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Combinatorial Physics

Combinatorial Physics

problems in Theoretical Physics successfully tackled using
Combinatorics methods

problems in Combinatorics successfully tackled using
Theoretical Physics methods

this talk: example of the first case
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Combinatorics - what is a generating function?

In combinatorics, a generating function is a way of encoding an
infinite sequence of numbers (an) by treating them as the
coefficients of a formal power series.

This series is called the generating function of the sequence.
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What is a generating function?

”A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could be
embarrassing, we put them all in a bag, and then we have only one
object to carry, the bag.”

George Pólya, ”Mathematics and plausible reasoning” (1954)

”A generating function is a clothesline on which we hang up a
sequence of numbers for display.”

Herbert Wilf, Generatingfunctionology (1994)
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Generating functions; definition

The (ordinary) generating function of a sequence an:

G (an; u) =
∞∑
n=0

anu
n.
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Example of generating functions

1 the generating function of the sequence (1, 1, . . .) is 1
1−u

1

1− u
= 1 + u + u2 + . . .

u2 1
1−u = u2 + u3 + . . .

2 the generating function of the sequence (1, 0, 1, 0, . . .) is 1
1−u2

1

1− u2
= 1 + u2 + u4 + . . .

u2 1
1−u2 = u2

1−u2 = u2 + u4 + u6 + . . .

u3 1
1−u2 = u3

1−u2 = u3 + u5 + u6 + . . .

generating functions explictly used to study the double scaling
limit of tensor models
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Random matrices & combinatorics

A random matrix is a matrix of given type and size whose entries
consist of random numbers from some specified distribution.

counting maps theorems (via matrix integral techniques)∫
f (matrix of dim N) =

∑
g

N2−2gAg

Ag - some weighted sum encoding maps of genus g
(this depends on the choice of f - the physical model)

A. Zvonkine, in ”Computers & Math. with Applications: Math. & Computer Modelling”, 1997

J. Bouttier, in ”The Oxford Handbook of Random Matrix Theory”, 2011, arXiv:1104.3003

Ph. Di Francesco et. al., Phys. Rept. (1995), arXiv:hep-th/9306153
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Sums over random surfaces

Matrix models - sums over surfaces

”There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The resources
of such things have to be refilled from time to time. In my opinion
at the present time we have to develop an art of handling sums
over random surfaces. These sums replace the old-fashioned (and
extremely useful) sums over random paths.”

A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett.
(1981)

(a physics sociology bracket: 4100+ citations ...)
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A new (QFT-inspired) simplification of tensor models

Multi-orientable (MO) models
A. Tanasă, J. Phys. A (2012) arXiv:1109.0694[math.CO]

non-commutative QFT inspired idea

edge and (valence 4) vertex of the model:
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(Feynman) MO tensor graphs

Example of a MO tensor graph:
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Combinatorial and topological tools - jacket ribbon
subgraphs

S. Dartois et. al., Annales Henri Poincaré (2014)

three pairs of opposite corner strands

Definition
A jacket of an MO graph is the graph made by excluding one
type of strands throughout the graph. The outer jacket c̄ is made
of all outer strands, or equivalently excludes the inner strands (the
green ones); jacket ā excludes all strands of type a (the red ones)
and jacket b̄ excludes all strands of type b (the blue ones).

↪→ such a splitting is always possible
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Example of jacket subgraphs

A MO graph with its three jackets ā, b̄, c̄
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Euler characteristic & degree of MO tensor graphs

ribbon graphs can represent orientable or non-orientable surfaces.

Euler characteristic formula:

χ(J ) = VJ − EJ + FJ = 2− kJ ,

kJ is the non-orientable genus,
VJ is the number of vertices,
EJ the number of edges and
FJ the number of faces.

