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non-local arguments which are dynamical, 
simplicial interpretation for field, quanta and 
processes, theories of random discrete geometry

Tensor field theories: one name for two di↵erent things
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a generalization of SYK to higher
dimensions

a generalization of the
O(N )/higher-spin duality?

a controllable nontrivial
nonsupersymmetric CFT in d > 2
[see Harribey’s review]
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A generalization of the Kontsevitch
model to tensors

A QFT on T
r, with very non-local

interactions

Goals:

a constructive (nonlocal) QFT
[Rivasseau, Vignes-Tourneret]

a QG/cosmological interpretation of its
phase transitions [Oriti et al.]
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arising in perturbative TGFT description- beyond lattice gravity and spin foams

collective QG physics result of collective quantum dynamics of 
fundamental discrete degrees of freedom- need distinctively field-theoretic approximations

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity



Extracting continuum spacetime & gravitational physics
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✴   ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action 
should be used to compute continuum geometric observables and their quantum dynamics

i.e. evaluate (analytically? numerically?) full quantum dynamics!                 
(full sum over triangulations weighted by simplicial gravity path integral)

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �
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expect different phases 
and phase transitions 
as result of quantum dynamics

which ones are “geometric”
in which one does spacetime emerge?

same from quantum geometric perspective
Koslowski, ’07; DO, ‘07
A. Ashtekar, J. Lewandowski, ’94      T. Koslowski, H. 
Sahlmann, ’10     B. Dittrich, M. Geiller, ’14; B. Bahr, B. 
Dittrich, M. Geiller, '16; S. Gielen, DO, L. Sindoni, ’13       
A. Kegeles, DO, C. Tomlin, '16

geometric phase

???

???



TGFT non-perturbative renormalisation
FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)

Eichhorn, Koslowski, ‘14

S. Carrozza, '16

• Polchinski formulation based on SD equations
• general set-up for Wetterich-Morris formulation based on effective action

• RG flow and phase diagram for:
• TGFT on compact U(1)^d (with gauge invariance)
• TGFT on non-compact R^d (with gauge invariance)
• TGFT on SU(2)^3 (with gauge invariance)     Carrozza, Lahoche, ‘16

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, 
Benedetti, Lahoche, ’15; Lahoche, Ousmane-Samary, ’16; ……

Krajewski, Toriumi, ‘14

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18

• non-melonic TGFT on SU(2)^4 with gauge invariance

• TGFT on U(1)^3 in full quartic truncation

• consequences of Ward identities from symmetries on RG flow
V. Lahoche, D. Ousmane-Samary, '17, '18,'19, '20

Carrozza, Lahoche, DO, '17
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤
, �̄

⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �

⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g6 of the �

6

interaction reaches a fixed point, and being g6 dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

so far:

• asymptotic freedom/safety

• hints of broken/condensate phase? (non-trivial minimum of classical potential)

S. Carrozza, '16
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can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]

k@k�k =
1

2
Tr

⇣
�(2)
k +RkI2

⌘�1
k@kRkI2

�
, (3)

with initial conditions �k=⇤[', '̄] = S[', '̄] at the UV

scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with

respect to ', '̄ and the trace Tr sums over all field degrees
of freedom.

In this work we restrict the theory space to cyclic-
melonic interactions. It is defined by the e↵ective average
action

�k['̄,'] = (', (�Zk�+ µk)') +
rX

c=1

TrGVk('̄ ·ĉ ') (4)

where �� = a
�2

C is the dimensionful Laplacian on G
r

in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series

Vk(z) =
1X

n=2

1

n! r
�nz

n (5)

with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
via its kernel

('̄ ·ĉ ')(gc, hc) :=

Z Y

b 6=c

dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]

Rk = Zk

�
k
2 � a

�2
C
�
✓
�
k
2 � a

�2
C
�

(7)

where ✓ is the Heaviside function, we can perform the
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('̄ ·ĉ ')(gc, hc) :=

Z Y

b 6=c

dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]

Rk = Zk

�
k
2 � a

�2
C
�
✓
�
k
2 � a

�2
C
�

(7)

where ✓ is the Heaviside function, we can perform the

2

The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.
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THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
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The scaling exponents at this point are altered by the
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scales this fixed point does not persist and we universally
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is only the unbroken phase in our approximation, that is
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on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
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tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
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consider the large-volume limit a ! 1 of the compact
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into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-
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k
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.
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ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
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and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is
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nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-
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is only the unbroken phase in our approximation, that is
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into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V
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terms of ⇢ = a
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�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]
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where ✓ is the Heaviside function, we can perform the
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,
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The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
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and respectively '̄(ggg). Adding
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cyclic-melonic interactions dominate the RG flow of more general TGFT models

the RG flow equations are found to be:

3

trace in the momentum space of U(1) representations and find for the e↵ective potential Uk(⇢) = µk⇢+ Vk(⇢) [31]
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
vs = ⇡

s/2
/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N

s
k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)

model and we can specify this relation upon expanding in
the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk

2
µ̃k and for n � 2
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where a rescaling in the volume scale a of the group is
necessary since the scaling dimension, parametrized with
hindsight by an e↵ective dimension de↵, is not the same as
the canonical dimension [�n] = 2n in TGFT [14]. Then,
expanding the FRG equation around ⇢ = 0 yields flow
equations for the dimensionless couplings
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l is the part of order l in the couplings �̃i,
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k -part
of the full equations yields coe�cients with a factor 2i�1
for each �̃i, that is �̄n(µk, �̃i) := �
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thermore, the non-autonomous structure results in poly-
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]
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with initial conditions �k=⇤[', '̄] = S[', '̄] at the UV

scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with

respect to ', '̄ and the trace Tr sums over all field degrees
of freedom.

In this work we restrict the theory space to cyclic-
melonic interactions. It is defined by the e↵ective average
action

�k['̄,'] = (', (�Zk�+ µk)') +
rX

c=1

TrGVk('̄ ·ĉ ') (4)

where �� = a
�2

C is the dimensionful Laplacian on G
r

in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series

Vk(z) =
1X

n=2

1

n! r
�nz

n (5)

with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
via its kernel

('̄ ·ĉ ')(gc, hc) :=

Z Y

b 6=c

dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]

Rk = Zk

�
k
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�2
C
�
✓
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k
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�2
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where ✓ is the Heaviside function, we can perform the
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For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]
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scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with

respect to ', '̄ and the trace Tr sums over all field degrees
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In this work we restrict the theory space to cyclic-
melonic interactions. It is defined by the e↵ective average
action
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rX

c=1

TrGVk('̄ ·ĉ ') (4)
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C is the dimensionful Laplacian on G
r

in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series
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with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
via its kernel
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Z Y

b 6=c

dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]
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cyclic-melonic interactions dominate the RG flow of more general TGFT models

the RG flow equations are found to be:

3

trace in the momentum space of U(1) representations and find for the e↵ective potential Uk(⇢) = µk⇢+ Vk(⇢) [31]
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
vs = ⇡

s/2
/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N

s
k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)

model and we can specify this relation upon expanding in
the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk
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where a rescaling in the volume scale a of the group is
necessary since the scaling dimension, parametrized with
hindsight by an e↵ective dimension de↵, is not the same as
the canonical dimension [�n] = 2n in TGFT [14]. Then,
expanding the FRG equation around ⇢ = 0 yields flow
equations for the dimensionless couplings
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for each �̃i, that is �̄n(µk, �̃i) := �
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thermore, the non-autonomous structure results in poly-
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]

⌘k = ��̃2
2(r � 1)Nk +

Pr�1
s=1

�r�1
s

�
s vsN

s
k

rN
deff
k (1 + µ̃k)2 � �̃2

⇣
r + 2(r � 1)Nk +

Pr�2
s=1

�r�1
s

�
s+2
2 vsN

s
k + vr�1N

r�1
k

⌘ . (13)

2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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is to be expected since the tensor field is complex and the
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k in the
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
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a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].

• at large-N, equivalence with O(N) models in d = r-1 (up to anomalous dimension!) - non-Gaussian FP 
for r = 4,5
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]

k@k�k =
1

2
Tr

⇣
�(2)
k +RkI2

⌘�1
k@kRkI2

�
, (3)

with initial conditions �k=⇤[', '̄] = S[', '̄] at the UV

scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with

respect to ', '̄ and the trace Tr sums over all field degrees
of freedom.

In this work we restrict the theory space to cyclic-
melonic interactions. It is defined by the e↵ective average
action

�k['̄,'] = (', (�Zk�+ µk)') +
rX

c=1

TrGVk('̄ ·ĉ ') (4)

where �� = a
�2

C is the dimensionful Laplacian on G
r

in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series

Vk(z) =
1X

n=2

1

n! r
�nz

n (5)

with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
via its kernel

('̄ ·ĉ ')(gc, hc) :=

Z Y

b 6=c

dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]

Rk = Zk

�
k
2 � a

�2
C
�
✓
�
k
2 � a

�2
C
�

(7)

where ✓ is the Heaviside function, we can perform the
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
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at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
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ary of a Feynman diagram with such quartic interac-
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interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
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tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
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cyclic-melonic interactions dominate the RG flow of more general TGFT models

the RG flow equations are found to be:
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trace in the momentum space of U(1) representations and find for the e↵ective potential Uk(⇢) = µk⇢+ Vk(⇢) [31]
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
vs = ⇡
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/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N

s
k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)

model and we can specify this relation upon expanding in
the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
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is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].

• at large-N, equivalence with O(N) models in d = r-1 (up to anomalous dimension!) - non-Gaussian FP 
for r = 4,5

• at small-N, equivalence with O(N) model in effectively zero dimension - no phase transition
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]
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scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with

respect to ', '̄ and the trace Tr sums over all field degrees
of freedom.

In this work we restrict the theory space to cyclic-
melonic interactions. It is defined by the e↵ective average
action
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where �� = a
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C is the dimensionful Laplacian on G
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in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series
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with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
via its kernel

('̄ ·ĉ ')(gc, hc) :=
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dgb'̄(g1...gc...gr)'(g1...hc...gr) ,

(6)
into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
k

we set '(ggg) = �. As a consequence, the entries of this
2 ⇥ 2 matrix can be written in terms of the first two
derivatives of the potential function V

0
k(⇢) and V

00
k (⇢) in

terms of ⇢ = a
�r
�̄�. We have already argued in earlier

work on the mean-field approximation of group field the-
ories [25] that this is a meaningful approximation close to
critical regimes where the correlation length is expected
to diverge.
Field projection and the specific cyclic-melonic poten-

tial approximation allow us to explicitly derive the full
non-autonomous FRG equation. Using the common op-
timized regulator function [30]
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where ✓ is the Heaviside function, we can perform the
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.
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The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field
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tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
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ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.
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ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
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build only from concatenations. This corresponds to non-
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UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
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tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is
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The scaling exponents at this point are altered by the
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where ✓ is the Heaviside function, we can perform the

cyclic-melonic interactions dominate the RG flow of more general TGFT models

the RG flow equations are found to be:
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trace in the momentum space of U(1) representations and find for the e↵ective potential Uk(⇢) = µk⇢+ Vk(⇢) [31]
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
vs = ⇡

s/2
/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N

s
k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)

model and we can specify this relation upon expanding in
the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
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/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N

s
k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)

model and we can specify this relation upon expanding in
the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk
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the canonical dimension [�n] = 2n in TGFT [14]. Then,
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
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As expected for a compact domain [23], the FRG equa-
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in the scale k. In particular there are contributions of
order N
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k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)
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the average field and rescaling. We obtain dimensionless
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
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/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
tion is a non-autonomous ordinary di↵erential equation
in the scale k. In particular there are contributions of
order N
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k for s = 0, 1, ..., r which are due to contribu-

tions of zero modes in r � s entries of the tensor field,
respectively.

The equations resemble the FRG equation of an O(2)
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the average field and rescaling. We obtain dimensionless
couplings setting µk = Zkk
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].

• at large-N, equivalence with O(N) models in d = r-1 (up to anomalous dimension!) - non-Gaussian FP 
for r = 4,5

• at small-N, equivalence with O(N) model in effectively zero dimension - no phase transition
symmetry restoration is due to dominance of zero-modes, 
independently of combinatorial structure of TGFT interactions appears generic in compact domains
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The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
find restoration of the global U(1) symmetry. Thus, there
is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION

In this work we consider TGFT on the group G = U(1)
at any rank r � 3. That is, the field is a complex scalar
� : U(1)r ! C. The field theory is defined by generating
functions Z or W in terms of an action S and a measure
on the space of field configurations D�D�̄,

Z[J, J̄ ] ⌘ e
W [J,J̄] =

Z
D�D�̄ e

�S[�,�̄]+(J,�)+(�,J)
. (1)

where (�, ) =
R
dggg �̄(ggg) (ggg) is the scalar product on

L
2(Gr) using a dimensionful Haar measure

R
dggg = a

r.
The volume scale a will be necessary for physically mean-
ingful rescaling of quantities. Furthermore, it allows to
consider the large-volume limit a ! 1 of the compact
manifold corresponding to the theory on Rr where an IR
regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
endre transform exchanging sources for the average field

'(ggg) := h�(ggg)i = �W [J̄,J]
�J̄(ggg)

and respectively '̄(ggg). Adding

an IR regulator Rk depending on the running scale k,
the e↵ective average action à la Wetterich is

�k[', '̄] = sup
J̄,J

{(', J)+(J,')�Wk[J̄ , J ]}�(',Rk') (2)

and one can deduce the FRG equation [15, 26, 27]
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with initial conditions �k=⇤[', '̄] = S[', '̄] at the UV

scale ⇤. Here �(2)
k is the 2⇥ 2 Hessian matrix of �k with
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where �� = a
�2

C is the dimensionful Laplacian on G
r

in terms of the Casimir C, Zk is the wave-function renor-
malization parameter andmk is the coupling at quadratic
order. The potential is determined by the power series

Vk(z) =
1X

n=2

1

n! r
�nz

n (5)

with k-dependent couplings �n for n � 2.
Melonic interactions are those recursively constructed

by inserting a melonic operator ('̄·ĉ') of colour c, defined
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into one of di↵erent colour (in the integral), or concate-
nating it with one of the same colour [3]. This construc-
tion can be mapped to rooted r-coloured trees [28]. The
cyclic-melonic interaction of colour c in Eq. (4) are those
build only from concatenations. This corresponds to non-
branching trees in the tree description.
This approximation is less restrictive as it may seem

at first sight. It is true that already the quartic mel-
onic interaction generates any tensor invariant since
any bipartite edge-coloured graph occurs as the bound-
ary of a Feynman diagram with such quartic interac-
tions [29]. Thus, the truncation to only cyclic-melonic
interactions ignores most interactions in the class of pos-
sible interactions proliferating with the number of fields.
But the cyclic-melonic interactions are known to domi-
nate the flow and provide the relevant directions in the
UV [18, 19, 21]. More importantly, this restriction allows
us in the first place to calculate the FRG flow through
all scales and to arbitrary order in the potential. We will
then see that the qualitative result of symmetry restora-
tion is independent of the details of the specific interac-
tions and should extend to the full tensorial potential.
As common in the FRG method, we project to a con-

stant field configuration in direct space in the FRG equa-

tion. That is, after evaluating the second derivative �(2)
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timized regulator function [30]

Rk = Zk

�
k
2 � a

�2
C
�
✓
�
k
2 � a

�2
C
�

(7)

where ✓ is the Heaviside function, we can perform the

2

The scaling exponents at this point are altered by the
relatively large anomalous dimension. Flowing to smaller
scales this fixed point does not persist and we universally
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is only the unbroken phase in our approximation, that is
no phase transitions. This is in accordance with results
on scalar field theory on compact spaces [23, 24] and with
our earlier work on mean-field approximation in group
field theory [25]. We argue that the isolated zero mode
due to the compactness of the field domain is the essen-
tial reason for symmetry restoration and conjecture that
this phenomenon applies to any compact domain and the
full theory space including arbitrary tensor-invariant in-
teractions.

FUNCTIONAL RENORMALIZATION GROUP IN
THE MELONIC POTENTIAL APPROXIMATION
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regularization can be removed exactly by this limit [14].

For the functional renormalization group the natural
object to consider is the e↵ective action, that is the Leg-
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cyclic-melonic interactions dominate the RG flow of more general TGFT models

the RG flow equations are found to be:

3

trace in the momentum space of U(1) representations and find for the e↵ective potential Uk(⇢) = µk⇢+ Vk(⇢) [31]
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where the particular threshold functions vsN
s
k in the

dimensionless variable Nk = ak result from an in-
tegral approximation of the s-dimensional traces with
quadratic cuto↵2, thus including the usual unit volume
vs = ⇡

s/2
/�(1+s/2). The dependence on Zk is expressed

in terms of the anomalous dimension ⌘k ⌘ �k@k logZk.
As expected for a compact domain [23], the FRG equa-
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model and we can specify this relation upon expanding in
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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Except for this additional dependence on Nk = ak, this

tower of flow equations, Eq. (10), is exactly the one of the
O(2)-invariant scalar field theory in de↵ dimensions. This
is to be expected since the tensor field is complex and the
action has a global U(1) ' O(2) symmetry. In the tenso-
rial theory, though, the dimension de↵ occurs merely as
a parameter which depends on the scale regime. Mean-
ing, it can be used to obtain approximately autonomous
equations in a given regime.

Another major di↵erence to the O(2) model is the
anomalous dimension. The flow equation of the anoma-
lous dimension derives from the quadratic order of field
expansion of the FRG equations Eq. (3) before constant-
field projection. Since there are propagating internal mo-
menta at one loop in TGFT one expects a significant con-
tribution by the anomalous dimension. Using the same
threshold functions as above, we find [31]
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2 We have also explicitly calculated the trace as a sum with sim-
plex and box cuto↵s taking into account subleading orders in Nk

leading to the same qualitative results [31].

