ Q1: While in D “ 2 the equilateral condition is irrele-
vant, in D ě 3 it seems only extremely convenient. Can
one for D ě 3 find an association of geometric parameters
PDpa1, . . . , aDq P tangles, areas, lengths,.... u that respects the
1{N expansion?

‚ For invariants (bubbles) A,B and v P V‚pAq, w P V‚pBq,

A ˚ B “
ÿ

uPV˝pAq

pA \ Bqztu,wu
ˇ̌
glue colorwise (rooted at v)

which in topologically boils down to connected sums:

A ˚ B ‘“’
ÿ

˝PA
1

2

3◦
•

•
•

◦#•
1

2

3 ••
◦

◦
◦

A B

‚ if Av,w “ Aztv, wu
ˇ̌broken edges
glued by color for w P V˝pAq, the

loop or Schwinger-Dyson Equations can be expressed as
LA,vZN “ 0, where

LA,v “
ÿ

wPV˝pAq

N#EdgespwØvq
ź

ρPπ0pAv,wq

„
´

1

N2

B

Btρ

ȷ

`
ÿ

BPS

tB
B

tB˚A

so for connected A, LA,v can be of second degree, e.g. for
A “

32
, if v, w are the middle vertices

‚ Similar graph operations describe the Polchinski equation
T. KRAJEWSKI & R. TORIUMI J. Phys. A ’16 (Wetterich’s is w.i.p.)

‚ by R. GURăU Nucl. Phys. B ’12 these operators satisfy

rLA,v,LB,ws :“ LA˚B,v ´ LB˚A,w

‚ this Gurău algebra restricts to wě1 algebra rLCp ,LCq s “

pp´ qqLCp`q for p, q P Zě1 if we restrict to cycles,

Cq :“
1

. .
.

2q vertices

‹ Q2: Can one find a recursion (satisfied by the correlators) in
tensor models, even though it is not topological?

3. AIRY STRUCTURES AND TOPOLOGICAL RECURSION (TR)

Airy structures M. KONTSEVICH & Y. SOIBELMAN ’17 capture the
essence of TR

‚ Let W˚ be the vector space with basis ttju
d
j“1. If ℏ is a

formal variable, a (quantum) Airy structure on W is a fam-
ily of operators tLkuk on SympW˚

qrrℏ, ℏ´1
ss where Lk

reads

´
1

2
pt, Aktq ´ ℏpt, Bk

Bq ´
ℏ2

2
pB, Ck

Bq ` ℏpBk ´Dkq

and such that rLi, Ljs “ ℏ
ř

k f
k
i,jLk, being fk, Ak,

Bk, Ck
P MdpCq, whereAk andCk are symmetric, while

fk is skew-symmetric for each k (not a matrix index nor
exponent, abusing on notation)

‚ The Lie algebra condition implies that A, seen as a tensor,
is fully symmetric; that fk

i,j “ Bi
j,k ´Bj

i,k; and three IHX-
relations described next. To the six vertices one associates
letters. Red edges have indices that run. Further, the in-
dices of each letter O at the vertices Ol1

l2 l3 is determined in
the sense of the arrow, starting at the shaded edge. The
IHX-relation for pv1, v2, . . . , v6q “ pB,B,B,B,C,Aq is

that
řd

a“1B
i
j,aA

a
k,l ` Bi

k,aA
j
a,l ` Bi

l,aA
j
a,k is (i Ø j)-

symmetric. Similar relations hold for pv1, v2, . . . , v6q “

pB,A,B,B,B,Aq and pC,B,B,C,C,Bq.

⟲

⟳

⟳

⟳
⟳

⟲

j l

k

j

i

l j l

ki v1

v2

v3 v4

v5

v6

+ +

i k

(2a)

i jB

D

` 1
2

ˆ
i j

A C (2b)

‚ THM (Kontsevich-Soibelman) There exists a unique
ℏ´1F P SympW˚

qrrℏss such that tLje
F

“ 0uj“1,...,d

Proof sketch of uniqueness (cf. G. BOROT Rev. Math. Phys. ‘20).
Expand F “

ř
gě0 ℏ

g´1 ř
ně1

ř
I,#I“n Fg,nrIstI{n!,

with I “ pi1, . . . , inq P t1, . . . , du
n and tI “ ti1 ¨ ¨ ¨ tin

in multi-index notation, and read off the coefficient of
ℏg ˆ ti2 ¨ ¨ ¨ tin{pn ´ 1q! in expp´F qLi1 exppF q “ 0.
This yields F0,3ri1, i2, i3s “ Ai1

i2,i3
and F1,1ri1s “ Di1

for χ “ ´1, while for higher ´χ, Fg,nri1, i2, . . . , ins is
determined by recursion and equals (cf. last page)
nÿ

m“2

Bi1
im,a Fg,n´1ra, i2, . . . , xim, . . . , ins (jq :“ #Jq , q “ 1, 2)