If the surface is orientable, k is even and equal to twice the
orientable genus g

Given an MO graph G, its degree δ(G) is defined by

δ(G) :=
∑
J

kJ
2

= 3 +
3

2
VG − FG ,

the sum over J running over the three jackets of G.
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Asymptotic expansion of the MO tensor model

generalization of the random matrix asymptotic expansion in N

One needs to count the number of faces of the tensor graph

This can be achieved using the graph’s jackets (ribbon subgraphs)

The tensor partition function writes as a formal series in 1/N:

∑
δ∈N/2

C [δ](λ)N3−δ,

C [δ](λ) =
∑

G,δ(G)=δ

1

s(G)
λvG .

the role of the genus is played by the degree
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Dominant graphs of the large N expansion

dominant graphs:

δ = 0.

Theorem
The MO model admits a 1/N expansion whose dominant graphs
are the “melonic” ones.
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The general term of the expansion

E. Fusy and A. Tanasă, arXiv:1408.5725[math.CO], Elec. J. Comb. (2015)

adaptation of the Gurău-Schaeffer combinatorial approach for the
MO case
R. Gurău and G. Schaeffer, arXiv:1307.5279[math.CO],

Annales IHP D Comb., Phys. & their Interactions (2016)
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(Types of) strands

+

+

-

-

An external strand is called left (L) if it is on the left side of a
positive half-edge or on the right side of a negative half-edge.
An external strand is called right (R) if it is on the right side of a
positive half-edge or on the left side of a negative half-edge.

(L - blue, straight (S) - green, R - red)
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Main issue of a combinatorial analysis

Problem: There exists an infinite number of melon-free graphs of a
given degree.

Nevertheless, some configurations can be repeated without
increasing the degree.
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Dipoles

A (two-)dipole is a subgraph formed by a couple of vertices
connected by two parallel edges which has a face of length two,
which, if the graph is rooted, does not pass through the root.

L R S not 2-dipoles
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Chains

In a (possibly rooted) graph, define a chain as a sequence of
dipoles d1 . . . , dp such that for each 1 ≤ i < p, di and di+1 are
connected by two edges involving two half-edges on the same side
of di and two half-edges on the same side of di+1.
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Some more definitions - (un)broken chains

A chain is called unbroken if all the p dipoles are of the same
type.

A proper chain is a chain of at least two dipoles.

A proper chain is called maximal if it cannot be extended into
a larger proper chain.
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Chains, chain-vertices and their strand configurations

⇒

⇒

⇒

⇒

L

R

So

Se

⇒ B

strand configurations:

⇔L

R

So

Se

B

⇔

⇔

⇔

⇔
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Schemes

Let G be a rooted melon-free MO-graph. The scheme of G is the
graph obtained by simultaneously replacing any maximal proper
chain of G by a chain-vertex.

⇒
L

B

Se
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A reduced scheme is a rooted melon-free MO-graph with
chain-vertices and with no proper chain.

By construction, the scheme of a rooted melon-free MO-graph
(with no chain-vertices) is a reduced scheme.

Proposition

Every rooted melon-free MO-graph is uniquely obtained as a
reduced scheme where each chain-vertex is consistently substituted
by a chain of at least two dipoles (consistent means that if the
chain-vertex is of type L, then the substituted chain is an unbroken
chain of L-dipoles, etc).
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Degree conservation

Proposition

Let G be an MO-graph with chain-vertices and let G ′ be an
MO-graph with chain-vertices obtained from G by consistently
substituting a chain-vertex by a chain of dipoles. Then the degrees
of G and G ′ are the same.

Proof. Carefully counting the number of faces, vertices and
connected components and using the formula:

2δ = 6c + 3V − 2F .
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Finiteness of the set of reduced schemes of a given degree

Theorem
For each δ ∈ 1

2Z+, the set of reduced schemes of degree δ is finite.

Proof.

Lemma
For each reduced scheme of degree δ, the sum N(G ) of the
numbers of dipoles and chain-vertices satisfies N(G ) ≤ 7δ − 1.