• at large-N, equivalence with O(N) models in d = r-1 (up to anomalous dimension!) - non-Gaussian FP 
for r = 4,5

• at small-N, equivalence with O(N) model in effectively zero dimension - no phase transition
symmetry restoration is due to dominance of zero-modes, 
independently of combinatorial structure of TGFT interactions appears generic in compact domains

in TGFT models with matter, matter adds non-compact directions expect different results!
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especially true for quantum geometric TGFTs (or GFTs)

• can we say anything about phase transitions at such approximate level?
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recap: Landau-Ginzburg analysis and Ginzburg criterion for phase transitions

• start from free energy (truncated in some way, usually to (euclidean) classical action)

(dynamical field is order parameter)

• compute fluctuations of order parameter (in Gaussian approximation over constant background)

• deduce characteristic scale of correlations (correlation length):

scales, even if the discrete geometric degrees of freedom are encoded in a compact group

domain. However, it is important to verify this expectation by a careful scrutiny of the

phase properties of such TGFT models with mixed local/non-local degrees of freedom. This

is the main objective of this work. We aim to do so by applying Landau-Ginzburg mean-

field theory which is su�cient to point to the formation of a condensate phase. We focus on

simplified TGFT models, here, as a first step toward the analysis of more realistic models,

of direct relevance in particular for the GFT condensate cosmology program [40–42].

To set the stage, let us briefly summarize the Landau-Ginzburg mean-field method

applied to local scalar field theory [57, 58], which played a pivotal role for the Wilsonian

renormalization group analysis of systems experiencing a continuous transition between a

broken and an unbroken phase of a global symmetry [59]. One starts with the free energy

functional of the system, written as an expansion in terms of (even) powers of a local field,

the order parameter, and its gradient. One then considers a truncation thereof, which is

assumed to be valid from the mesoscale to the macroscale, usually corresponding in terms

of form to the (Euclideanized) classical action. Crucially, details about the microphysics are

encoded in its coupling parameters and the order parameter. The latter is a coarse-grained

quantity that features only universal properties of the system (e.g. the dimensionality

of the underlying space and order parameter symmetries). This setting allows to control

the thermodynamic phases of a system and to describe continuous phase transitions by

studying long-range correlations of the order parameter fluctuations over a length ⇠, the

correlation length, beyond which correlations decay exponentially and which diverges at

criticality.

Concretely, in a first step one determines the (uniform) field configurations which min-

imize the free energy functional. In a second step, one studies correlations of quadratic

fluctuations around this uniform background. This is the Gaussian approximation [58]. To

this aim, one linearizes the classical equations of motion using the fluctuations over the

uniform background and then solves for the correlation function, in turn allowing to com-

pute the correlation length. Finally, the domain of validity of this approximation scheme

can be studied by quantifying the strength of the fluctuations. As long as these remain

small and the interaction term can be treated perturbatively, mean-field theory around the

Gaussian theory can be self-consistently applied. This is the Ginzburg criterion [38]. In

particular, it allows to establish the well-known result that the critical dimension below

which mean-field theory ceases to provide an accurate description of the phase diagram

and of the (second-order) phase transition is 4. Right below that value, mean-field theory

still captures the basic structure of the phase diagram, but only qualitatively, and the

numerical results on the critical exponents are misleading in general [58].2

In this work, we adapt and apply the Landau-Ginzburg method to TGFTs that include

also local (from the TGFT point of view, not necessarily with respect to spacetime physics)

2
In mean-field theory, only fluctuations on the scale ⇠ are considered important in the vicinity of the

phase transition. In order to account for the correct quantitative critical behavior, fluctuations on all scales

have to be considered at the phase transition, and thus one has to resort to the full renormalization group

machinery [59].
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for continuous phase transitions:


: correlations decay polynomially


: correlations decay exponentially
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scales, even if the discrete geometric degrees of freedom are encoded in a compact group

domain. However, it is important to verify this expectation by a careful scrutiny of the

phase properties of such TGFT models with mixed local/non-local degrees of freedom. This

is the main objective of this work. We aim to do so by applying Landau-Ginzburg mean-

field theory which is su�cient to point to the formation of a condensate phase. We focus on

simplified TGFT models, here, as a first step toward the analysis of more realistic models,

of direct relevance in particular for the GFT condensate cosmology program [40–42].

To set the stage, let us briefly summarize the Landau-Ginzburg mean-field method

applied to local scalar field theory [57, 58], which played a pivotal role for the Wilsonian

renormalization group analysis of systems experiencing a continuous transition between a

broken and an unbroken phase of a global symmetry [59]. One starts with the free energy

functional of the system, written as an expansion in terms of (even) powers of a local field,

the order parameter, and its gradient. One then considers a truncation thereof, which is

assumed to be valid from the mesoscale to the macroscale, usually corresponding in terms

of form to the (Euclideanized) classical action. Crucially, details about the microphysics are

encoded in its coupling parameters and the order parameter. The latter is a coarse-grained

quantity that features only universal properties of the system (e.g. the dimensionality

of the underlying space and order parameter symmetries). This setting allows to control

the thermodynamic phases of a system and to describe continuous phase transitions by

studying long-range correlations of the order parameter fluctuations over a length ⇠, the

correlation length, beyond which correlations decay exponentially and which diverges at

criticality.

Concretely, in a first step one determines the (uniform) field configurations which min-

imize the free energy functional. In a second step, one studies correlations of quadratic

fluctuations around this uniform background. This is the Gaussian approximation [58]. To

this aim, one linearizes the classical equations of motion using the fluctuations over the

uniform background and then solves for the correlation function, in turn allowing to com-

pute the correlation length. Finally, the domain of validity of this approximation scheme

can be studied by quantifying the strength of the fluctuations. As long as these remain

small and the interaction term can be treated perturbatively, mean-field theory around the

Gaussian theory can be self-consistently applied. This is the Ginzburg criterion [38]. In

particular, it allows to establish the well-known result that the critical dimension below

which mean-field theory ceases to provide an accurate description of the phase diagram

and of the (second-order) phase transition is 4. Right below that value, mean-field theory

still captures the basic structure of the phase diagram, but only qualitatively, and the

numerical results on the critical exponents are misleading in general [58].2

In this work, we adapt and apply the Landau-Ginzburg method to TGFTs that include

also local (from the TGFT point of view, not necessarily with respect to spacetime physics)

2
In mean-field theory, only fluctuations on the scale ⇠ are considered important in the vicinity of the

phase transition. In order to account for the correct quantitative critical behavior, fluctuations on all scales

have to be considered at the phase transition, and thus one has to resort to the full renormalization group

machinery [59].
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recap: Landau-Ginzburg analysis and Ginzburg criterion for phase transitions

• start from free energy (truncated in some way, usually to (euclidean) classical action)

(dynamical field is order parameter)

• compute fluctuations of order parameter (in Gaussian approximation over constant background)

• validity of Gaussian approximation can be checked - Ginzburg criterion: 


fluctuations of order parameter smaller than order parameter itself (averaged over appropriate region)

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms

of derivatives acting on the exponential function. As a result, we finally obtain

⇠
2
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dg(r � s0)
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b2c1,...,cs

. (3.24)

In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]

⌦
(��)2

↵
⌦
⌧

⌦
�2
0

↵
⌦
. (4.1)

For the Ginzburg criterion, the averaging region is crucial. For applications to three-

dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose

⌦⇠ ⇠ ⇠
3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in

the previous Section, we can define the region ⌦⇠ as

⌦⇠ ⇠ ⇠
dl
l ⇥ ⇠

dnl
nl , (4.2)
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of derivatives acting on the exponential function. As a result, we finally obtain

⇠
2
nl =

rX

s=s0

dg(r � s0)

dnl

X

(c1,...,cs)

b000

b2c1,...,cs

. (3.24)

In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]
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dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose
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3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in

the previous Section, we can define the region ⌦⇠ as
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(in isotropic case)

• deduce characteristic scale of correlations (correlation length):

scales, even if the discrete geometric degrees of freedom are encoded in a compact group

domain. However, it is important to verify this expectation by a careful scrutiny of the

phase properties of such TGFT models with mixed local/non-local degrees of freedom. This

is the main objective of this work. We aim to do so by applying Landau-Ginzburg mean-

field theory which is su�cient to point to the formation of a condensate phase. We focus on

simplified TGFT models, here, as a first step toward the analysis of more realistic models,

of direct relevance in particular for the GFT condensate cosmology program [40–42].

To set the stage, let us briefly summarize the Landau-Ginzburg mean-field method

applied to local scalar field theory [57, 58], which played a pivotal role for the Wilsonian

renormalization group analysis of systems experiencing a continuous transition between a

broken and an unbroken phase of a global symmetry [59]. One starts with the free energy

functional of the system, written as an expansion in terms of (even) powers of a local field,

the order parameter, and its gradient. One then considers a truncation thereof, which is

assumed to be valid from the mesoscale to the macroscale, usually corresponding in terms

of form to the (Euclideanized) classical action. Crucially, details about the microphysics are

encoded in its coupling parameters and the order parameter. The latter is a coarse-grained

quantity that features only universal properties of the system (e.g. the dimensionality

of the underlying space and order parameter symmetries). This setting allows to control

the thermodynamic phases of a system and to describe continuous phase transitions by

studying long-range correlations of the order parameter fluctuations over a length ⇠, the

correlation length, beyond which correlations decay exponentially and which diverges at

criticality.

Concretely, in a first step one determines the (uniform) field configurations which min-

imize the free energy functional. In a second step, one studies correlations of quadratic

fluctuations around this uniform background. This is the Gaussian approximation [58]. To

this aim, one linearizes the classical equations of motion using the fluctuations over the

uniform background and then solves for the correlation function, in turn allowing to com-

pute the correlation length. Finally, the domain of validity of this approximation scheme

can be studied by quantifying the strength of the fluctuations. As long as these remain

small and the interaction term can be treated perturbatively, mean-field theory around the

Gaussian theory can be self-consistently applied. This is the Ginzburg criterion [38]. In

particular, it allows to establish the well-known result that the critical dimension below

which mean-field theory ceases to provide an accurate description of the phase diagram

and of the (second-order) phase transition is 4. Right below that value, mean-field theory

still captures the basic structure of the phase diagram, but only qualitatively, and the

numerical results on the critical exponents are misleading in general [58].2

In this work, we adapt and apply the Landau-Ginzburg method to TGFTs that include

also local (from the TGFT point of view, not necessarily with respect to spacetime physics)

2
In mean-field theory, only fluctuations on the scale ⇠ are considered important in the vicinity of the

phase transition. In order to account for the correct quantitative critical behavior, fluctuations on all scales

have to be considered at the phase transition, and thus one has to resort to the full renormalization group

machinery [59].

– 3 –

for continuous phase transitions:


: correlations decay polynomially


: correlations decay exponentially
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scales, even if the discrete geometric degrees of freedom are encoded in a compact group

domain. However, it is important to verify this expectation by a careful scrutiny of the

phase properties of such TGFT models with mixed local/non-local degrees of freedom. This

is the main objective of this work. We aim to do so by applying Landau-Ginzburg mean-

field theory which is su�cient to point to the formation of a condensate phase. We focus on

simplified TGFT models, here, as a first step toward the analysis of more realistic models,

of direct relevance in particular for the GFT condensate cosmology program [40–42].

To set the stage, let us briefly summarize the Landau-Ginzburg mean-field method

applied to local scalar field theory [57, 58], which played a pivotal role for the Wilsonian

renormalization group analysis of systems experiencing a continuous transition between a

broken and an unbroken phase of a global symmetry [59]. One starts with the free energy

functional of the system, written as an expansion in terms of (even) powers of a local field,

the order parameter, and its gradient. One then considers a truncation thereof, which is

assumed to be valid from the mesoscale to the macroscale, usually corresponding in terms

of form to the (Euclideanized) classical action. Crucially, details about the microphysics are

encoded in its coupling parameters and the order parameter. The latter is a coarse-grained

quantity that features only universal properties of the system (e.g. the dimensionality

of the underlying space and order parameter symmetries). This setting allows to control

the thermodynamic phases of a system and to describe continuous phase transitions by

studying long-range correlations of the order parameter fluctuations over a length ⇠, the

correlation length, beyond which correlations decay exponentially and which diverges at

criticality.

Concretely, in a first step one determines the (uniform) field configurations which min-

imize the free energy functional. In a second step, one studies correlations of quadratic

fluctuations around this uniform background. This is the Gaussian approximation [58]. To

this aim, one linearizes the classical equations of motion using the fluctuations over the

uniform background and then solves for the correlation function, in turn allowing to com-

pute the correlation length. Finally, the domain of validity of this approximation scheme

can be studied by quantifying the strength of the fluctuations. As long as these remain

small and the interaction term can be treated perturbatively, mean-field theory around the

Gaussian theory can be self-consistently applied. This is the Ginzburg criterion [38]. In

particular, it allows to establish the well-known result that the critical dimension below

which mean-field theory ceases to provide an accurate description of the phase diagram

and of the (second-order) phase transition is 4. Right below that value, mean-field theory

still captures the basic structure of the phase diagram, but only qualitatively, and the

numerical results on the critical exponents are misleading in general [58].2

In this work, we adapt and apply the Landau-Ginzburg method to TGFTs that include

also local (from the TGFT point of view, not necessarily with respect to spacetime physics)

2
In mean-field theory, only fluctuations on the scale ⇠ are considered important in the vicinity of the

phase transition. In order to account for the correct quantitative critical behavior, fluctuations on all scales

have to be considered at the phase transition, and thus one has to resort to the full renormalization group

machinery [59].
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recap: Landau-Ginzburg analysis and Ginzburg criterion for phase transitions

• start from free energy (truncated in some way, usually to (euclidean) classical action)

(dynamical field is order parameter)

• compute fluctuations of order parameter (in Gaussian approximation over constant background)

• deduce critical dimension below which mean field theory (and above analysis) fails (fluctuations too large)

• validity of Gaussian approximation can be checked - Ginzburg criterion: 


fluctuations of order parameter smaller than order parameter itself (averaged over appropriate region)

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms

of derivatives acting on the exponential function. As a result, we finally obtain

⇠
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. (3.24)

In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]
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For the Ginzburg criterion, the averaging region is crucial. For applications to three-

dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose

⌦⇠ ⇠ ⇠
3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in
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with, typically:
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2
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(in isotropic case)

• deduce characteristic scale of correlations (correlation length):

scales, even if the discrete geometric degrees of freedom are encoded in a compact group

domain. However, it is important to verify this expectation by a careful scrutiny of the

phase properties of such TGFT models with mixed local/non-local degrees of freedom. This

is the main objective of this work. We aim to do so by applying Landau-Ginzburg mean-

field theory which is su�cient to point to the formation of a condensate phase. We focus on

simplified TGFT models, here, as a first step toward the analysis of more realistic models,

of direct relevance in particular for the GFT condensate cosmology program [40–42].

To set the stage, let us briefly summarize the Landau-Ginzburg mean-field method

applied to local scalar field theory [57, 58], which played a pivotal role for the Wilsonian

renormalization group analysis of systems experiencing a continuous transition between a

broken and an unbroken phase of a global symmetry [59]. One starts with the free energy

functional of the system, written as an expansion in terms of (even) powers of a local field,

the order parameter, and its gradient. One then considers a truncation thereof, which is

assumed to be valid from the mesoscale to the macroscale, usually corresponding in terms

of form to the (Euclideanized) classical action. Crucially, details about the microphysics are

encoded in its coupling parameters and the order parameter. The latter is a coarse-grained

quantity that features only universal properties of the system (e.g. the dimensionality

of the underlying space and order parameter symmetries). This setting allows to control

the thermodynamic phases of a system and to describe continuous phase transitions by

studying long-range correlations of the order parameter fluctuations over a length ⇠, the

correlation length, beyond which correlations decay exponentially and which diverges at

criticality.

Concretely, in a first step one determines the (uniform) field configurations which min-

imize the free energy functional. In a second step, one studies correlations of quadratic

fluctuations around this uniform background. This is the Gaussian approximation [58]. To

this aim, one linearizes the classical equations of motion using the fluctuations over the

uniform background and then solves for the correlation function, in turn allowing to com-

pute the correlation length. Finally, the domain of validity of this approximation scheme

can be studied by quantifying the strength of the fluctuations. As long as these remain

small and the interaction term can be treated perturbatively, mean-field theory around the

Gaussian theory can be self-consistently applied. This is the Ginzburg criterion [38]. In

particular, it allows to establish the well-known result that the critical dimension below

which mean-field theory ceases to provide an accurate description of the phase diagram

and of the (second-order) phase transition is 4. Right below that value, mean-field theory

still captures the basic structure of the phase diagram, but only qualitatively, and the

numerical results on the critical exponents are misleading in general [58].2

In this work, we adapt and apply the Landau-Ginzburg method to TGFTs that include

also local (from the TGFT point of view, not necessarily with respect to spacetime physics)

2
In mean-field theory, only fluctuations on the scale ⇠ are considered important in the vicinity of the

phase transition. In order to account for the correct quantitative critical behavior, fluctuations on all scales

have to be considered at the phase transition, and thus one has to resort to the full renormalization group

machinery [59].
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for continuous phase transitions:
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• fieldsFields � : Rdl ⇥G
r
! R or C therefore depend on dl arguments ��� = (�1, ...,�dl) each

in R and r arguments ggg = (g1, g2, ..., gr) each in a Lie group G.4 They are square-integrable

functions �,�0
2 L

2(Rdl ⇥G
r) with respect to the inner product

(�,�0) =

Z

Rdl

d���

Z

Gr
dggg�(���, ggg)�0(���, ggg) , (2.1)

defined in terms of the Haar measure, which we take to be unnormalized. In this Section,

we will restrict to compact Lie groups only, because, as we will see below, this allows

to carry on with the Landau-Ginzburg analysis with a homogeneous mean-field ansatz

without encountering unphysical divergences (we will take care of this issue, instead, in the

following sections). When G is compact, the group volume
Z

G
dg = aG (2.2)

is finite and may be seen to represent an IR regularization from the formal field-theoretic

point of view (i.e. no spacetime interpretation is assumed) [26, 27]. In this sense, taking a

large-volume limit aG ! 1 allows us to explore the non-compact limit of the model.5

For such fields, the “Fourier” transform in group space is the expansion in the matrix

coe�cients of unitary irreducible representations labelled by a multi-index jjj = (j1, ..., jr)

�(���, ggg) =
X

j1,...,jr

 
rY

c=1

djc

aG

!
trjjj

"
�(���, jjj)

rO

c=1

D
jc(gc)

#
, (2.3)

where D
jc(gc) are the representation matrices on djc-dimensional representation space.