`
1

2
Cii

a,b

"
Fg´1,n`1ra, b, i2, . . . , ins (3)

`
ÿ

h1`h2“g
J1ŸJ2“ti2,...,inu

Fh1,1`j1 ra, J1s ˆ Fh2,1`j2 rb, J2s

*

‚ adj. ‘topological’ explained by excisions of ‘pair of pants’

unstable F0,1 :“ 0 F0,2 :“ 0

χ “ ´1 F0,3 “ F1,1 “

χ “ ´2 F0,4 “ F1,2 “

χ “ ´3 F0,5 “ F1,3 “ F2,1 “

...
...

...
. . .

‚ the boundaries above are not oriented; but, parenthet-
ically, the ABCD-terms could stem from a TQFT F :
Bord2 Ñ VectC

A “ F
´ ¯

, B “ F
` ˘

, C “ F
` ˘

, D “ F
´ ¯
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4. THE VOLUME OF THE MODULI SPACE Mg,npLq

‚ Tg,npLq “ tmetrics on Σg,n : length of boundary bj “

Lju{tconformal mapsu, with L “ pL1, . . . , Lnq

‚ Γg,n “ tDiffpΣg,nq that keep labelsu{{isotopies to idΣg,nu

‚ Mg,npLq “ Tg,npLq{Γg,n “ Teichmüller{mapping class

‚ decomposition of a stable surface Σg,n in simple closed
curves yields p Y -pieces, each having Euler number ´1,
so p “ ´χpΣg,nq. From the 3p geodesic boundaries, n are
not glued, so there are 1

2
pp´nq “ 3g`n´ 3 :“ dg,n in-

ner pairings of cycles, whose lengths ℓj can coincide. The
twisting angle θj of one cycle with respect to the other is
another parameter

‚ tℓj , θjuj“1,...,3g`n´3 are in fact the Fenchel-Nielsen coor-
dinates of Tg,n. The form ωWP “

ř
j dℓj ^ dθj is Γg,n-

invariant, as shown by WOLPERT ‘85, and ω
^dg,n
WP {dg,n!

defines the volume form of Mg,npLq and Vg,npLq “

volrMg,npLqs

‚ MIRZAKHANI JAMS ’07 TR states that Vg,n`1pL0, Lq equals
ÿ

mą0

ż

R`

BMirzpL0, Lm, ℓqVg,npℓ, L1, . . . ,yLm, . . . , Lnqdℓ

`
1

2

ż

R2
`

CMirzpL0, ℓ, ℓ
1
q

”
Vg´1,n`2pℓ, ℓ1, L1, . . . , Lnq

`
ÿ

h1`h2“g
J1ŸJ2“tLjunj“0

Vh1,1`j1pℓ, J1qVh2,1`j2pℓ1, J2q

ı
dℓdℓ1 ,

where BMirzpL1, L2, L3q and CMirzpL1, L2, L3q are given
by

L3

L1
log

r1 ` epL3`L2´L1q{2
sr1 ` epL3´L2´L1q{2

s

r1 ` epL3`L2`L1q{2sr1 ` epL3´L2`L1q{2s

and 2
L2L3

L1
log

1 ` epL3`L2´L1q{2

1 ` epL3`L2`L1q{2
, respectively

‚ keeping the coefficients of the volumes as amplitudes,

Vg,npLq “
ÿ

a1,...,aně0

Fg,nra1, . . . , ans

nź

j“1

L
2aj

j ,

Mirzakhani’s TR and (3) lead to the Airy structure:

Bi
j,k “

p2k ` 1q!

p2i` 1q!p2j ` 1q!
p2j ` 1q θk´j´i (4a)

Ci
j,k “

p2j ` 1q!p2k ` 1q!

p2i` 1q!
θk`j`1´i , (4b)

where
ř

k`1ě0 z
2kθk{dz “ 4π{ sinp2πzqdz2 “:

1{ypzqdz2. But we need the initial A and D terms

‚ the remarkable formula in M. KONTSEVICH Anal. and Appl, ‘91
uses maps, or ribbon graphs, to compute also intersection
numbers

ÿ

ajPZě0,for all j
a1`...`an“dimC Mg,n

ż

Mg,n

ψa1
1 ¨ ψa2

2 ¨ ¨ ¨ψan
n

nź

j“1

p2aj ´ 1q!!