Lemma
For k ≥ 1 and δ ∈ 1

2Z+, there is a constant nk,δ s. t. any
connected unrooted MO-graph of degree δ with at most k dipoles
has at most nk,δ vertices.
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Proof - dipole and chain-vertex reductions

⇒ ⇒ ⇒⇒

removal of a chain-vertex (of any type)

removal of a dipole of type L, R and S.

2 types of chain-vertices (and dipoles):

1 separating

2 non-separating

(if the number of connected components is conserved or not after
removal)
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Iterative removal of dipoles and chain-vertices

S
L

B

R

e S
L

B

R

e S
L

B

e

S
L

B

e
L

B

L

B

L

B

c

c

d
d

d

G

G′

L

B

The removal chain-vertices and dipoles (first the non-separating
ones and then the separating ones) leads to a tree of components.
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Some analytic combinatorics - melonic generating function

the generating function of melonic graphs:

T (z) = 1 + z (T (z))4 .
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Generating functions of our objects

u marks half the number of vertices
(i.e., for p ∈ 1

2Z+, up weight given to a MO Feynman graph with
2p vertices)

generating function for:

unbroken chains of type L (or R)

u2 1

1− u
= u2 + u3 + . . .

even straight chains

u2 1

1− u2
=

u2

1− u2
= u2 + u4 + u6 + . . .

odd straight chains

u3 1

1− u2
=

u3

1− u2
= u3 + u5 + u6 + . . .

etc.
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More generating functions

putting together the generating functions of all contributions

=⇒ G
(δ)
S (u) - the generating function of rooted melon-free

MO-graphs of reduced scheme S of degree δ,

G
(δ)
S (u) = up

u2a

(1− u)a
u2se

(1− u2)se
u3so

(1− u2)so
6bu2b

(1− 3u)b(1− u)b
.

b - the number of broken chain-vertices
a - the number of unbroken chain-vertices of type L or R
se - the number of even straight chain-vertices,
so - the number of odd straight chain-vertices.
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Generating functions

This simplifies to

G
(δ)
S (u) =

6bup+2c+so

(1− u)c−s(1− u2)s(1− 3u)b
.

c - the total number of chain-vertices
s = se + so - the total number of straight chain-vertices
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MO generating functions

F
(δ)
S (z) - the generating function of graphs of reduced scheme S

F
(δ)
S (z) = T (z)

6bU(z)p+2c+so

(1− U(z))c−s(1− U(z)2)s(1− 3U(z))b
,

U(z) := zT (z)4 = T (z)− 1

F (δ)(z) - the generating function of rooted MO-graphs of degree δ

F (δ)(z) =
∑
S∈Sδ

F
(δ)
S (z).

Sδ - the (finite) set of reduced schemes of degree δ.
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Singularity order - dominant schemes

T (z) has its main singularity at

z0 := 33/28,

T (z0) = 4/3, and 1− 3U(z) ∼z→z0 23/23−1/2(1− z/z0)1/2.
R. Gurău and G. Schaeffer, arXiv:1307.5279[math.CO]

=⇒ (1− 3U(z))−b ∼z→z0 (1− z/z0)−b/2

=⇒ the dominant terms are those for which b is maximized.

the larger b, the larger the singularity order

A reduced scheme S of degree δ ∈ 1
2Z+ is called dominant if it

maximizes (over reduced schemes of degree δ) the number b of
broken chain-vertices.
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Bound on the number of broken vertices

b ≤ 4δ − 1.

Proof. Iterative removal of broken chains, leading (again) to some
tree T .