Their coe�cients form a countable complete orthogonal basis of L2(G) according to the

Peter-Weyl theorem. Thus, also the field transform �(���, jjj) is matrix-valued with respect

to each representation jc and trjjj is the trace over all the representation spaces [68]. Finally,

standard Fourier transform on Rdl relates the reference frame representation of the field

�(���, jjj) to that on its conjugate ‘momentum’ space kkk, i.e.,

�(���, jjj) =

Z

Rdl

ddlk

(2⇡)dl
�(kkk, jjj)ei���·kkk, (2.4)

where ��� · kkk ⌘
Pdl

i=1 ki�i.6

4
Hereafter, we focus on real-valued fields noting that the main results in the remainder of this article

are easily transferred to complex-valued TGFT fields.
5
This can be compared with the use of the Wick rotation in ordinary QFTs on R ⇥ R3

together with

the imposition of periodic (or anti-periodic) boundary conditions (motivated by the assumption that field

configurations approach an asymptotic form at t ! ±1 and can thus be identified). Such theories are

thermal field theories on S1 ⇥ R3
, where the radius of the compactified dimension is proportional to the

inverse temperature �. Taking the zero-temperature limit, that is, by sending � ! 1, it is commonly

understood that the compactification of R to S1
is undone, so that one is led back to the standard QFT

formulation [66, 67]. In our context, the large-volume limit thus allows us to relate the theory on G = U(1)

to the one on G = R.
6
Notice that we are assuming a Euclidean signature for the frame coordinates. Although non-Euclidean

signatures may be important for cosmological applications of these models (see e.g. [53, 56]), using a

Euclidean signature is customary for applications of mean-field theory to statistical systems, and guarantees

that the uniform mean-field configuration, which we will employ below, indeed minimizes the action. Thus

we stick to this simplifying choice.
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• action:

The combinatorial non-locality of TGFT interactions is encoded in the way field ar-

guments on G are paired. That is, while the interaction of the frame coordinates ��� has

the usual local, i.e. point-like, form (with a single integration d���), the interaction of the

non-local group degrees of freedom at a vertex is a convolution encoded by a graph �,
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Y
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�(gai /g
b
j)

V�Y
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�(���, gggi) , (2.5)

where V� is the number of vertices of � and the product of Dirac distributions7 is over

its edges labelled (i, a; j, b) where i, j = 1, 2, ..., V� and a, b = 1, 2, ..., r. For example, for

the melonic graph � = (labelling the vertices i, j = 1, 2, 3, 4 and the group arguments

a, b = 1, 2, 3) the interaction term in the action would be

Z

Rdl

d���Tr (�) =
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G⇥3·4
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j )�(g

3
i /g

3
j )

4Y
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�(���, gggi).

(2.6)

There are various ways to represent such an interaction vertex diagrammatically, for ex-

ample as a stranded vertex or directly using the vertex graph [69, 70],

⇠=

1

2

3

4
. (2.7)

Here, red vertices labelled i = 1, 2, 3, 4 represent the fields �(���, gggi) and the pairing of

green half edges corresponding to the single arguments gai into edges encodes their pairwise

convolution.8

The TGFT action on G
r with dl frame coordinates has thus the general form

S[�] = (�,K�) +
X

�

��

Z

Rdl

d���Tr�(�) , (2.8)

where the sum runs over a set of vertex graphs � which specify the theory together with a

particular kinetic term K. In the following, we will consider

K = �

dlX

i=1

↵i@
2
�i

+
rX

c=1

(�1)dg�c + µ , (2.9)

7
Note that, by choosing simple delta distribution kernels for the interaction, we are choosing a simple

class of TGFT models, simpler, for example, than the quantum geometric models encoding a richer geometry

at the discrete level.
8
As usual, in momentum space the point-like interaction with respect to ��� results in a convolution

�(
PV�

i=1 ki) (black vertex) of momenta ki (red half-edges). Anyhow, this vertex and adjacency to half

edges provides necessary information even for purely non-local interactions as it encodes which connected

components belong one multi-trace vertex, e.g. � = �1 t �2, since Tr�1t�2 = Tr�1 · Tr�2 factorizes but is

still one interaction vertex (see [70] for further details).
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Note that, by choosing simple delta distribution kernels for the interaction, we are choosing a simple

class of TGFT models, simpler, for example, than the quantum geometric models encoding a richer geometry

at the discrete level.
8
As usual, in momentum space the point-like interaction with respect to ��� results in a convolution

�(
PV�

i=1 ki) (black vertex) of momenta ki (red half-edges). Anyhow, this vertex and adjacency to half

edges provides necessary information even for purely non-local interactions as it encodes which connected

components belong one multi-trace vertex, e.g. � = �1 t �2, since Tr�1t�2 = Tr�1 · Tr�2 factorizes but is

still one interaction vertex (see [70] for further details).
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9
Notice that if G was non-compact the factor a

r(V��2)/2
G would be diverging. This factor appears because

the homogenous mean-field ansatz together with the non-local nature of interactions which produces exactly

r(V� � 2)/2 empty integrals.
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defined in terms of the Haar measure, which we take to be unnormalized. In this Section,

we will restrict to compact Lie groups only, because, as we will see below, this allows

to carry on with the Landau-Ginzburg analysis with a homogeneous mean-field ansatz

without encountering unphysical divergences (we will take care of this issue, instead, in the

following sections). When G is compact, the group volume
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is finite and may be seen to represent an IR regularization from the formal field-theoretic
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where D
jc(gc) are the representation matrices on djc-dimensional representation space.

Their coe�cients form a countable complete orthogonal basis of L2(G) according to the

Peter-Weyl theorem. Thus, also the field transform �(���, jjj) is matrix-valued with respect
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standard Fourier transform on Rdl relates the reference frame representation of the field
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Hereafter, we focus on real-valued fields noting that the main results in the remainder of this article

are easily transferred to complex-valued TGFT fields.
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This can be compared with the use of the Wick rotation in ordinary QFTs on R ⇥ R3

together with

the imposition of periodic (or anti-periodic) boundary conditions (motivated by the assumption that field

configurations approach an asymptotic form at t ! ±1 and can thus be identified). Such theories are

thermal field theories on S1 ⇥ R3
, where the radius of the compactified dimension is proportional to the

inverse temperature �. Taking the zero-temperature limit, that is, by sending � ! 1, it is commonly

understood that the compactification of R to S1
is undone, so that one is led back to the standard QFT

formulation [66, 67]. In our context, the large-volume limit thus allows us to relate the theory on G = U(1)

to the one on G = R.
6
Notice that we are assuming a Euclidean signature for the frame coordinates. Although non-Euclidean

signatures may be important for cosmological applications of these models (see e.g. [53, 56]), using a

Euclidean signature is customary for applications of mean-field theory to statistical systems, and guarantees

that the uniform mean-field configuration, which we will employ below, indeed minimizes the action. Thus

we stick to this simplifying choice.
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jc(gc) are the representation matrices on djc-dimensional representation space.
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4
Hereafter, we focus on real-valued fields noting that the main results in the remainder of this article

are easily transferred to complex-valued TGFT fields.
5
This can be compared with the use of the Wick rotation in ordinary QFTs on R ⇥ R3

together with

the imposition of periodic (or anti-periodic) boundary conditions (motivated by the assumption that field

configurations approach an asymptotic form at t ! ±1 and can thus be identified). Such theories are

thermal field theories on S1 ⇥ R3
, where the radius of the compactified dimension is proportional to the

inverse temperature �. Taking the zero-temperature limit, that is, by sending � ! 1, it is commonly

understood that the compactification of R to S1
is undone, so that one is led back to the standard QFT

formulation [66, 67]. In our context, the large-volume limit thus allows us to relate the theory on G = U(1)

to the one on G = R.
6
Notice that we are assuming a Euclidean signature for the frame coordinates. Although non-Euclidean

signatures may be important for cosmological applications of these models (see e.g. [53, 56]), using a

Euclidean signature is customary for applications of mean-field theory to statistical systems, and guarantees

that the uniform mean-field configuration, which we will employ below, indeed minimizes the action. Thus

we stick to this simplifying choice.
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where �c is the Laplace operator on the dg-dimensional Lie group G and ↵i is assumed

to be a positive function of the group variables, reflecting the non-trivial details of the

coupling of the scalar fields to the geometry [53, 54]. Notice that in Eq. (2.9) the coupling

is encoded in the ↵i, like refractive indices for light propagation in anisotropic media. We

will assume from now on that di↵erent frame coordinate directions are weighted equally,

meaning ↵i ⌘ ↵ for each i = 1, . . . , dl. Finally, we note that Eq. (2.8) is endowed with a

global Z2-symmetry. Landau-Ginzburg theory seeks to characterize a continuous transition

between a broken (i.e. condensate) and unbroken phase of this symmetry.

2.2 Gaussian approximation

For the Ginzburg criterion one has to determine the 2-point correlation function in the

Gaussian approximation. To this end, one considers correlations of fluctuations �� over a

constant background �0, also referred to as the mean order parameter.

To start with, one derives the equations of motion from the general action Eq. (2.8)

giving
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where the last sum runs over all vertices in the graph’s vertex set V� of traces encoded

by the graph � \ v which is obtained by deleting the vertex v (together with its adjacent

stranded half edges). Thus, in this convolution there is one field less. Take again the

interaction � = , Eq. (2.6), as an example. Its four vertices are completely symmetric,

such that
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Projecting to the constant field �(���, ggg) = �0 leaves as many empty group integrals and

thus volume factors aG, as there are internal edges in � \ v. The number E�\v of these

edges relates to the number of vertices as 2E�\v = r(V�\v � 1) = r(V� � 2) such that the

equation for �0 is
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�0 = 0 . (2.12)

The solution �0 = 0 factors trivially. The remaining part is in general an algebraic equation

of the order of two less than the highest-order interaction9. In particular, for a sum of

interactions each given by vertex graph � with the same number of vertices V� = V the

9
Notice that if G was non-compact the factor a

r(V��2)/2
G would be diverging. This factor appears because

the homogenous mean-field ansatz together with the non-local nature of interactions which produces exactly

r(V� � 2)/2 empty integrals.
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• action:

The combinatorial non-locality of TGFT interactions is encoded in the way field ar-

guments on G are paired. That is, while the interaction of the frame coordinates ��� has

the usual local, i.e. point-like, form (with a single integration d���), the interaction of the

non-local group degrees of freedom at a vertex is a convolution encoded by a graph �,
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Rdl

d���Tr�(�) :=

Z

Rdl
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Z

G⇥r·V�

V�Y

i=1

dgggi
Y

(i,a;j,b)

�(gai /g
b
j)

V�Y

i=1

�(���, gggi) , (2.5)

where V� is the number of vertices of � and the product of Dirac distributions7 is over

its edges labelled (i, a; j, b) where i, j = 1, 2, ..., V� and a, b = 1, 2, ..., r. For example, for

the melonic graph � = (labelling the vertices i, j = 1, 2, 3, 4 and the group arguments

a, b = 1, 2, 3) the interaction term in the action would be

Z

Rdl

d���Tr (�) =

Z

Rdl

d���

Z

G⇥3·4

4Y

i=1

dgggi
Y

(ij)=
(14),(23)

�(g1i /g
1
j )

Y

(ij)=
(12),(34)

�(g2i /g
2
j )�(g

3
i /g

3
j )

4Y

i=1

�(���, gggi).

(2.6)

There are various ways to represent such an interaction vertex diagrammatically, for ex-

ample as a stranded vertex or directly using the vertex graph [69, 70],

⇠=

1

2

3

4
. (2.7)

Here, red vertices labelled i = 1, 2, 3, 4 represent the fields �(���, gggi) and the pairing of

green half edges corresponding to the single arguments gai into edges encodes their pairwise

convolution.8

The TGFT action on G
r with dl frame coordinates has thus the general form

S[�] = (�,K�) +
X

�

��

Z

Rdl

d���Tr�(�) , (2.8)

where the sum runs over a set of vertex graphs � which specify the theory together with a

particular kinetic term K. In the following, we will consider

K = �

dlX

i=1

↵i@
2
�i

+
rX

c=1

(�1)dg�c + µ , (2.9)

7
Note that, by choosing simple delta distribution kernels for the interaction, we are choosing a simple

class of TGFT models, simpler, for example, than the quantum geometric models encoding a richer geometry

at the discrete level.
8
As usual, in momentum space the point-like interaction with respect to ��� results in a convolution

�(
PV�

i=1 ki) (black vertex) of momenta ki (red half-edges). Anyhow, this vertex and adjacency to half

edges provides necessary information even for purely non-local interactions as it encodes which connected

components belong one multi-trace vertex, e.g. � = �1 t �2, since Tr�1t�2 = Tr�1 · Tr�2 factorizes but is

still one interaction vertex (see [70] for further details).
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function of group/representation variables assume:

where �c is the Laplace operator on the dg-dimensional Lie group G and ↵i is assumed

to be a positive function of the group variables, reflecting the non-trivial details of the

coupling of the scalar fields to the geometry [53, 54]. Notice that in Eq. (2.9) the coupling

is encoded in the ↵i, like refractive indices for light propagation in anisotropic media. We

will assume from now on that di↵erent frame coordinate directions are weighted equally,

meaning ↵i ⌘ ↵ for each i = 1, . . . , dl. Finally, we note that Eq. (2.8) is endowed with a

global Z2-symmetry. Landau-Ginzburg theory seeks to characterize a continuous transition

between a broken (i.e. condensate) and unbroken phase of this symmetry.

2.2 Gaussian approximation

For the Ginzburg criterion one has to determine the 2-point correlation function in the

Gaussian approximation. To this end, one considers correlations of fluctuations �� over a

constant background �0, also referred to as the mean order parameter.

To start with, one derives the equations of motion from the general action Eq. (2.8)

giving

K�+
X

�

��

X

v2V�

Tr�\v(�) = 0 , (2.10)

where the last sum runs over all vertices in the graph’s vertex set V� of traces encoded

by the graph � \ v which is obtained by deleting the vertex v (together with its adjacent

stranded half edges). Thus, in this convolution there is one field less. Take again the

interaction � = , Eq. (2.6), as an example. Its four vertices are completely symmetric,

such that

�

X

v2V�

Tr�\v(�) = 4

�(���, ggg1)

�(���, ggg2)

�(���, ggg3)

= 4�
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3)�(g
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2)�(g
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�(���, gggi) .

(2.11)

Projecting to the constant field �(���, ggg) = �0 leaves as many empty group integrals and

thus volume factors aG, as there are internal edges in � \ v. The number E�\v of these

edges relates to the number of vertices as 2E�\v = r(V�\v � 1) = r(V� � 2) such that the

equation for �0 is

µ�0 +
X

�

��V�a
r
V��2

2
G �

V��1
0 =

 
µ+

X

�

��V�a
r
V��2

2
G �

V��2
0

!
�0 = 0 . (2.12)

The solution �0 = 0 factors trivially. The remaining part is in general an algebraic equation

of the order of two less than the highest-order interaction9. In particular, for a sum of

interactions each given by vertex graph � with the same number of vertices V� = V the

9
Notice that if G was non-compact the factor a

r(V��2)/2
G would be diverging. This factor appears because

the homogenous mean-field ansatz together with the non-local nature of interactions which produces exactly

r(V� � 2)/2 empty integrals.
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• consider eqns of motion:
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variation removes one field (corresp. to one vertex) for any interaction vertex (corresp. to one graph)
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• consider eqns of motion:
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i-th root of unity

• for sum of interactions with same number of vertices:

solutions simply are the i = 1, 2, ..., V� � 2 roots

a

r
2
G�0 = ⇣i

 
�

µ

V
P

� ��

! 1
V �2

, (2.13)

where ⇣i is the i’th root of unity. Note that the presence of the volume factor in front of �0

is completely natural since the relevant argument of the interaction potential in the full

renormalization group flow is [35, 36]
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For a sum over quartic interactions, V = 4, this solution is simply
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The standard Landau-Ginzburg analysis associates the solutions

�0 = 0 to µ > 0 and a
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to µ < 0 . (2.16)

For the analysis of phase transitions one is interested in the “broken” phase µ < 0. This is

the phase for which the global Z2-symmetry is broken and the mean-field order parameter

�0 is non-vanishing, corresponding to a non-zero local minimum of the interaction potential.

In the so-called Gaussian (or quasi-Gaussian [58]) approximation one considers small
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of the order of two less than the highest-order interaction9. In particular, for a sum of
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• for order 4 interactions, Landau-Ginzburg analysis concern the transition between:
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where ⇣i is the i’th root of unity. Note that the presence of the volume factor in front of �0

is completely natural since the relevant argument of the interaction potential in the full

renormalization group flow is [35, 36]
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For a sum over quartic interactions, V = 4, this solution is simply
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The standard Landau-Ginzburg analysis associates the solutions

�0 = 0 to µ > 0 and a
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For the analysis of phase transitions one is interested in the “broken” phase µ < 0. This is

the phase for which the global Z2-symmetry is broken and the mean-field order parameter

�0 is non-vanishing, corresponding to a non-zero local minimum of the interaction potential.