λ
2aj`1

j

“
ÿ

G trivalent, of topology pg,nq

22g´2`n

#AutpGq

ź

ePEpGq

1

λLpeq ` λRpeq

‚ e.g. there is a unique p1, 1q-graph:

G “ ñ 1
λ3

ş
M1,1

ψ1 “ 21

#AutpGq

1
p2λq3

AutpGq “ tψ P S6 : commuting with ϕ and τu

“ tid, p123qp456q, p132qp465q, τ, ϕ, ϕ´1
u

then
ş
M1,1

ψ1 “ 1{24, so D1 “ 1{24. PENNER ’85 com-
puted V1,1p0q “ ζp2q implying D0 “ π2

{6. Else Dk “ 0

for k ą 1. Four graphs of p0, 3q-type ñ Ai1
i2,i3

‰ 0 iff
i˚ “ 0 (A0

0,0 “ 1)
‹ Q3: Is there a geometric object enumerated by tensor models?

5. TOWARDS BOREL SUMMABILITY IN 1{N

As a perspective for Borel summability in tensor models
it is convenient to mention two essential techniques which
together are the essence of the Loop Vertex Expansion V. RI-
VASSEAU JHEP ’07. In L. FERDINAND, R. GURăU, C.P & F. VIGNES-
TOURNERET 2209.09045 BS in 1{N is addressed for the cumu-
lants of the vector model (defined below).

‚ The Hubbard-Stratonovich transformation

e´ x2

2 “
1

?
2π

ş
R dy e

´
y2

2
`ixy

allows to transform theN-dimensional integral in the par-
tition function of the O(N )-vector model

Zpg, 1{N, Jq “

ż

RN

e´ 1
2
ϕ¨ϕ´

g
8N

pϕ¨ϕq2´
?
NJ¨ϕ dNϕ

p2πqN{2

into an integral whereN appears only as a parameter, and
not as the dimension of the dimension of the integration
domain, thus allowing for analytic continuation. With
Rpσ, zq “ p1 ´

?
zσq

´1

Z
`
g, 1{N ; J

˘
“

ż
e

N
2

logRpσ,g{Nq` N
2
Rpσ,g{Nq J¨J e

´ σ2

2 dσ
?
2π

‚ Brydges-Kennedy–Abdesselam-Rivasseau proved

Φp1q ´ Φp0q “
ÿ

non-empty forests
F with n vertices

ż
BΦ

BF
dF (BKAR)

1,0 P Rpn2q the vectors with 1’s and 0’s as constant entries,
respectively. The BKAR formula holds for any smooth
function Φ : Rpn2q Ñ C, where the ‘measure’ over a for-
est and a ‘forest’ derivative are given by

dF :“
ź

ePEpF q

due (5a)

BΦ

BF
:“

"„ ź

pl,mqPEpF q

B

Bxlm

ȷ
Φpxq

*ˇ̌
ˇ̌
ˇ
x“wpF q

(5b)

with parameters given by

wpF qij :“ mintueuePEpF q, e along the path i Ñ j (5c)

and wpF qij “ 0 if such path does not exist. For instance,
for n “ 3, the forest expansion of Φp1, 1, 1q reads

Φp0, 0, 0q
1 2

3

(6)

`

ż 1

0
du12

BΦpxq

Bx12

ˇ̌
ˇ̌
x“pu12,0,0q 1 2

3

`

ż 1

0
du23

BΦpxq

Bx23

ˇ̌
ˇ̌
x“p0,u23,0q 1 2

3

`

ż 1

0
du23

BΦpxq

Bx23

ˇ̌
ˇ̌
x“p0,0,u13q 1 2

3

`

ż 1

0

ż 1

0
du23du12

B2Φpxq

Bx12Bx23

ˇ̌
ˇ̌ 1 2

3

x“pu12,u23,mintu12,u23uq

`

ż 1

0

ż 1

0
du23du13

B2Φpxq

Bx23Bx13

ˇ̌
ˇ̌ 1 2

3

x“pmintu23,u13u,u23,u13q

`

ż 1

0

ż 1

0
du13du12

B2Φpxq

Bx12Bx13

ˇ̌
ˇ̌ 1 2

3

x“pu12,mintu12,u13u,u13q

‚ to have the cumulants, one needs the logarithm of this par-
tition function. Performing Gaußian integration

Zpg, 1{N ; Jq “
ÿ

ně0

Nn

p2qnn!

„
exp

´ ⟨B, B⟩Xpxq

2N

¯

nź

i“1

"
logRpσpiq, gq `Rpσpiq, gqJ ¨ J

*ȷ

σpiq“0
xij“1

,

where rXpxqsii “ 1 and rXpxqsij “ xij for i ‰ j,
one can use for the function in square-brackets BKAR-
formula. Then logZ will be the restriction from forests to
trees.

‹ Q4: Are tensor models 1{N Borel summable?
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L = {i1, . . . , in} label ∂

g “ ř
mą1

gi1

im

a

im

in

in−1

i2
`

b

a

i2

g − 1

i1

in

in−1

in−2

`
stableÿ

h1`h2“g
J1ŸJ2“Lzti1u

i1
a

b
J1

J2

h1

h2