If b = 4δ − 1, then:

all broken chain-vertices are separating

the component containing the root has degree 0

all the components of positive degree and the component
containing the root are leaves of T , and the other
components of degree 0 have 3 neighbors in T

all positive degree components have degree 1/2
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MO dominant schemes and rooted binary trees

Theorem
For δ ∈ 1

2Z
∗
+, the dominant schemes arise from rooted binary trees

with

2δ + 1 leaves,

2δ − 1 inner nodes, and

4δ − 1 edges,

where

the root-leaf is occupied by the rooted cycle-graph,

the 2δ other leaves are occupied by (cw or ccw) infinity
graphs,

the 4δ − 1 edges are occupied by separating broken
chain-vertices.
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δ = 2 example

B

B B

BB

B
B

(a) (b)

root

(a) A rooted binary tree (5 leaves, 3 internal nodes, 7 edges)

(b) A dominant scheme associated to the tree (a)
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The double scaling limit of the MO tensor model

R. Gurău, A. Tanasă, D. Youmans, Europhys. Lett. (2015)

The dominant configurations in the double scaling limit are the
dominant schemes

The successive coefficient functions Zg (λ) as well diverge at the
same critical value of the coupling λ = λc
contributions from higher degree are enhanced as λ→ λc

κ−1 := N
1
2 (1− λ/λc)

the partition function expansion:

Z =
∑
ω̄

N3−ω̄fω̄

double scaling limit: N →∞, λ→ λc while holding fixed κ

contribution from all degree tensor graphs

similar behaviour to the matrix model double scaling limit
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The O(N)3-invariant tensor
model

Main complication:
two types of quartic invariant interactions (and hence two coupling
constants) are considered
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The O(N)3-tensor model

S. Carrozza, A. T., 2015 (arXiv:1512.06718) Lett. Math. Phys. (2016)

The tensor φabc is invariant under the action of O(N)3:

φabc → φ′a′b′c ′ =
N∑

a,b,c=1

O1
a′aO

2
b′bO

3
c ′cφabc O i ∈ O(N)

Two different quartic invariants:

It(φ) =
∑

a,a′,b,b′,c,c ′

φabcφab′c ′φa′bc ′φa′b′c =
3

1
3

2

1

2

Ip,1(φ) =
∑

a,a′,b,b′,c,c ′

φabcφa′bc φab′c ′φa′b′c ′ =

1

2

1

23 3
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An example of Feynman graph of the model

1

1

1

1

1

1

11

2

2

22
2

2

2 2

3

3

nt = 3

np = 3

F1 = 1

F2 = 3

F3 = 1

⇒ ω =
17

2
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The large N limit expansion

The free energy admits a large N expansion

FN(λ1, λ2) = lnZN(λ1, λ2) =
∑
Ḡ∈Ḡ

N3−ω(Ḡ)A(Ḡ). (1)

where the degree is:

ω(Ḡ) = 3 +
3

2
nt(Ḡ) + 2np(Ḡ)− F (Ḡ) (2)
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Two types of melonic graphs

ω(Ḡ) = 3 +
3

2
nt(Ḡ) + 2np(Ḡ)− F (Ḡ)

Definition
Melons are the graphs of vanishing degree ω(Ḡ) = 0

two types of interaction → two types of melonic graphs:

Type I:
1

2

2

1

2

1

1

2

3 3 Type II:

j

k

k

j

i i
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Again on schemes

Recall that a scheme (of degree ω) is a ”blueprint” that tells
us how to obtain graphs of the same degree ω.

Recall the general idea: Identify operations that leave the degree
invariant and use them to repackage all the graphs that differ only
by the applications of these operations

Melonic moves are such graphic operations.
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Dipoles

Definition
A dipole is a 4-point graph obtained by cutting an edge in an
elementary melon.

2

2

i

2

2

3 3

2 23

2 23

i

i

i

i

i

i

i

i

i

2 3 2 3 2 3 2 3

i

i
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Dipoles

Di
=

i

i

i

i
+

i

i

(3)
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Chains

Definition
Chains are the 4-point functions obtained by connecting an
arbitrary number of dipoles.

Ci = Di
. . . DiΣ

k ≥ 2
︸ ︷︷ ︸

k dipoles

(4)
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Schemes

Definition
The scheme S of a 2-point graph G is obtained by

1 Removing all melonic 2-point subgraphs in G
2 Replacing all maximal chains with chain-vertices and all

dipoles with dipole-vertex of the same color.