In the so-called Gaussian (or quasi-Gaussian [58]) approximation one considers small

fluctuations �� around the uniform background �0, that is
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Gaussian approximation and mean field analysis

• consider eqns of motion:

where �c is the Laplace operator on the dg-dimensional Lie group G and ↵i is assumed

to be a positive function of the group variables, reflecting the non-trivial details of the

coupling of the scalar fields to the geometry [53, 54]. Notice that in Eq. (2.9) the coupling

is encoded in the ↵i, like refractive indices for light propagation in anisotropic media. We

will assume from now on that di↵erent frame coordinate directions are weighted equally,

meaning ↵i ⌘ ↵ for each i = 1, . . . , dl. Finally, we note that Eq. (2.8) is endowed with a

global Z2-symmetry. Landau-Ginzburg theory seeks to characterize a continuous transition

between a broken (i.e. condensate) and unbroken phase of this symmetry.

2.2 Gaussian approximation

For the Ginzburg criterion one has to determine the 2-point correlation function in the

Gaussian approximation. To this end, one considers correlations of fluctuations �� over a

constant background �0, also referred to as the mean order parameter.

To start with, one derives the equations of motion from the general action Eq. (2.8)

giving
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v2V�

Tr�\v(�) = 0 , (2.10)

where the last sum runs over all vertices in the graph’s vertex set V� of traces encoded

by the graph � \ v which is obtained by deleting the vertex v (together with its adjacent

stranded half edges). Thus, in this convolution there is one field less. Take again the

interaction � = , Eq. (2.6), as an example. Its four vertices are completely symmetric,

such that
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Projecting to the constant field �(���, ggg) = �0 leaves as many empty group integrals and

thus volume factors aG, as there are internal edges in � \ v. The number E�\v of these

edges relates to the number of vertices as 2E�\v = r(V�\v � 1) = r(V� � 2) such that the

equation for �0 is
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The solution �0 = 0 factors trivially. The remaining part is in general an algebraic equation

of the order of two less than the highest-order interaction9. In particular, for a sum of

interactions each given by vertex graph � with the same number of vertices V� = V the

9
Notice that if G was non-compact the factor a

r(V��2)/2
G would be diverging. This factor appears because

the homogenous mean-field ansatz together with the non-local nature of interactions which produces exactly

r(V� � 2)/2 empty integrals.
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variation removes one field (corresp. to one vertex) for any interaction vertex (corresp. to one graph)

• project onto constant field solutions
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• for order 4 interactions, Landau-Ginzburg analysis concern the transition between:

solutions simply are the i = 1, 2, ..., V� � 2 roots
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, (2.13)

where ⇣i is the i’th root of unity. Note that the presence of the volume factor in front of �0

is completely natural since the relevant argument of the interaction potential in the full

renormalization group flow is [35, 36]
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0 . (2.14)

For a sum over quartic interactions, V = 4, this solution is simply
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. (2.15)

The standard Landau-Ginzburg analysis associates the solutions

�0 = 0 to µ > 0 and a
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4
P

� ��
to µ < 0 . (2.16)

For the analysis of phase transitions one is interested in the “broken” phase µ < 0. This is

the phase for which the global Z2-symmetry is broken and the mean-field order parameter

�0 is non-vanishing, corresponding to a non-zero local minimum of the interaction potential.

In the so-called Gaussian (or quasi-Gaussian [58]) approximation one considers small

fluctuations �� around the uniform background �0, that is

�(���, ggg) = �0 + ��(���, ggg) . (2.17)

With this ansatz, the first order (in ��) equations of motion are
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where the second argument ��v0 in the trace now means that the field �� is inserted at

the vertex v
0
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i-th root of unity

• for sum of interactions with same number of vertices:

solutions simply are the i = 1, 2, ..., V� � 2 roots

a

r
2
G�0 = ⇣i

 
�

µ

V
P

� ��

! 1
V �2

, (2.13)

where ⇣i is the i’th root of unity. Note that the presence of the volume factor in front of �0

is completely natural since the relevant argument of the interaction potential in the full

renormalization group flow is [35, 36]

⇢ :=

Z

Gr
�2
0 = a

r
G�

2
0 . (2.14)

For a sum over quartic interactions, V = 4, this solution is simply

⇢ = �
µ

4
P

� ��
. (2.15)

The standard Landau-Ginzburg analysis associates the solutions

�0 = 0 to µ > 0 and a

r
2
G�0 = ±

s
�

µ

4
P

� ��
to µ < 0 . (2.16)

For the analysis of phase transitions one is interested in the “broken” phase µ < 0. This is

the phase for which the global Z2-symmetry is broken and the mean-field order parameter

�0 is non-vanishing, corresponding to a non-zero local minimum of the interaction potential.

In the so-called Gaussian (or quasi-Gaussian [58]) approximation one considers small

fluctuations �� around the uniform background �0, that is

�(���, ggg) = �0 + ��(���, ggg) . (2.17)

With this ansatz, the first order (in ��) equations of motion are

K��+
X

�

��

X

v,v02V�

Tr�\v(�0, ��v0) = 0 , (2.18)

where the second argument ��v0 in the trace now means that the field �� is inserted at

the vertex v
0
2 � \ v (and �0 at all other vertices). In the example of Eq. (2.6), there is

now a non-trivial sum over the remaining three vertices v0,

1

4
�

X

v,v02V�

Tr�\v(�0, ��v0) =

��(���, ggg1)

�0

�0

+

�0

��(���, ggg2)

�0

+

�0

�0

��(���, ggg3)

(2.19)

= � �2
0

✓
aG

Z

G2
dg21dg

3
1 ��(���, ggg1) +

Z

G3
dg12dg

2
2dg

3
1 ��(���, ggg2) + a

2
G

Z

G
dg13 ��(���, ggg3)

◆
.

– 8 –

or zero

• Gaussian approximation: consider fluctuations around uniform background
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Gaussian approximation and mean field analysis
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• project onto constant field solutions
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coupling of the scalar fields to the geometry [53, 54]. Notice that in Eq. (2.9) the coupling
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• for order 4 interactions, Landau-Ginzburg analysis concern the transition between:

solutions simply are the i = 1, 2, ..., V� � 2 roots

a

r
2
G�0 = ⇣i

 
�

µ

V
P

� ��

! 1
V �2

, (2.13)

where ⇣i is the i’th root of unity. Note that the presence of the volume factor in front of �0

is completely natural since the relevant argument of the interaction potential in the full

renormalization group flow is [35, 36]

⇢ :=

Z

Gr
�2
0 = a

r
G�

2
0 . (2.14)

For a sum over quartic interactions, V = 4, this solution is simply

⇢ = �
µ

4
P

� ��
. (2.15)

The standard Landau-Ginzburg analysis associates the solutions

�0 = 0 to µ > 0 and a

r
2
G�0 = ±

s
�

µ

4
P

� ��
to µ < 0 . (2.16)

For the analysis of phase transitions one is interested in the “broken” phase µ < 0. This is

the phase for which the global Z2-symmetry is broken and the mean-field order parameter

�0 is non-vanishing, corresponding to a non-zero local minimum of the interaction potential.

In the so-called Gaussian (or quasi-Gaussian [58]) approximation one considers small

fluctuations �� around the uniform background �0, that is

�(���, ggg) = �0 + ��(���, ggg) . (2.17)

With this ansatz, the first order (in ��) equations of motion are
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v,v02V�

Tr�\v(�0, ��v0) = 0 , (2.18)

where the second argument ��v0 in the trace now means that the field �� is inserted at

the vertex v
0
2 � \ v (and �0 at all other vertices). In the example of Eq. (2.6), there is

now a non-trivial sum over the remaining three vertices v0,

1
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◆
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i-th root of unity
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or zero
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• get 1st order eqn for fluctuation:
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the quadratic form in 2nd term is Hessian of interaction term of action (similar to FRG eqn)

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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Gaussian approximation and mean field analysis

• for sum of interactions of same order:

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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c
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Q
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!
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✓Q
c
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◆

simplicial X̂ (jjj) = 5
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i=0

Q
k 6=i

�j(ik),0 (edges labeled by adjacent vertices i, k)

Table 1. Examples of non-local interaction vertex graphs for r = 4 group arguments and the
resulting operator X̂� in representation space.

where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
��

V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
c
/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
0
, jjj

0) = �µ�(kkk � kkk
0)
X

�

�̃�X̂�(jjj)
rY

c=1

�jc,j0cIjc , (2.28)

where Ij is the unit matrix in the j representation space and

X̂�(jjj) =
rX

p=0

X

(c0,...,cp)

X
(�)
c0...cp

cpY

c=c1

�jc,0 (2.29)

with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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• for sum of interactions of same order:

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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Table 1. Examples of non-local interaction vertex graphs for r = 4 group arguments and the
resulting operator X̂� in representation space.

where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
��

V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
c
/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
0
, jjj

0) = �µ�(kkk � kkk
0)
X

�

�̃�X̂�(jjj)
rY

c=1

�jc,j0cIjc , (2.28)

where Ij is the unit matrix in the j representation space and

X̂�(jjj) =
rX

p=0

X

(c0,...,cp)

X
(�)
c0...cp

cpY

c=c1

�jc,0 (2.29)

with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
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V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
c
/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
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where Ij is the unit matrix in the j representation space and

X̂�(jjj) =
rX

p=0

X

(c0,...,cp)

X
(�)
c0...cp

cpY

c=c1

�jc,0 (2.29)

with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
��

V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
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/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has
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X
(�)
c0...cp

cpY
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�jc,0 (2.29)

with combinatorial factors X
(�)
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graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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• for sum of interactions of same order:

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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Table 1. Examples of non-local interaction vertex graphs for r = 4 group arguments and the
resulting operator X̂� in representation space.

where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
��

V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
c
/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
0
, jjj

0) = �µ�(kkk � kkk
0)
X

�

�̃�X̂�(jjj)
rY
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�jc,j0cIjc , (2.28)

where Ij is the unit matrix in the j representation space and

X̂�(jjj) =
rX

p=0

X

(c0,...,cp)

X
(�)
c0...cp

cpY

c=c1

�jc,0 (2.29)

with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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Gaussian approximation and mean field analysis

• for sum of interactions of same order:

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)
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Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
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c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
0
, jjj

0) = �µ�(kkk � kkk
0)
X

�

�̃�X̂�(jjj)
rY

c=1

�jc,j0cIjc , (2.28)
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with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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• then the 2-point correlation function can be computed as:

Since the kinetic operator in representation space is also diagonal,

K̂(kkk, jjj;kkk0, jjj0) =

 
↵(jjj)

dlX

i=1

k
2
i +

1

a2G

rX

c=1

Casjc + µ

!
�(kkk + kkk

0)
rY

c=1

�jc,j0cIjc , (2.30)

one may easily obtain the 2-point correlation function in the Gaussian approximation as

Ĉ(kkk, jjj) = (K̂ + F̂ [�0])
�1(kkk, jjj) =

Ijc
↵(jjj)

P
a k

2
a +

1
a2G

P
cCasjc + µ� µ

P
� �̃�X̂�(jjj)

. (2.31)

It is the specific property of non-local interactions that the e↵ective mass

bjjj := µ

✓
1�

X

�

�̃�X̂�(jjj)

◆
(2.32)

is not constant, in contrast to usual local field theories, but depends on the combinatorics

of the non-local interactions, see also Tab. 1.

Considering the closure constraint. In the quantum geometric GFT models one often

imposes a specific symmetry onto the fields, the so-called closure or gauge constraint, that

is

�(���, g1, ..., gr) = �(���, g1h, ..., grh) 8h 2 G (2.33)

which is typically imposed via group averaging. It corresponds to a physical enrichment of

the models in that it is part of a more complete geometric characterization of the TGFT

quanta. In particular, it implies the closure of the flux variables which are dual to the

group elements in Eq. (2.33), a necessary condition for a geometric r � 1-simplex. It can

be motivated also in relations to loop gravity [4, 5], see also [72, 73], and it implies as

well that the Feynman amplitudes of the TGFT model takes the form of a lattice gauge

theory partition function, on the lattice dual to the Feynman diagram [30]. The “Fourier”

transform in group space Eq. (2.3) of the field is thus modified to

�(���, ggg) =
X

j1,...,jr

 
rY

c=1

djc

aG

!
trjjj

"
�(���, jjj)

Z
dh

rO

c=1

D
jc(gch)

#
(2.34)

and the 2-point function in representation space simply yields

Ĉ(kkk, jjj) =

R
dh
Nr

c=1D
jc(h)

↵(jjj)
P

i k
2
i +

1
a2G

P
cCasjc + bjjj

. (2.35)

Since the ensuing computations go analogously through for configurations subject to the

closure constraint, we carry on with the discussion for the general field configuration, and

then comment towards the end on how the value for the critical dimension changes when

this condition is imposed. In foresight, the naive expectation that the closure reduces the

rank by one, in turn leading to one additional zero-mode, will prove to be correct.
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with non-local interactions producing an effective mass:
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It is the specific property of non-local interactions that the e↵ective mass

bjjj := µ

✓
1�

X

�

�̃�X̂�(jjj)

◆
(2.32)

is not constant, in contrast to usual local field theories, but depends on the combinatorics

of the non-local interactions, see also Tab. 1.

Considering the closure constraint. In the quantum geometric GFT models one often

imposes a specific symmetry onto the fields, the so-called closure or gauge constraint, that

is

�(���, g1, ..., gr) = �(���, g1h, ..., grh) 8h 2 G (2.33)

which is typically imposed via group averaging. It corresponds to a physical enrichment of

the models in that it is part of a more complete geometric characterization of the TGFT

quanta. In particular, it implies the closure of the flux variables which are dual to the

group elements in Eq. (2.33), a necessary condition for a geometric r � 1-simplex. It can

be motivated also in relations to loop gravity [4, 5], see also [72, 73], and it implies as

well that the Feynman amplitudes of the TGFT model takes the form of a lattice gauge

theory partition function, on the lattice dual to the Feynman diagram [30]. The “Fourier”

transform in group space Eq. (2.3) of the field is thus modified to

�(���, ggg) =
X

j1,...,jr

 
rY

c=1

djc
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!
trjjj

"
�(���, jjj)

Z
dh

rO

c=1

D
jc(gch)

#
(2.34)

and the 2-point function in representation space simply yields

Ĉ(kkk, jjj) =

R
dh
Nr

c=1D
jc(h)

↵(jjj)
P

i k
2
i +

1
a2G

P
cCasjc + bjjj

. (2.35)

Since the ensuing computations go analogously through for configurations subject to the

closure constraint, we carry on with the discussion for the general field configuration, and

then comment towards the end on how the value for the critical dimension changes when

this condition is imposed. In foresight, the naive expectation that the closure reduces the

rank by one, in turn leading to one additional zero-mode, will prove to be correct.
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Gaussian approximation and mean field analysis

• for sum of interactions of same order:

Relabelling the free group arguments simply as (g11, g
2
3, g

3
3) = (g1, g2, g3) =: ggg and writing

the expression as a quadratic form acting on a single �� in terms of a single convolution

kernel, we can write

X

v,v02V
Tr \v(�0, ��v0) = 4�2

0

Z

G3
dhhh

⇢
aG�(g

1
/h

1)+1+aG�(g
2
/h

2)·aG�(g
3
/h

3)

�
��(���,hhh) .

(2.20)

This quadratic form is simply the Hessian of the interaction part of the action, occurring

also in the Wetterich-Morris functional renormalization group equation [37–39], with the

only di↵erence that here it is simply taken from the action S while there it is defined

from the so-called e↵ective average action �k. Still, both are of the same form and di↵er

only in that here the couplings �� are fixed, while there they are dynamically depending

on the renormalization group scale k. In particular, the example Eq. (2.20) has already

been calculated in [35, 36] as it is the particular quartic case of a so-called cyclic-melonic

interaction (a closed chain of open melons). The structure is much more general though.

Thus, the general equations of motions for the field perturbations �� in the Gaussian

approximation Eq. (2.18) are

(K + F [�0])��(���, ggg) = 0 . (2.21)

Therein, the Hessian of the interaction part has the general form

F [�](���, ggg;���0
,hhh) :=

�Sia[�]

��(���, ggg)��(���0,hhh)
= �(���� ���

0)
X

�

��

X

v,v02V�

Tr�\v\v0(�) (2.22)

and is evaluated at �(���, ggg) = �0 in the perturbed equation of motion (2.21). As a conse-

quence, there is a Dirac delta distribution in the trace Tr�\v\v0(�0) for each edge connecting

the vertices v and v
0. In general, this leads to terms with various combinations of Dirac

distributions as in the example

F [�0](���, ggg;���
0
,hhh) = 4� �2

0�(�������
0)

⇢
1+ aG�(g

1
/h

1) + aG�(g
2
/h

2) · aG�(g
3
/h

3)

�
. (2.23)

In more symmetric cases, only particular products of delta distributions occur. For exam-

ple, for the simplicial interaction given by the complete graph with r vertices � = Kr one

has

F [�0](���, ggg;���
0
,hhh) = r�Kr�

r�2
0 �(���� ���

0)
rX

c=1

aG�(g
c
/h

c) , (2.24)

as investigated for r = 3 (the Boulatov model [71]) in [33]. In general, for a sum over

interactions of the same order V , that is each with vertex graph � with V� = V , one can

insert the non-vanishing solution Eq. (2.13) to find

F [�0](���, ggg;���
0
,hhh) = a

r(V
2 �2)

G �V�2
0 �(���� ���

0)
X

�

��X�(ggg,hhh) = �µ �(���� ���
0)

1

arG

X

�

�̃�X�(ggg,hhh),

(2.25)

– 9 –

double-trace melon X̂ F (jjj) = 4

✓
2

4Q
c=1

�jc,0 + 1

◆

quartic melonic
c

X̂

c

(jjj) = 4

 
Q
c
�jc,0 +

Q
b 6=c

�jb,0 + �jc,0

!

quartic necklace X̂ (jjj) = 4

✓Q
c
�jc,0 + �j1,0�j2,0 + �j3,0�j4,0

◆

simplicial X̂ (jjj) = 5
4P

i=0

Q
k 6=i

�j(ik),0 (edges labeled by adjacent vertices i, k)

Table 1. Examples of non-local interaction vertex graphs for r = 4 group arguments and the
resulting operator X̂� in representation space.

where X�(ggg,hhh) is a sum over products of Dirac distributions specific to the combinatorial

structure of � (see Tab. 1 for further examples) and

�̃� =
��

V
P

�0 ��0
. (2.26)

Note that a�r
G is simply the natural explicit volume factor for a quadratic form.

As a general result, non-locality leads to a quadratic (“Gaussian”) term K + F [�0] in

which not only the second derivative in the kinetic term K but also the remainder of the

interactions F [�0] are not diagonal in group space. To have a diagonal form, F [�0] would

need to be proportional to
Q

c �(g
c
/h

c). This is already known from the FRG analysis [35,

36]. The standard way to diagonalize K is to transform to momentum (representation)

space. For the Dirac distribution, this transformation gives simply one, that is

�(g) =
X

j

dj

aG
trjD

j(g) . (2.27)

Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has

F̂ [�0](kkk, jjj;kkk
0
, jjj

0) = �µ�(kkk � kkk
0)
X

�

�̃�X̂�(jjj)
rY

c=1

�jc,j0cIjc , (2.28)

where Ij is the unit matrix in the j representation space and

X̂�(jjj) =
rX

p=0

X

(c0,...,cp)

X
(�)
c0...cp

cpY

c=c1

�jc,0 (2.29)

with combinatorial factors X
(�)
c0...cp specific to the combinatorial structure of each vertex

graph � (see Tab. 1). A contribution X
(�)
c0...cr 6= 0 occurs for any interaction except for

simplicial ones, that is those given by a complete graph � = Kr.
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Thus, each term with a Dirac delta distribution for p of the r group arguments gives r� p

zero-modes in representation space.

In this way one obtains the representation-space correlation function in the Gaussian

approximation. For the sum over interactions of the same order V , Eq. (2.25), one has
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(c0,...,cp)
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• then the 2-point correlation function can be computed as:

Since the kinetic operator in representation space is also diagonal,

K̂(kkk, jjj;kkk0, jjj0) =

 
↵(jjj)

dlX

i=1

k
2
i +

1

a2G

rX

c=1

Casjc + µ

!
�(kkk + kkk

0)
rY

c=1

�jc,j0cIjc , (2.30)

one may easily obtain the 2-point correlation function in the Gaussian approximation as

Ĉ(kkk, jjj) = (K̂ + F̂ [�0])
�1(kkk, jjj) =

Ijc
↵(jjj)

P
a k

2
a +

1
a2G

P
cCasjc + µ� µ

P
� �̃�X̂�(jjj)

. (2.31)

It is the specific property of non-local interactions that the e↵ective mass

bjjj := µ

✓
1�

X

�

�̃�X̂�(jjj)

◆
(2.32)

is not constant, in contrast to usual local field theories, but depends on the combinatorics

of the non-local interactions, see also Tab. 1.

Considering the closure constraint. In the quantum geometric GFT models one often

imposes a specific symmetry onto the fields, the so-called closure or gauge constraint, that

is

�(���, g1, ..., gr) = �(���, g1h, ..., grh) 8h 2 G (2.33)

which is typically imposed via group averaging. It corresponds to a physical enrichment of

the models in that it is part of a more complete geometric characterization of the TGFT

quanta. In particular, it implies the closure of the flux variables which are dual to the

group elements in Eq. (2.33), a necessary condition for a geometric r � 1-simplex. It can

be motivated also in relations to loop gravity [4, 5], see also [72, 73], and it implies as

well that the Feynman amplitudes of the TGFT model takes the form of a lattice gauge

theory partition function, on the lattice dual to the Feynman diagram [30]. The “Fourier”

transform in group space Eq. (2.3) of the field is thus modified to

�(���, ggg) =
X

j1,...,jr

 
rY

c=1

djc

aG

!
trjjj

"
�(���, jjj)

Z
dh

rO

c=1

D
jc(gch)

#
(2.34)

and the 2-point function in representation space simply yields

Ĉ(kkk, jjj) =

R
dh
Nr

c=1D
jc(h)

↵(jjj)
P

i k
2
i +

1
a2G

P
cCasjc + bjjj

. (2.35)

Since the ensuing computations go analogously through for configurations subject to the

closure constraint, we carry on with the discussion for the general field configuration, and

then comment towards the end on how the value for the critical dimension changes when

this condition is imposed. In foresight, the naive expectation that the closure reduces the

rank by one, in turn leading to one additional zero-mode, will prove to be correct.
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with non-local interactions producing an effective mass:
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✓
1�
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◆
(2.32)

is not constant, in contrast to usual local field theories, but depends on the combinatorics

of the non-local interactions, see also Tab. 1.
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Since the ensuing computations go analogously through for configurations subject to the

closure constraint, we carry on with the discussion for the general field configuration, and

then comment towards the end on how the value for the critical dimension changes when

this condition is imposed. In foresight, the naive expectation that the closure reduces the

rank by one, in turn leading to one additional zero-mode, will prove to be correct.
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• with closure condition (on group variables)

Since the kinetic operator in representation space is also diagonal,
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Since the kinetic operator in representation space is also diagonal,
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one may easily obtain the 2-point correlation function in the Gaussian approximation as
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is not constant, in contrast to usual local field theories, but depends on the combinatorics

of the non-local interactions, see also Tab. 1.

Considering the closure constraint. In the quantum geometric GFT models one often

imposes a specific symmetry onto the fields, the so-called closure or gauge constraint, that

is

�(���, g1, ..., gr) = �(���, g1h, ..., grh) 8h 2 G (2.33)

which is typically imposed via group averaging. It corresponds to a physical enrichment of

the models in that it is part of a more complete geometric characterization of the TGFT

quanta. In particular, it implies the closure of the flux variables which are dual to the

group elements in Eq. (2.33), a necessary condition for a geometric r � 1-simplex. It can

be motivated also in relations to loop gravity [4, 5], see also [72, 73], and it implies as

well that the Feynman amplitudes of the TGFT model takes the form of a lattice gauge

theory partition function, on the lattice dual to the Feynman diagram [30]. The “Fourier”

transform in group space Eq. (2.3) of the field is thus modified to

�(���, ggg) =
X

j1,...,jr

 
rY

c=1

djc

aG

!
trjjj

"
�(���, jjj)

Z
dh

rO

c=1

D
jc(gch)

#
(2.34)

and the 2-point function in representation space simply yields

Ĉ(kkk, jjj) =

R
dh
Nr

c=1D
jc(h)

↵(jjj)
P

i k
2
i +

1
a2G

P
cCasjc + bjjj

. (2.35)

Since the ensuing computations go analogously through for configurations subject to the

closure constraint, we carry on with the discussion for the general field configuration, and

then comment towards the end on how the value for the critical dimension changes when

this condition is imposed. In foresight, the naive expectation that the closure reduces the

rank by one, in turn leading to one additional zero-mode, will prove to be correct.
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Correlation length in TGFTs

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
ddnl✓ddl�

(
1�

1

2

"
(��� · kkk)2 +

✓
✓✓✓ ·nnn

ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),

Ĉ(kkk,nnn)

Ĉ(000,000)
⇡

(
1�

1

Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1

2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1

2dnlĈ(000,000)

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓), (3.4b)

11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].

– 12 –

we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
ddnl✓ddl�

(
1�

1

2

"
(��� · kkk)2 +

✓
✓✓✓ ·nnn

ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),

Ĉ(kkk,nnn)

Ĉ(000,000)
⇡

(
1�

1

Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1

2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1

2dnlĈ(000,000)

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓), (3.4b)

11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),

Ĉ(kkk,nnn)
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Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1
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accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
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Notice that while in general there may be geometric anisotropies introduced by the non-locality of the
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in powers of the “momenta” shows explicitly.
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
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wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =
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~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =
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e
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where ✓✓✓ · nnn =
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i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1
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In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2
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2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1
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wherein the zero-mode of the two-point function in Fourier space is given by

Ĉ(000,000) =

Z

D
ddl� ddnl✓C(���,✓✓✓) =

1

b000
. (3.5)

When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find
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dlX
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ddlk

(2⇡)dl
ddl� �

2
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2
b + b000

e
i���·kkk

. (3.7)

By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
2(000) = b000/↵(000)

we find
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2
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dlX
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�
2
i
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e
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=
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dlX
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Z
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2
i e

�|�i||m(000)| =
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↵(000)m4(000)
=

↵(000)

b000
. (3.8)

Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.

14
Notice that by assumption the Lie group is taken to be exponential.
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with 0-mode contribution:



Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
ddnl✓ddl�

(
1�

1

2

"
(��� · kkk)2 +

✓
✓✓✓ ·nnn

ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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where k
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⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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wherein the zero-mode of the two-point function in Fourier space is given by

Ĉ(000,000) =

Z

D
ddl� ddnl✓C(���,✓✓✓) =

1

b000
. (3.5)

When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find
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dlX
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e
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. (3.7)

By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
2(000) = b000/↵(000)

we find
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dlX
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Z
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2
i e

�|�i||m(000)| =
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↵(000)m4(000)
=

↵(000)

b000
. (3.8)

Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.

14
Notice that by assumption the Lie group is taken to be exponential.
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with 0-mode contribution:

• obtaining:



Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups
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3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
ddnl✓ddl�

(
1�

1

2

"
(��� · kkk)2 +

✓
✓✓✓ ·nnn

ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),

Ĉ(kkk,nnn)

Ĉ(000,000)
⇡

(
1�

1

Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1

2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1

2dnlĈ(000,000)

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓), (3.4b)

11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Ĉ(000,000)
⇡

(
1�

1
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].

– 12 –

we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
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Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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wherein the zero-mode of the two-point function in Fourier space is given by
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b000
. (3.5)

When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find
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By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
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we find
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Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.
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Notice that by assumption the Lie group is taken to be exponential.
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].

– 12 –

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each
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and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
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Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
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Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].

– 12 –

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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Z
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wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2
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where k
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⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1
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wherein the zero-mode of the two-point function in Fourier space is given by

Ĉ(000,000) =

Z

D
ddl� ddnl✓C(���,✓✓✓) =

1

b000
. (3.5)

When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find

⇠
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2n

dlX
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Z
ddlk

(2⇡)dl
ddl� �

2
i

↵(000)
P

b k
2
b + b000

e
i���·kkk

. (3.7)

By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
2(000) = b000/↵(000)

we find

⇠
2
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2n

1
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dlX

i=1

Z
d�i

dki
2⇡

�
2
i

k2i +m2(000)
e
ika�a

=
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4n

1

↵(000)|m(000)|

dlX

i=1

Z
d�i�

2
i e

�|�i||m(000)| =
b000

↵(000)m4(000)
=

↵(000)

b000
. (3.8)

Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.

14
Notice that by assumption the Lie group is taken to be exponential.
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with 0-mode contribution:

• obtaining:

"local correlation length":
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i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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Notice that the strength of the minimal coupling of the local degrees of freedom to the
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Notice that by assumption the Lie group is taken to be exponential.
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2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1
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Non-local (geometric) contribution. Let us now move to the computation of the

geometric contribution to the correlation length in the compact case (finite a). Starting

from the definition in Eq. (3.4b), we can write
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By performing the integration over all ✓c0 with c
0
6= c, we obtain
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where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.
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Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,

⇠
2
nl '

⇡
2
ã
2

2
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3
�

7⇡2
b000ã

2

180

�
. (3.12)

So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
2
/6 = a

2
/24, which is finite and therefore negligible with respect to the local frame-

variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by

⇠
2
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1

2(dl + dnl)Ĉ(000,000)

Z

D
ddnl✓ ddl�k(✓✓✓,���)k2D C(���,✓✓✓) , (3.13)
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =
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ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1

2dnlĈ(000,000)

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓), (3.4b)

11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),
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Z
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wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),
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(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions
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In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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wherein the zero-mode of the two-point function in Fourier space is given by

Ĉ(000,000) =

Z

D
ddl� ddnl✓C(���,✓✓✓) =

1

b000
. (3.5)

When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find
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By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
2(000) = b000/↵(000)

we find
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i e
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. (3.8)

Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.

14
Notice that by assumption the Lie group is taken to be exponential.
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with 0-mode contribution:

• obtaining:

"local correlation length":
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Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1
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Notice that the strength of the minimal coupling of the local degrees of freedom to the
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coupling between 
local/non-local dofs

"non-local correlation length":
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Non-local (geometric) contribution. Let us now move to the computation of the

geometric contribution to the correlation length in the compact case (finite a). Starting

from the definition in Eq. (3.4b), we can write
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By performing the integration over all ✓c0 with c
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6= c, we obtain

⇠
2
nl =

b000

2dnl

X

c

X

nc

1

a

1P
c n

2
c/ã
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where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.
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Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,
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2
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7⇡2
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So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
2
/6 = a

2
/24, which is finite and therefore negligible with respect to the local frame-

variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by
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2(dl + dnl)Ĉ(000,000)

Z

D
ddnl✓ ddl�k(✓✓✓,���)k2D C(���,✓✓✓) , (3.13)
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there is no phase transition, as expected.
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the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,
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⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.
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In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,
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lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all
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with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.
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Correlation length in TGFTs

• definition

caveats: 

non-local TGFT interactions

TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

correlation length = Taylor coefficient of the susceptibility at order two in the momenta = 


   = second moment of the correlation function 

note: from now on, restrict to abelian groups

3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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we are aware that further scrutiny into the physics of our non-local and pre-geometric field

theories might suggest modifications in the future11.

The first step to obtain a formula for the correlation length [76] is to write down the

Fourier transform of the field, i.e.

�̂(kkk,nnn) =

Z
ddnl✓ddl� e�i���·kkk

e
�i✓✓✓·nnn/a�(���,✓✓✓) , (3.1)

where ✓✓✓ · nnn =
Pdnl

i=1 ✓ini. In analogy with the notation used for ✓✓✓, we can also write nnn =

{~n1, . . . ,~nr} with ~nc ⌘ {nc,1, . . . , nc,dG} and {nc,1, . . . , nc,dG} ! {ncdG+1, . . . , n(c+1)dG},

emphasizing which components are associated to di↵erent copies of the group G. Since

for the long-wavelength behavior of the system one can restrict to small momenta, we can

expand the plane waves on the product domain to second order in the momenta (kkk,nnn). In

this way we obtain, for the correlator12 in Eq. (2.31),

Ĉ(kkk,nnn) ⇡

Z
ddnl✓ddl�

(
1�

1

2

"
(��� · kkk)2 +

✓
✓✓✓ ·nnn

ã

◆2
#)

C(���,✓✓✓), (3.2)

wherein the first order term vanishes due to isotropy (both in local and non-local variables).

Similar symmetry arguments allow us to conclude that, up to second order13 in (kkk,nnn),

Ĉ(kkk,nnn)

Ĉ(000,000)
⇡

(
1�

1

Ĉ(000,000)


k
2

2n

Z
ddnl✓ddl��

2
C(���,✓✓✓) +

n
2

2dnlã2

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1

2dlĈ(000,000)

Z
ddnl✓ddl��

2
C(���,✓✓✓) , (3.4a)

⇠
2
nl ⌘

1

2dnlĈ(000,000)

Z
ddnl✓ddl� ✓

2
C(���,✓✓✓), (3.4b)

11
In this regard, we point out that we have made the choice of considering our TGFT models on group

manifolds treating such domain as the direct analogue of configuration space in usual QFTs on spacetime,

and the group modes as the analogue of momenta. This is natural, in accordance with the usual RG

approach to TGFTs and with the appearance of di↵erential operators on the group in their kinetic terms,

and the easiest choice from a formal point of view. However, a priori one could also take the opposite

perspective, consider the dual group algebra as the relevant configuration space, view TGFTs as QFTs

on a non-commutative (for non-Abelian groups) manifolds and a curved momentum space, and proceed

accordingly. Some work in the TGFT literature takes indeed this perspective, so also this possibility should

be left for consideration for future work.
12
Here we are choosing a normalization for the Casimir operator such that the kinetic kernel in the

non-compact case of large a matches with the one for R, as we will see below.
13
Notice that while in general there may be geometric anisotropies introduced by the non-locality of the

interactions, they are unimportant at this perturbative order, as an expansion of Eq. (2.31) at second order

in powers of the “momenta” shows explicitly.
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3 Correlations on Abelian group manifolds

In condensed-matter statistical systems, the correlation length sets the scale beyond which

correlations die o↵ exponentially, thus providing a characteristic scale for fluctuations.

Importantly, as we will discuss in Section 4, it is instrumental for the evaluation of the

so-called Ginzburg Q factor which measures the strength of fluctuations in the context

of Landau-Ginzburg mean-field theory and thus provides crucial information on the oc-

currence of phase transitions as well as the domain of validity of mean-field theory. The

notion of correlation length for TGFTs was first discussed in Ref. [33]. Here we provide

a definition of it for Abelian10 group manifolds G, which is motivated by the analogous

definition standard statistical systems. In Section 3.1 we compute the correlation length on

compact and Abelian group manifolds G from this definition. In Section 3.2, we repeat the

analysis considering instead the non-compact Abelian case, discussing also the features of

the correlation function in “coordinate space”, which is directly relevant for the evaluation

of the Ginzburg Q factor thereafter in Section 4.