B

C1

B

1 1

1

1

1

1

1

1

2

2
2

2

2

2

2

2

Figure: An example of scheme
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Finiteness of the number of schemes

Theorem
The set of schemes of a given degree is finite in the quartic
O(N)3-invariant tensor model.

ADRIAN TANASĂ Combinatorial aspects of tensor models



Structure of the dominant schemes

Theorem
The dominant schemes of degree ω are given bijectively by rooted
plane binary trees with 4ω − 1 edges, s. t.

The root of the tree corresponds to the two external legs of
the 2-point function.

Edges of the tree correspond to broken chains.

The leaves are tadpoles:

There are two types of internal nodes,

1 2

2 1
3

2 1

1 2
3

,
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Generating function of dominant scheme

The generating function associated to a dominant schemes is

Gω
T (t, µ) = (3t

1
2 )2ω(1 + 6t)2ω−1B(t, µ)4ω−1

= (3t
1
2 )2ω(1 + 6t)2ω−1 64ω−1U8ω−2

((1− U)(1− 3U))4ω−1
(5)

where B is the generation functions of broken chains and U is th
generation function of dipoles.

Summing over the different trees and taking into account melonic
insertions at the root gives

Gω
dom(t, µ) = M(t, µ)

∑
T

2ω leaves

Gω
T (t, µ)

= Cat2ω−1 M(t, µ)Gω
T (t, µ) (6)

where M is the generation functions of melons.
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Double scaling parameter

Near critical point

Gω
dom(t, µ) ∼

t→tc (µ)
N3−ωMc(µ) Cat2ω−1 9ωtωc (1 + 6tc)2ω−1

×

 1(
1− 4

3 tc(µ)µMc(µ)
)
K (µ)

√
1− t

tc (µ)

4ω−1

(7)

The double scaling parameter κ(µ) is the quantity to hold
fixed when sending N → +∞, t → tc(µ).

dominant schemes of all degree ω contribute in the double
scaling limit

One has

κ(µ)−1 =
1

3

1

tc (µ)
1
2 (1 + 6tc (µ))

((
1−

4

3
tc (µ)µMc (µ)

)
K(µ)

)2
(

1−
t

tc (µ)

)
N

1
2 (8)
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2−point function in the double scaling limit

GDS
2 (µ) = N−3

∑
ω∈N/2

Gω
dom(µ)

= Mc(µ)

(
1 + N−

1
4

√
3

tc(µ)
1
4

(1 + 6tc(µ))
1
2

1−
√

1− 4κ(µ)

2κ(µ)
1
2

)
(9)

convergent for κ(µ) ≤ 1
4 .

tensor double scailing limit is summable
(different behaviour with respect to the celebrated matrix models
case)
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Implementation of this approach for other models

D. Benedetti et. al., Annales IHP D (in press)

double-scaling limit mechanism of U(N)2 × O(D) multi-matrix
models
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Conclusion and perspectives

Bottom line:
purely combinatorial techniques can be used to study physical
mechanisms, such as the double scaling limit for various
tensor models

Perspectives - Implementation of this combinatorial approach
for other models:

the multi-matrix models with several types of interactions
(see Victor Nador’s talk on Friday!)

the prismatic tensor model
(work in progress with Thomas Krajewski and Thomas Muller
(Thomas Muller Masters internship))

O(N)3 tensor model with prismatic interaction
S. Giombi et. al., arXiv:1808.04344, Phys.Rev. D (2018)
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Danke für Ihre
Aufmerksamkeit!
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Comparison with the colored case

The dominant schemes differ:

for the colored model, for degree δ ∈ Z+, the dominant schemes
are associated to rooted binary trees with δ + 1 leaves (and δ − 1
inner nodes), where the root-leaf is occupied by a root-melon,
while the δ non-root leaves are occupied by the unique scheme of
degree 1.
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