3.1 Compact case

Before discussing in detail the definition of correlation length, let us clarify the setting

and the notation that we will use below. The field theories considered here live on the

configuration space D ⇠= Rdl ⇥ G
r, where G is an Abelian, compact and connected Lie

group. It is a classical result [75] that any such G is isomorphic to U(1)dG , with dG =

dimG. So, from now on we will consider Gr ⇠= U(1)dnl , with dnl ⌘ rdG. Furthermore, we

parametrize U(1) by means of the coordinate ✓ 2 [�⇡ã,⇡ã], so that the volume of each

U(1) factor is a ⌘ 2⇡ã and the group volume is aG ⌘ a
dG ⌘ (2⇡ã)dG . Correspondingly,

G
r is parametrized by ✓✓✓ = {~✓1, . . . ,

~✓r}, with ~✓c = {✓c,1, . . . , ✓c,dG}. When considering

✓✓✓ as an element of U(1)dnl , the components of each ~✓c are mapped into the components

{✓cdG+1, . . . , ✓(c+1)dG} of ✓✓✓ = {✓1, . . . , ✓s}. We will switch from one notation to the other

one when more convenient.

Definition of the correlation length. In statistical field theory, the (square of the)

correlation length can be defined as the Taylor coe�cient of the susceptibility at order two

in the momenta. Equivalently, being the susceptibility just the Fourier transform of the

correlation function, one can define the correlation length as the second moment of the

correlation function [76]. While this definition is arguably very natural, there are two main

points to keep in mind, when adapting it to our context. First, field theories arising in

statistical and condensed matter physics are usually local, while in the present context we

are dealing with field theories with non-local interactions. Second, the domain of the field

theories we are considering here has no direct spacetime interpretation, so any notion of

correlation length cannot be associated to distances in physical space, but only understood

as identifying some (important) internal scale. In what follows, we maintain the above

definition for the correlation length as second moment of the correlation function, though

10
This definition can be suitably generalized to more complicated group structures, as we mention in

Section 3.1 and as it is discussed in more detail in [74].
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Z
ddnl✓ddl� ✓

2
C(���,✓✓✓)

�)
,

(3.3)

where k
2
⌘ kkk · kkk, �2

⌘ ��� · ���, and similarly for n
2 and ✓

2. From this expression we can

immediately identify the (modulus of the) correlation lengths in the local frame-variable

and non-local geometric directions

⇠
2
l ⌘

1
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wherein the zero-mode of the two-point function in Fourier space is given by
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When the group G is non-Abelian, one could in principle follow the same derivation

used here, for instance by replacing the Fourier transform employed in Eq. (3.1) with a

non-commutative one [73]. In practice, this would amount to an expansion in terms of

non-commutative plane waves

e
ik(g)·X
? ⌘

1X

n=0

i
n

n!
k(g)i1 . . . k(g)inXi1 ? · · · ?Xin , (3.6)

where X 2 g and14 k(g) = �i log g, up to the second order in X. However, even at this

order, possibly infinitely many powers of the group variable would have to be included [73],

meaning that one would not be able to write the geometric contribution to the correlation

length as a second order moment of the correlation function, as it is the case for Eq. (3.4b).

However, under some approximations (e.g., semi-classicality, see [54] for an example) one

can e↵ectively treat the non-commutative star product as a standard point-wise one, thus

solving the aforementioned issue. This point will be discussed in more detail in a forth-

coming paper [74].

Let us now use Eq. (3.4a) and Eq. (3.4b) to explicitly compute the local frame-variable

and non-local geometric contributions with finite a.

Local (frame-)variable contribution. By writing the two-point function in Fourier

space and integrating over the group variables we find
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By performing the integration over all the �b with b 6= i, we obtain dl � 1 delta functions

�(pb), which are absorbed by dl�1 integrals over dp. As a result, defining m
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we find
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Notice that the strength of the minimal coupling of the local degrees of freedom to the

non-local geometric ones is governed by the ↵-factor which can be absorbed in ⇠l.
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Non-local (geometric) contribution. Let us now move to the computation of the

geometric contribution to the correlation length in the compact case (finite a). Starting

from the definition in Eq. (3.4b), we can write
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By performing the integration over all ✓c0 with c
0
6= c, we obtain
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where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.
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Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,
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So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
2
/6 = a

2
/24, which is finite and therefore negligible with respect to the local frame-

variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by
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2 + bnnn
e
innn·✓✓✓/ã
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ã
2

n2
c

4⇡(�1)nc

n2
c/ã
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i✓cnc/ã , (3.10)

where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.

⇠
2
nl =

b000

4⇡dnl

X

c

8
<

:
2⇡3

ã
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ã
2

2


1

3
�

7⇡2
b000ã
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So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
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with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.
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variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.
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In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric
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variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-
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the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.
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variables are treated kinematically on the same footing, so it would make sense to define,
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2 + bnc

9
=

; .

Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,

⇠
2
nl '

⇡
2
ã
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variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by

⇠
2
⌘

1

2(dl + dnl)Ĉ(000,000)
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2 + bnc

9
=

; .

Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,

⇠
2
nl '

⇡
2
ã
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So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
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variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.
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In order to address the non-compact case, we will consider the large a regime (or, equiva-
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2 + bnnn
e
innn·✓✓✓/ã
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ã
2

3b000
+
X

nc 6=0

ã
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3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-
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• focus on non-local correlation function:
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(entering respectively in a local and non-local manner in the interactions), in the following

it will be more appropriate to deal with ⇠
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l and ⇠

2
nl separately, as defined by Eq. (3.4). In

particular, notice that by Eq. (3.4a) the local frame-variable contribution will be still given

by Eq. (3.8) even when we consider the non-compact group case.

Strictly speaking, therefore, we will only need to compute ⇠
2
nl. Before doing this,

however, it is instructive to rewrite explicitly the correlation function in group space. Since

the right-hand-side of Eq. (3.4b) involves an integral over the local frame variables, it will

be enough to consider the correlation function of a model without local directions.
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Given this form of the bnnn coe�cients, it is useful to decompose the sums in Eq. (3.14) in

di↵erent combinations of zero-modes
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We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
P

� sums over

quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta

terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the

correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,
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1

A .

We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
P

� sums over

quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta

terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the

correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,

– 16 –

where k(✓✓✓,���)k2D is the distance on D ⇠= Rdl+dnl defined by the product topology. However,

since local and non-local degrees of freedom are treated di↵erently at the dynamical level

(entering respectively in a local and non-local manner in the interactions), in the following

it will be more appropriate to deal with ⇠
2
l and ⇠

2
nl separately, as defined by Eq. (3.4). In

particular, notice that by Eq. (3.4a) the local frame-variable contribution will be still given

by Eq. (3.8) even when we consider the non-compact group case.

Strictly speaking, therefore, we will only need to compute ⇠
2
nl. Before doing this,

however, it is instructive to rewrite explicitly the correlation function in group space. Since

the right-hand-side of Eq. (3.4b) involves an integral over the local frame variables, it will

be enough to consider the correlation function of a model without local directions.

Non-local (geometry) correlation function in group space. From Eq. (2.31), we

deduce that the correlation function for interactions of order V is, in this context, and

using the notation introduced at the beginning of Section 3.1,

C(✓✓✓) =
1

arG

X

nnn
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Correlation length in TGFTs

non-local contribution in non-compact limit

Non-local (geometric) contribution. Let us now move to the computation of the

geometric contribution to the correlation length in the compact case (finite a). Starting

from the definition in Eq. (3.4b), we can write
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d✓c ✓

2
ce
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where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.
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ã
2

3b000
+
X

nc 6=0

1

n2
c/ã
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Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,
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So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
2
/6 = a

2
/24, which is finite and therefore negligible with respect to the local frame-

variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by
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ã
2

2


1

3
�

7⇡2
b000ã
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• focus on non-local correlation function:
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particular, notice that by Eq. (3.4a) the local frame-variable contribution will be still given

by Eq. (3.8) even when we consider the non-compact group case.

Strictly speaking, therefore, we will only need to compute ⇠
2
nl. Before doing this,

however, it is instructive to rewrite explicitly the correlation function in group space. Since

the right-hand-side of Eq. (3.4b) involves an integral over the local frame variables, it will

be enough to consider the correlation function of a model without local directions.
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Given this form of the bnnn coe�cients, it is useful to decompose the sums in Eq. (3.14) in

di↵erent combinations of zero-modes
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We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
P

� sums over

quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta

terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the

correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,
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rX

c=1

�~nc,0

X

{nnn}\{~nc} 6=000
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C(✓✓✓) =
1

arG

X

nnn
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Given this form of the bnnn coe�cients, it is useful to decompose the sums in Eq. (3.14) in

di↵erent combinations of zero-modes
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=
1

arG

0

@
X

nnn 6=000
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We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
P

� sums over

quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta

terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the

correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,
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• single out (limiting) contribution from s-fold zero modes, with effective mass
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1

A .

We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
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terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the
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~✓c =

PdG
i=1 nc,i✓c,i and Ĉs(~nc1 , . . . ,~ncr�s) ⌘ Ĉ(nnn)|~nd1

=···=~nds=~0
.

Let us now consider the non-compact limit of large a. In this limit, we denote nc/ã ⌘

pc, with pc 2 R, and the discrete sums become
P

nc
/a !

R
dpc/(2⇡). In this limit, the

contribution of an s-fold zero-mode to the correlation function is

Cs(~✓c1 , . . . , ~✓cr�s) =
1

adgs

Z
ddg(r�s)

p

(2⇡)dg(r�s)

e
ipppr�s·✓✓✓r�s

p2r�s + bc1,...,cs
, (3.19)

where the subscript r � s in the above quantities are to remind that they can be seen as

vectors in a dg(r � s) dimensional space. The result of the integration depends of course

critically on the sign of bc1,...,cs . If it is positive, this contribution shows an asymptotic ex-

ponential decay with a cut-o↵ scale given by 1/
p

bc1,...,cs . On the other hand, when bc1,...,cs

is negative, after an appropriate regularization, one obtains a polynomially suppressed os-

cillating contribution, as one can see from the explicit computations in Appendix A. While

exponentially decaying correlations are typically encountered in local statistical field the-

ories, this oscillating behavior produces long-range correlations (see also the discussion

below) which are however not associated with the phase transition characterized by µ ! 0.

Such contributions are indeed produced when the interactions included in the action gen-

erate only dgs
0 with s

0
> s zero-modes in Eq. (3.17).

Non-local (geometry) contribution to the correlation length. Since in this case

we are interested in taking the large a limit before taking the µ ! 0 limit, the procedure

employed in Section 3.1 is not adequate anymore (recall that in Eq. (3.12) we have neglected

higher powers in a). Moreover, it is useful to explicitly employ the decomposition in

Eq. (3.17) in order to better understand how di↵erent s-fold zero-modes contribute to the

correlation length. By definition Eq. (3.4b), we can write the correlation length as
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positive effective mass: exponential decay with scale
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=···=~nds=~0
.

Let us now consider the non-compact limit of large a. In this limit, we denote nc/ã ⌘

pc, with pc 2 R, and the discrete sums become
P

nc
/a !

R
dpc/(2⇡). In this limit, the

contribution of an s-fold zero-mode to the correlation function is

Cs(~✓c1 , . . . , ~✓cr�s) =
1

adgs

Z
ddg(r�s)

p

(2⇡)dg(r�s)

e
ipppr�s·✓✓✓r�s

p2r�s + bc1,...,cs
, (3.19)

where the subscript r � s in the above quantities are to remind that they can be seen as

vectors in a dg(r � s) dimensional space. The result of the integration depends of course

critically on the sign of bc1,...,cs . If it is positive, this contribution shows an asymptotic ex-

ponential decay with a cut-o↵ scale given by 1/
p

bc1,...,cs . On the other hand, when bc1,...,cs

is negative, after an appropriate regularization, one obtains a polynomially suppressed os-

cillating contribution, as one can see from the explicit computations in Appendix A. While

exponentially decaying correlations are typically encountered in local statistical field the-

ories, this oscillating behavior produces long-range correlations (see also the discussion

below) which are however not associated with the phase transition characterized by µ ! 0.

Such contributions are indeed produced when the interactions included in the action gen-

erate only dgs
0 with s

0
> s zero-modes in Eq. (3.17).

Non-local (geometry) contribution to the correlation length. Since in this case

we are interested in taking the large a limit before taking the µ ! 0 limit, the procedure

employed in Section 3.1 is not adequate anymore (recall that in Eq. (3.12) we have neglected

higher powers in a). Moreover, it is useful to explicitly employ the decomposition in

Eq. (3.17) in order to better understand how di↵erent s-fold zero-modes contribute to the

correlation length. By definition Eq. (3.4b), we can write the correlation length as

⇠
2
nl =

b000

2dnl

Z
ddnl✓ ✓2

1

arG

rX

s=0

X

(c1,...,cs)

X

~ncs+1 ,...,~ncr 6=0
~nc1 ,...,~ncs=0
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Let us now split up the sum in ✓
2 into two contributions ✓2 = ✓

2
s+✓

2
r�s, being associated to

the modes ~nc1 , ...,~ncs and ~ncs+1 , ...,~ncr , respectively. By construction, in the above equation

e
innn·✓✓✓/ã = e
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negative effective mass: polynomially suppressed oscillatory behaviour



Correlation length in TGFTs

non-local contribution in non-compact limit

Non-local (geometric) contribution. Let us now move to the computation of the

geometric contribution to the correlation length in the compact case (finite a). Starting

from the definition in Eq. (3.4b), we can write
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By performing the integration over all ✓c0 with c
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6= c, we obtain
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where bnc is given by bnnn where all nc0 = 0 except for c = c
0, which is still unconstrained.

Let us consider nc = 0 and nc 6= 0 separately, i.e.
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Now, for any finite a we can take the limit of small µ (characterizing the phase transition)

in the denominator of the second term in curly brackets to obtain, at first order in µ,

⇠
2
nl '

⇡
2
ã
2

2


1

3
�

7⇡2
b000ã

2

180

�
. (3.12)

So, for µ ! 0, the geometric contribution to the correlation length is only given by ⇠
2
nl =

⇡
2
ã
2
/6 = a

2
/24, which is finite and therefore negligible with respect to the local frame-

variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by

⇠
2
⌘

1

2(dl + dnl)Ĉ(000,000)

Z

D
ddnl✓ ddl�k(✓✓✓,���)k2D C(���,✓✓✓) , (3.13)
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(decompactify uniformly; general non-compact Abelian 
group is not of this form, but results generalize))
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ã
2

n2
c

4⇡(�1)nc

n2
c/ã
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variable contribution, which is instead diverging as µ ! 0. We may take the fact that

⇠nl < a < 1 as an indication that for the compact domain (neglecting the local coordinates)

there is no phase transition, as expected.

3.2 Non-compact case

In order to address the non-compact case, we will consider the large a regime (or, equiva-

lently, large ã) where appropriate. Notice that this means “decompactifying uniformly” all

the U(1) factors in G. Of course, a general non-compact connected Abelian Lie group G

may not be in this form. However, it can be shown that it must be isomorphic to U(1)t⇥F ,

with F a vector space and t a positive integer [75]. So, as we will see below, it is easy to

draw general conclusions from the results below and those obtained in the above section.

Notice that in the non-compact case G ⇠= RdG , local frame and non-local geometric

variables are treated kinematically on the same footing, so it would make sense to define,

following the same procedure that led us to Eq. (3.3), a “total” correlation length given by
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• focus on non-local correlation function:

where k(✓✓✓,���)k2D is the distance on D ⇠= Rdl+dnl defined by the product topology. However,

since local and non-local degrees of freedom are treated di↵erently at the dynamical level

(entering respectively in a local and non-local manner in the interactions), in the following

it will be more appropriate to deal with ⇠
2
l and ⇠

2
nl separately, as defined by Eq. (3.4). In

particular, notice that by Eq. (3.4a) the local frame-variable contribution will be still given

by Eq. (3.8) even when we consider the non-compact group case.

Strictly speaking, therefore, we will only need to compute ⇠
2
nl. Before doing this,

however, it is instructive to rewrite explicitly the correlation function in group space. Since

the right-hand-side of Eq. (3.4b) involves an integral over the local frame variables, it will

be enough to consider the correlation function of a model without local directions.

Non-local (geometry) correlation function in group space. From Eq. (2.31), we

deduce that the correlation function for interactions of order V is, in this context, and

using the notation introduced at the beginning of Section 3.1,
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correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,
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Given this form of the bnnn coe�cients, it is useful to decompose the sums in Eq. (3.14) in

di↵erent combinations of zero-modes
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We call a contribution in which s arguments ~nc1 , ...,~ncs are zero a s-fold zero-mode and

denote bc1,...,cs the evaluation of the e↵ective mass bnnn on this mode. Note that this e↵ective

mass bc1,...,cs is not only di↵erent for each single term in the sum over products of Kronecker

deltas
P

� �̃�X̂�(nnn) but also for any combination of them. For example, if
P

� sums over

quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta

terms �~nc,0 give rise to any combination of single zeros to multiple zero-modes in the

correlation function. Furthermore, an s-fold zero-mode contribution only depends on the

remaining r � s variables not only in momentum but also in position space,

– 16 –
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nl. Before doing this,
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Ĉ(nnn)einnn·✓✓✓/ã + · · ·+ Ĉ(000)
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• single out (limiting) contribution from s-fold zero modes, with effective mass
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where
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quartic melonic interactions of each colour c = 1, ..., r (Tab. 1), already the single-delta
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Cs(~✓c1 , . . . , ~✓cr�s) =
1

adgs

1

adg(r�s)

X

~ncm 6=~0
8m=1, ... , r�s

Ĉs(~nc1 , . . . ,~ncr�s)e
i(~nc1 ·~✓c1+···+~ncr�s ·~✓cr�s )/ã,

(3.18)

where ~nc ·
~✓c =

PdG
i=1 nc,i✓c,i and Ĉs(~nc1 , . . . ,~ncr�s) ⌘ Ĉ(nnn)|~nd1

=···=~nds=~0
.

Let us now consider the non-compact limit of large a. In this limit, we denote nc/ã ⌘

pc, with pc 2 R, and the discrete sums become
P

nc
/a !

R
dpc/(2⇡). In this limit, the

contribution of an s-fold zero-mode to the correlation function is

Cs(~✓c1 , . . . , ~✓cr�s) =
1
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Z
ddg(r�s)

p

(2⇡)dg(r�s)

e
ipppr�s·✓✓✓r�s

p2r�s + bc1,...,cs
, (3.19)

where the subscript r � s in the above quantities are to remind that they can be seen as

vectors in a dg(r � s) dimensional space. The result of the integration depends of course

critically on the sign of bc1,...,cs . If it is positive, this contribution shows an asymptotic ex-

ponential decay with a cut-o↵ scale given by 1/
p

bc1,...,cs . On the other hand, when bc1,...,cs

is negative, after an appropriate regularization, one obtains a polynomially suppressed os-

cillating contribution, as one can see from the explicit computations in Appendix A. While

exponentially decaying correlations are typically encountered in local statistical field the-

ories, this oscillating behavior produces long-range correlations (see also the discussion

below) which are however not associated with the phase transition characterized by µ ! 0.

Such contributions are indeed produced when the interactions included in the action gen-

erate only dgs
0 with s

0
> s zero-modes in Eq. (3.17).

Non-local (geometry) contribution to the correlation length. Since in this case

we are interested in taking the large a limit before taking the µ ! 0 limit, the procedure

employed in Section 3.1 is not adequate anymore (recall that in Eq. (3.12) we have neglected

higher powers in a). Moreover, it is useful to explicitly employ the decomposition in

Eq. (3.17) in order to better understand how di↵erent s-fold zero-modes contribute to the

correlation length. By definition Eq. (3.4b), we can write the correlation length as

⇠
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Let us now split up the sum in ✓
2 into two contributions ✓2 = ✓

2
s+✓

2
r�s, being associated to

the modes ~nc1 , ...,~ncs and ~ncs+1 , ...,~ncr , respectively. By construction, in the above equation

e
innn·✓✓✓/ã = e

innnr�s·✓✓✓r�s/ã only depends on these latter r � s variables. Hence, the integral
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positive effective mass: exponential decay with scale
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i=1 nc,i✓c,i and Ĉs(~nc1 , . . . ,~ncr�s) ⌘ Ĉ(nnn)|~nd1
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negative effective mass: polynomially suppressed oscillatory behaviour

• correlation length is then (after subtracting divergent factor)

• infinite (for any mass coupling) if effective mass is negative

• for positive effective mass

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms

of derivatives acting on the exponential function. As a result, we finally obtain

⇠
2
nl =

rX

s=s0

dg(r � s0)

dnl

X

(c1,...,cs)

b000

b2c1,...,cs

. (3.24)

In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]

⌦
(��)2

↵
⌦
⌧

⌦
�2
0

↵
⌦
. (4.1)

For the Ginzburg criterion, the averaging region is crucial. For applications to three-

dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose

⌦⇠ ⇠ ⇠
3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in

the previous Section, we can define the region ⌦⇠ as

⌦⇠ ⇠ ⇠
dl
l ⇥ ⇠

dnl
nl , (4.2)
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diverges at phase transition, just like local case (differences only quantitative)

vanishes for each s < r because the integration over the r � s variables produces delta

functions over the corresponding momenta, which are, however, by construction di↵erent

from zero. On the other hand, for s = r, we only have one contribution, proportional to a
2.

This is somehow expected since the non-compactness scale a was introduced in order to

tame the divergences associated to non-locality and the mean-field uniform solution. The

quantity ⇠
2 can be seen in principle as proportional to both the scales of the theory: the

physical one µ
�1 and the regulator a

2, having the same ‘dimension’. We argue that the

divergence ⇠ a
2 of the correlation length is unphysical and that, similarly to what is done

in the usual renormalization procedure of dimensionful quantities in local field theories, it

should be subtracted in order to obtain the physical correlation length [58, 77].

Let us therefore consider the remaining contributions. The integration over ddgs✓

cancels with a
s
G, so the only non-trivial integral involves the remaining r � s variables.

This is easily done in the limit of very large aG. In this case, the sum over the non-zero

momenta divided by a
r�s
G turns into an integral, and we have to compute

Z
ddg(r�s)

p

(2⇡)dg(r�s)

1

p2r�s + bc1,...,cs

Z
ddg(r�s)

✓ ✓
2
r�se

ipppr�s·✓✓✓r�s , (3.22)

where we have denoted, as before, nc/ã ⌘ pc, with pc 2 R, and15
P

nc
/a !

R
dpc/(2⇡). For

a negative e↵ective mass bc1,...,cs < 0, the integral diverges. In this sense, all the s-fold zero-

modes with a negative e↵ective mass produce an infinite correlation length. This is expected

since we have seen above that they generate oscillating correlations suppressed only by a

power-law. This behavior is indeed indicative of correlations at any scale, regardless of

the precise value of µ, taken here to be finite. Here, we are however interested in a finite

correlation length, diverging only when the critical point is reached (i.e. when µ ! 0), in

terms of which one can interpret the behavior of the system around the phase transition.

For this purpose, it is therefore natural to just not consider the terms with negative e↵ective

mass. From the structure of the interaction terms and the arguments discussed below

equation Eq. (3.17), it is clear that a negative e↵ective mass can be obtained only from

s-fold zero-modes with s < s0, where dgs0 is the minimum number of delta functions

appearing in the interactions. For example, a multi-trace containing a fundamental melon

(two vertices connected by r edges) has s0 = 0, a melonic interaction s0 = 1, a necklace

interaction s0 = r/2 and a simpicial interaction s = r � 1, see Table 1 for examples. In

practice, this means that we need to compute the contribution to the correlation length

coming from s � s0-fold zero-modes.

Eq. (3.22) can be easily computed, for a positive e↵ective mass. It is just

X

l

Z
dp

(2⇡)

1

p2cl + bc1,...,cs

Z
d✓ ✓2cle

ipcl✓cl =
2dg(r � s0)

b2c1,...,cs

, (3.23)

15
As in the previous paragraph, the point pc = 0 has also be added to the domain of integration. We

remark again that, being the integrand regular at pc = 0 (for finite µ < 0), and pc = 0 being zero measure,

this does not change the result.
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• cannot assume isotropy, choose averaging domain:

as one can show for instance by exchanging the integration order and writing ✓
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In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group
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In the limit µ ! 0, the correlation length ⇠
2
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�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]
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where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q
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Q ⌘

R
⌦⇠

drg ddl� C(ggg,���)
R
⌦⇠

drgddl� �2
0

=

R
⌦⇠

ddnl✓ ddl� C(✓✓✓,���)
R
⌦⇠

ddnl✓ ddl� �2
0

, (4.3)

condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.
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As we have seen in Section 3.2, the correlation function of this theory is characterized,
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modes. These terms behave quite di↵erently depending on whether the e↵ective mass
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Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to
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Having made these premises, let us explicitly compute theQ integral. The denominator
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z

⌦⇠

drg �2
0 = ⇠

dnl�2
0 = �

µ

4
P

� ��

✓
⇠

a

◆dnl

, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the
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the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.
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term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing
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In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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In the limit µ ! 0, the correlation length ⇠
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cal, non-compact case, so this result for the correlation length qualitatively agrees with
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should be much smaller then the value of the mean order parameter �0 itself averaged on
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condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only
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compute it in the case in which local degrees of freedom are included.
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As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing
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In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

• restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)
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to be excluded since they do not play a role in the phase transition. This is because the
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the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z

⌦⇠

drg �2
0 = ⇠

dnl�2
0 = �

µ

4
P

� ��

✓
⇠

a

◆dnl

, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the
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16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].

– 20 –

• Ginzburg criterion for validity of Gaussian mean field-approx is: 

where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q

parameter, as

Q ⌘

R
⌦⇠

drg ddl� C(ggg,���)
R
⌦⇠

drgddl� �2
0

=

R
⌦⇠

ddnl✓ ddl� C(✓✓✓,���)
R
⌦⇠

ddnl✓ ddl� �2
0

, (4.3)

condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z

⌦⇠

drg �2
0 = ⇠

dnl�2
0 = �

µ

4
P

� ��

✓
⇠

a

◆dnl

, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the
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(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)

For non-local directions only:
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numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

• restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)

For non-local directions only:

• for quartic TGFT interaction, we get:
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find

Z

⌦⇠

ddnl✓ C(✓✓✓) =
rX

s=s0

✓
⇠

a

◆dGs X

(c1,...,cs)

1

bc1...cs
. (4.6)

Taking everything together, we find for a sum over quartic interactions � the result
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where the sum fs := µ
P

1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result

for a zero-dimensional field theory as previously found [33] and known in general for fields

on a compact domain [43]. On the other hand, if one takes the large a limit one recovers

exactly the least dominant term in ⇠ since a occurs only in the combination ⇠/a, i.e.

Q ⇠
a!1

�4fs0��

µ2

✓
⇠

a

◆dg(s0�r)

⇠
⇠!1

�4fs0��
⇠
4�dg(r�s0)

adg(s0�r)
. (4.8)

Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.

– 21 –

independent of

note: can extend to any 
order of interactions



Ginzburg criterion for TGFTs

• cannot assume isotropy, choose averaging domain:

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms

of derivatives acting on the exponential function. As a result, we finally obtain
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In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]
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For the Ginzburg criterion, the averaging region is crucial. For applications to three-

dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose

⌦⇠ ⇠ ⇠
3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in

the previous Section, we can define the region ⌦⇠ as

⌦⇠ ⇠ ⇠
dl
l ⇥ ⇠

dnl
nl , (4.2)

– 19 –

• relative strength of fluctuations given by "Q-parameter":

where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q

parameter, as
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condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z
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, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• Ginzburg criterion for validity of Gaussian mean field-approx is: 
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compute it in the case in which local degrees of freedom are included.
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As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

• restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)

For non-local directions only:

finite volume:
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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Taking everything together, we find for a sum over quartic interactions � the result

Q = �
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where the sum fs := µ
P

1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result

for a zero-dimensional field theory as previously found [33] and known in general for fields

on a compact domain [43]. On the other hand, if one takes the large a limit one recovers

exactly the least dominant term in ⇠ since a occurs only in the combination ⇠/a, i.e.

Q ⇠
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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where the sum fs := µ
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1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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diverges at criticality since same as for 0-dim QFT and 
local QFT on compact domain

infinite volume limit:
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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where the sum fs := µ
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1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
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, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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where the sum fs := µ
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1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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small Q, Gaussian approx holds at phase transition

• for quartic TGFT interaction, we get:
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Ginzburg criterion for TGFTs

• cannot assume isotropy, choose averaging domain:

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms

of derivatives acting on the exponential function. As a result, we finally obtain

⇠
2
nl =

rX

s=s0

dg(r � s0)

dnl

X

(c1,...,cs)

b000

b2c1,...,cs

. (3.24)

In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-

cal, non-compact case, so this result for the correlation length qualitatively agrees with

the standard result for a local statistical field theory on Rr, though being quantitatively

di↵erent. The above result also clarifies what happens in the case of a non-compact group

of the form U(1)t ⇥ F . The vector space part would in fact contribute to the correlation

length as computed here, while the compact part would contribute as computed in equa-

tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming

from the compact directions would be negligible, even in absence of local frame variables.

4 Ginzburg criterion

The Ginzburg criterion is a way to test the reliability of mean-field theory by checking

whether fluctuations remain small. Concretely, for mean-field theory to be self-consistent,

it requires that fluctuations of the order parameter � averaged on an appropriate region ⌦

should be much smaller then the value of the mean order parameter �0 itself averaged on

such region, i.e., [78]

⌦
(��)2

↵
⌦
⌧

⌦
�2
0

↵
⌦
. (4.1)

For the Ginzburg criterion, the averaging region is crucial. For applications to three-

dimensional statistical systems, one typically chooses ⌦ ⌘ ⌦⇠ ⇠ ⇠
3 where ⇠ is the correlation

length. The reason is that in a system where correlations are relevant only until distances

of order ⇠, regions of linear size ⌦⇠ are practically statistically independent [79]. However,

this is not the case in general. In particular, consider an anisotropic system, having two

di↵erent correlation lengths, say ⇠? ⌘ ⇠ and ⇠k ⌘ f(⇠). In this case, one cannot just choose

⌦⇠ ⇠ ⇠
3, because the system shows di↵erent correlation properties in di↵erent directions.

An explicit example of this issue is provided by an Ising ferromagnect where the magnetic

(electric) dipole moments are only coupled by dipolar interactions. In such a case, one has

two correlation lenghts: ⇠k ⇠ ⇠
2, and ⇠? ⇠ ⇠. The averaging region should then be chosen

as ⌦⇠ ⇠ ⇠
4, eventually leading to an “almost mean-field behavior” [78].

From these general arguments we can see that some care should be taken when we try

to concretely evaluate the Ginzburg criterion, since our model clearly displays anisotropy

between the local and non-local sector. As we are able to identify the correlation lengths

in group space and in reference frames space via the second-moment method described in

the previous Section, we can define the region ⌦⇠ as
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dl
l ⇥ ⇠

dnl
nl , (4.2)
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• relative strength of fluctuations given by "Q-parameter":

where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q

parameter, as

Q ⌘

R
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drg ddl� C(ggg,���)
R
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, (4.3)

condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z
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a
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, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• Ginzburg criterion for validity of Gaussian mean field-approx is: 
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We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator
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numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing
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In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

• restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)

For non-local directions only:

finite volume:
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ã2

rP
p=s+1

~n2
cp + bc1...cs

e

i
rP

p=s+1
~ncp ·~✓cp/ã
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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Taking everything together, we find for a sum over quartic interactions � the result
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where the sum fs := µ
P

1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result

for a zero-dimensional field theory as previously found [33] and known in general for fields

on a compact domain [43]. On the other hand, if one takes the large a limit one recovers

exactly the least dominant term in ⇠ since a occurs only in the combination ⇠/a, i.e.
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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(4.5)

where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find

Z

⌦⇠

ddnl✓ C(✓✓✓) =
rX

s=s0

✓
⇠

a

◆dGs X

(c1,...,cs)

1

bc1...cs
. (4.6)

Taking everything together, we find for a sum over quartic interactions � the result

Q = �
4
P

� ��

µ2

rX

s=s0

fs

✓
⇠

a

◆dG(s�r)

(4.7)

where the sum fs := µ
P

1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result

for a zero-dimensional field theory as previously found [33] and known in general for fields

on a compact domain [43]. On the other hand, if one takes the large a limit one recovers

exactly the least dominant term in ⇠ since a occurs only in the combination ⇠/a, i.e.

Q ⇠
a!1

�4fs0��

µ2

✓
⇠

a

◆dg(s0�r)

⇠
⇠!1

�4fs0��
⇠
4�dg(r�s0)

adg(s0�r)
. (4.8)

Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.

– 21 –

small Q, Gaussian approx holds at phase transition
• note: for melonic interactions:

rX

s=s0

✓
⇠

a

◆dGs 1

adg(r�s)

Z
ddg(r�s)

✓

X

(c1,...,cs)

X

~ncs+1 ,...,~ncr

1

1
ã2
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which fully take into account the renormalization group flow.
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• cannot assume isotropy, choose averaging domain:

as one can show for instance by exchanging the integration order and writing ✓
2
ca in terms
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In the limit µ ! 0, the correlation length ⇠
2
nl diverges as µ

�1, exactly as in the lo-
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tion Eq. (3.12). As a result, therefore, the contribution to the correlation length coming
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4 Ginzburg criterion
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• relative strength of fluctuations given by "Q-parameter":

where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q

parameter, as
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condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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• Ginzburg criterion for validity of Gaussian mean field-approx is: 
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• several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

• restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent, 
and negative effective mass gives divergent correlation length at any value of mass coupling)

For non-local directions only:

finite volume:
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where s0 is the minimal number of zero-modes depending on the specific non-local inter-

action, see Section 3.2.

Integrating first over ✓, we obtain dG(r � s) Kronecker deltas multiplied by a, which

fix each ~ncp to zero and cancel the prefactor adG(r�s). As a result, we find
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Taking everything together, we find for a sum over quartic interactions � the result

Q = �
4
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µ2

rX

s=s0

fs

✓
⇠

a

◆dG(s�r)

(4.7)

where the sum fs := µ
P

1/bc1...cs over all s-fold zero-modes (c1, ..., cs) is independent of µ

since any bc1...cs is proportional to µ.

The asymptotics of this sum now depends crucially on whether the size of compact-

ness a is finite or taken to be arbitrarily large. If a is kept finite one has large-⇠ asymptotics

Q ⇠ �4fr
P

� ��/µ
2 which diverges due to µ ⇠ ⇠

�2 and corresponds to the usual result

for a zero-dimensional field theory as previously found [33] and known in general for fields

on a compact domain [43]. On the other hand, if one takes the large a limit one recovers

exactly the least dominant term in ⇠ since a occurs only in the combination ⇠/a, i.e.

Q ⇠
a!1

�4fs0��

µ2

✓
⇠

a

◆dg(s0�r)

⇠
⇠!1

�4fs0��
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4�dg(r�s0)

adg(s0�r)
. (4.8)

Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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Therefore, in this limit there is a critical rank given by rc = s0 + 4/dg: While for r < rc

the quotient Q diverges and the theory has no phase transition in the Gaussian approx-

imation, for r > rc the Q is small, the Gaussian approaximation holds and there is thus

a phase transition which can be described by mean-field theory. Notice that s0 = 0 for

disconnected (multi-trace) interactions containing a fundamental melon and therefore Q

has ⇠4�dnl asymptotics which characterizes local field theories in d = dnl dimensions. This

is because such non-local multi-trace interactions can be understood as an interaction of

a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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diverges at criticality since same as for 0-dim QFT and 
local QFT on compact domain
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divergent Q, no phase trans in Gaussian approx
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a local vector theory, see e.g. [80]. On the other hand, when they are absent and mel-

onic interactions are present, Q ⇠ ⇠
4�dG(r�1)

, as expected from FRG analysis, see for

instance [35, 36]. In particular, this means that in this case the critical rank rc for dG = 1

is 5. In general, interactions in the Landau-Ginzburg setting are chosen “by hand” and

there is no reason not to leave out any interactions. One can equally well restrict the action

to any subdominant interactions as for example necklace interactions with s0 = r/2. The

question whether such action is stable along all scales can only be answered by methods

which fully take into account the renormalization group flow.
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• closure condition: 

Quartic interactions are the most relevant ones for testing the validity of mean-field

phase transitions but our setting allows to compute Q also for interactions of any other

order. For a single interaction given by a V�-valent graph � yielding at least an s0-fold

zero-mode and by using Eq. (2.13) for the general vacuum solution �0, one finds in the

large a limit
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In fact, this is simply the well known scaling of the coupling in a momentum scale k ⇠ 1/⇠

known from renormalization (see for example Eq. (3.1), (3.5) in [36], there n = V�/2).

That is, the Ginzburg Q at large ⇠ in the large a limit for a single interaction � is exactly

(up to some irrelevant constant) some power of the rescaled coupling �̄� ,

Q ⇠ �

2
V��2
�

⇠

2V�
V��2

�dG(r�s0)

adG(s0�r)
= �̄

2
V��2
� . (4.10)

Thus, from the renormalization perspective this calculation of the Ginzburg Q is just an

alternative way to determine the scaling of couplings with an RG scale, or equivalently, the

scaling exponents of the couplings at the Gaussian fixed point.

Imposing the closure constraint. As commented on in Section 2.2, the imposition of

the closure condition leads to a slight modification of the correlator, giving Eq. (2.35). To

understand how the inclusion of the gauge constraint a↵ects the numerator of the Ginzburg-

parameter, one first has to appreciate that it essentially contaminates the expansion of the

correlation function in Eq. (3.14) with a factor �(
P

i ni) via its Fourier coe�cients and thus

has only a minor impact on the decompositions of the di↵erent contributions in Eq. (4.5).

When computing Q for the middle terms in that decomposition, one notices that Eq. (4.5) is

modified by adding one more zero-mode, that is, the contamination through the Kronecker

delta eliminates one sum over an n which in turn also leads to another empty integral over

the group yielding an additional factor in ⇠/a. In Eq. (4.5) this can simply be accounted

for by setting either for the rank r ! r � 1 or for the number of zero-modes s ! s + 1.

Likewise, these shifts are easily applied to the overall general Ginzburg parameter Eq. (4.9)

to incorporate the influence of the gauge constraint. This is consistent with results on

scaling dimensions obtained in renormalization studies of GFTs, see for instance [27, 28]

and in particular the discussion in Appendix C of [36].

4.2 Ginzburg criterion with local variables and non-local degrees of freedom

Let us now consider the case in which both the local (frame) variables and the non-local

(geometric) degrees of freedom are present.

Using Eq. (4.2), the denominator is a simply generalization of Eq. (4.4),
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where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q

parameter, as

Q ⌘

R
⌦⇠

drg ddl� C(ggg,���)
R
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0

=

R
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R
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ddnl✓ ddl� �2
0

, (4.3)

condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is

Z
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0 = ⇠

dnl�2
0 = �
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4
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, (4.4)

where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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On the other hand, for the numerator we have to exercise more caution. Since the correla-

tion function has the usual behavior of exponential decay in the local variables beyond ⇠l,

we can extend the integration region for these variables up to infinity in the limit µ ! 0,
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where the integral over local coordinates �i has been carried out first yielding again delta

distributions �(ki) which simply eliminate all dependence on local variables upon integra-

tion over ki. Moreover, also the coupling ↵(nnn) of these degrees of freedom to the local

variables vanishes. Therefore, the numerator of the quotient Q is exactly the same as if

there had been no local degrees of freedom at all, Eq. (4.5). The result is that the local

degrees of freedom contribute to Q only in terms of the factor ⇠dll in the denominator.

We treat the non-local degrees of freedom first in some more detail at finite compactness

size aG and then in the large aG limit.

Compact case. In the case of finite compactness scale a we have seen in Eq. (3.12)

that the correlation length of the geometric directions behave as ⇠
2
nl ⇠ a

2
/24 for µ ! 0.

Therefore, ⇠nl < a and we cannot extend the integration in the Q parameter up to the

whole of Gr. In order to make the computation more clear, let us split the sum into two

contributions17: one where nnn = 000 and one where nnn 6= 000. We obtain
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In the limit µ ! 0, the first term diverges as µ�1, while the second one is finite because the

series converges. Thus, it can be neglected with respect to the first one, and since ⇠nl/a =

(24)�1/2, neglecting unimportant numerical factors, we can estimate the asymptotics of the

numerator as ⇠ b
�1
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�1 so that the Q-integral is
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and the critical dimension is dl,c = 4. Hence in the limit of compact Abelian Lie group

G one obtains the same result for the critical dimension as for a local statistical field
17
This split is di↵erent in spirit from the one we performed in Section 3.2. Indeed, there it was performed

in order to gain a better physical understanding of the properties of the geometric correlation function,

while here it is just a computational aid.
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the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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On the other hand, for the numerator we have to exercise more caution. Since the correla-

tion function has the usual behavior of exponential decay in the local variables beyond ⇠l,

we can extend the integration region for these variables up to infinity in the limit µ ! 0,
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where the integral over local coordinates �i has been carried out first yielding again delta

distributions �(ki) which simply eliminate all dependence on local variables upon integra-

tion over ki. Moreover, also the coupling ↵(nnn) of these degrees of freedom to the local

variables vanishes. Therefore, the numerator of the quotient Q is exactly the same as if

there had been no local degrees of freedom at all, Eq. (4.5). The result is that the local

degrees of freedom contribute to Q only in terms of the factor ⇠dll in the denominator.

We treat the non-local degrees of freedom first in some more detail at finite compactness

size aG and then in the large aG limit.

Compact case. In the case of finite compactness scale a we have seen in Eq. (3.12)

that the correlation length of the geometric directions behave as ⇠
2
nl ⇠ a

2
/24 for µ ! 0.

Therefore, ⇠nl < a and we cannot extend the integration in the Q parameter up to the

whole of Gr. In order to make the computation more clear, let us split the sum into two

contributions17: one where nnn = 000 and one where nnn 6= 000. We obtain
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In the limit µ ! 0, the first term diverges as µ�1, while the second one is finite because the

series converges. Thus, it can be neglected with respect to the first one, and since ⇠nl/a =

(24)�1/2, neglecting unimportant numerical factors, we can estimate the asymptotics of the

numerator as ⇠ b
�1
000 ⇠ µ

�1 so that the Q-integral is
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and the critical dimension is dl,c = 4. Hence in the limit of compact Abelian Lie group

G one obtains the same result for the critical dimension as for a local statistical field
17
This split is di↵erent in spirit from the one we performed in Section 3.2. Indeed, there it was performed

in order to gain a better physical understanding of the properties of the geometric correlation function,

while here it is just a computational aid.
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thus critical dimension = 4; same as in local QFT

non-local dofs give negligible contribution

• we find:

theory on Rdl [38, 58]. This indicates that the mixed theory of local and non-local degrees

of freedom becomes e↵ectively local in this limit. Finally, notice that in Eq. (4.14) the

strength of the minimal coupling of the local scalar degrees of freedom is absorbed in ⇠l

via Eq. (3.8) and would thus only enter through a simple pre-factor. This holds also in the

ensuing scenario where we take the non-compact limit of G.

Non-compact case. In the case of of non-compact Abelian Lie group G, instead, we will

consider, as in the previous subsection, only the middle terms in the expansion of Eq. (3.17),

whose typical contribution to the numerator QN of the Q parameter is still given by

equation Eq. (4.5). Indeed, since for µ ! 0 the correlation length ⇠l diverges, we can

extend the integration over the frame-variable part to infinity and essentially reduce the

analysis to the one we have done above. As a consequence, we find again Eq. (4.6) such

that using ⇠
2
nl ⇠ ⇠

2
l ⇠ µ

�1
⌘ ⇠

2, we have the result
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⇠
4�dl�dg(r�s0)

adg(s0�r)
. (4.15)

The critical dimension for the combined system of non-local discrete geometric and local

degrees of freedom is defined from 4 = dl+dg(rc�s0). We observe that the critical rank rc is

reduced via the contribution stemming from the local degrees of freedom. Assuming their

interpretation as (minimally coupled) scalar fields, this result demonstrates the impact

that the inclusion of matter could have on the phase structure of more realistic quantum

gravity models. Moreover, the result for the overall critical dimension suggests that the

theory becomes e↵ectively local in the non-compact limit of the Abelian Lie group G.

Finally, it goes without saying that the more general expression Eq. (4.9) can be easily

adapted to incorporate the impact of the local degrees of freedom yielding
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2
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2V�
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�dl�dg(r�s0)

adg(s0�r)
. (4.16)

As discussed at the end of Section 4.1, the imposition of the gauge constraint leads to

a shift of r ! r � 1 or s0 ! s0 + 1 in the previous expression.

5 Discussion and conclusion

The main goal of this article was to examine, via Landau-Ginzburg mean-field theory,

the phase structure and the phase transition between the broken and unbroken phase of

the related global Z2-symmetry of di↵erent TGFT models. In particular, we considered

models which include R-valued local degrees of freedom. While the geometric degrees of

freedom in TGFTs are non-local in the way they are coupled in the action, one motivation

of the additional local degrees of freedom is that in TGFTs with a quantum geometric

interpretation, i.e. so-called group field theories (GFTs), they correspond to (free and

massless, in the simplest models) minimally coupled (real) scalar fields, as confirmed via

the simplicial gravity path integral expression of GFT Feynman amplitudes [53–55].

The first step of our work involved the proper set up of the Landau-Ginzburg method

in the TGFT context and a careful discussion of the notion of correlation length for such
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Ginzburg criterion for TGFTs

non-local + local directions

compact case

non-compact case

• consider Q in vicinity of phase transition

• local dofs do not contribute (effectively) to numerator

where, as before, we are considering dl local frame variables and dnl = rdG non-local

variables on r copies of G ⇠= U(1)dG and we have assumed isotropy on the local frame-

variable and non-local geometric directions separately.

Since fluctuations in the order parameter are captured by the correlation function,

we see that by defining a quotient measuring their relative importance, the so-called Q
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condition Eq. (4.1) is equivalent to |Q| ⌧ 1. Note that the second equation holds in the

specific Abelian case we are considering (where ⌦⇠ is given by Eq. (4.2)). Here we will be

interested in studying the value of Q at the phase transition characterized by µ ! 0, in

order to assess the validity of mean-field methods around the phase transition. If Q � 1

the system is strongly interacting and fluctuations are large, mean-field theory and the

Gaussian approximation are insu�cient to give a description of the phase transition.

We will employ the working assumptions of Section 3, and in particular we will consider

G ⇠= U(1)dG , with each U(1) volume given by a. First, in Section 4.1, we will consider only

the non-local variables in the large a (non-compact) limit16 Then, in Section 4.2, we will

compute it in the case in which local degrees of freedom are included.

4.1 Ginzburg criterion for non-local variables in the non-compact limit

As we have seen in Section 3.2, the correlation function of this theory is characterized,

due to its non-locality, by di↵erent contributions, characterized by their number s of zero-

modes. These terms behave quite di↵erently depending on whether the e↵ective mass

term bnnn, Eq. (2.32), is positive or not. Contributions with negative e↵ective mass have

to be excluded since they do not play a role in the phase transition. This is because the

relative Cs show no cut-o↵ of the correlations at large scales, even far from criticality.

We thus suggest to exclude these long range contributions from the computation of the

Q integral, since, as we have reviewed above, the Ginzburg criterion is directly related to

the exponential fall o↵ of correlations beyond a certain scale, i.e. the correlation length.

Having made these premises, let us explicitly compute theQ integral. The denominator

of the integral for a sum over quartic interactions with uniform minimum Eq. (2.16) is
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where ⇠ ⌘ ⇠nl is given by Eq. (3.24). Thus ⇠2 ⇠ µ
�1 asymptotically. On the other hand, the

numerator is a sum of integrals over terms Ĉs with s zero-modes, Eq. (3.17), contributing

16
In Section 3.1, we have seen that the correlation length is always finite in the compact case, even when

µ ! 0, suggesting that the phase transition is not present in these models, as also emphasized in [33].
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On the other hand, for the numerator we have to exercise more caution. Since the correla-

tion function has the usual behavior of exponential decay in the local variables beyond ⇠l,

we can extend the integration region for these variables up to infinity in the limit µ ! 0,

thus leaving us with
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where the integral over local coordinates �i has been carried out first yielding again delta

distributions �(ki) which simply eliminate all dependence on local variables upon integra-

tion over ki. Moreover, also the coupling ↵(nnn) of these degrees of freedom to the local

variables vanishes. Therefore, the numerator of the quotient Q is exactly the same as if

there had been no local degrees of freedom at all, Eq. (4.5). The result is that the local

degrees of freedom contribute to Q only in terms of the factor ⇠dll in the denominator.

We treat the non-local degrees of freedom first in some more detail at finite compactness

size aG and then in the large aG limit.
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In the limit µ ! 0, the first term diverges as µ�1, while the second one is finite because the

series converges. Thus, it can be neglected with respect to the first one, and since ⇠nl/a =

(24)�1/2, neglecting unimportant numerical factors, we can estimate the asymptotics of the
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and the critical dimension is dl,c = 4. Hence in the limit of compact Abelian Lie group

G one obtains the same result for the critical dimension as for a local statistical field
17
This split is di↵erent in spirit from the one we performed in Section 3.2. Indeed, there it was performed

in order to gain a better physical understanding of the properties of the geometric correlation function,

while here it is just a computational aid.
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models which include R-valued local degrees of freedom. While the geometric degrees of

freedom in TGFTs are non-local in the way they are coupled in the action, one motivation

of the additional local degrees of freedom is that in TGFTs with a quantum geometric

interpretation, i.e. so-called group field theories (GFTs), they correspond to (free and

massless, in the simplest models) minimally coupled (real) scalar fields, as confirmed via

the simplicial gravity path integral expression of GFT Feynman amplitudes [53–55].

The first step of our work involved the proper set up of the Landau-Ginzburg method
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• closure condition: 

Quartic interactions are the most relevant ones for testing the validity of mean-field

phase transitions but our setting allows to compute Q also for interactions of any other

order. For a single interaction given by a V�-valent graph � yielding at least an s0-fold

zero-mode and by using Eq. (2.13) for the general vacuum solution �0, one finds in the

large a limit
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⇣
⇠
a
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⌘
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◆ 2
V��2

(4.9)

In fact, this is simply the well known scaling of the coupling in a momentum scale k ⇠ 1/⇠

known from renormalization (see for example Eq. (3.1), (3.5) in [36], there n = V�/2).

That is, the Ginzburg Q at large ⇠ in the large a limit for a single interaction � is exactly

(up to some irrelevant constant) some power of the rescaled coupling �̄� ,

Q ⇠ �

2
V��2
�

⇠

2V�
V��2

�dG(r�s0)

adG(s0�r)
= �̄

2
V��2
� . (4.10)

Thus, from the renormalization perspective this calculation of the Ginzburg Q is just an

alternative way to determine the scaling of couplings with an RG scale, or equivalently, the

scaling exponents of the couplings at the Gaussian fixed point.

Imposing the closure constraint. As commented on in Section 2.2, the imposition of

the closure condition leads to a slight modification of the correlator, giving Eq. (2.35). To

understand how the inclusion of the gauge constraint a↵ects the numerator of the Ginzburg-

parameter, one first has to appreciate that it essentially contaminates the expansion of the

correlation function in Eq. (3.14) with a factor �(
P

i ni) via its Fourier coe�cients and thus

has only a minor impact on the decompositions of the di↵erent contributions in Eq. (4.5).

When computing Q for the middle terms in that decomposition, one notices that Eq. (4.5) is

modified by adding one more zero-mode, that is, the contamination through the Kronecker

delta eliminates one sum over an n which in turn also leads to another empty integral over

the group yielding an additional factor in ⇠/a. In Eq. (4.5) this can simply be accounted

for by setting either for the rank r ! r � 1 or for the number of zero-modes s ! s + 1.

Likewise, these shifts are easily applied to the overall general Ginzburg parameter Eq. (4.9)

to incorporate the influence of the gauge constraint. This is consistent with results on

scaling dimensions obtained in renormalization studies of GFTs, see for instance [27, 28]

and in particular the discussion in Appendix C of [36].

4.2 Ginzburg criterion with local variables and non-local degrees of freedom

Let us now consider the case in which both the local (frame) variables and the non-local

(geometric) degrees of freedom are present.

Using Eq. (4.2), the denominator is a simply generalization of Eq. (4.4),
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(minor effect only because group is abelian)
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• phase transitions requires non-compact group or local directions

• presence of local directions improves validity of mean field treatment ("matter matters")

• interesting to generalise to more involved "matter" couplings

• no insight yet (because of simplicity of models) on geometric/spacetime/physics interpretation
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

• field

1 Introduction

Conjecture: Results independent of simplicity constraints; critical behavior dominated by

null faces. are these null configs or degenerate ones? check e.g. Ref. [1]

2 Landau-Ginzburg theory for TGFTs with local directions

The ensuing Section introduces Landau-Ginzburg mean-field theory applied to tensorial

group field theories for quantum geometries with Lorentzian signature including local de-

grees of freedom which may be interpreted as massless and free scalar fields minimally

coupled to the discrete geometry. In contrast to standard applications of this method, we

are thus dealing with hybrid theories of both local and non-local degrees of freedom. The

groundwork for this was laid in Refs. [2, 3], which focused on simplified models. We use

these works as a template hereafter, however, the unique selling point of this article is that

we render the models considered here more realistic in the sense that the non-local geomet-

ric degrees of freedom of the group field live on the Lorentz group SL(2,C) and are subject

to gauge and simplicity constraints. Working within the “extended formulation”, wherein

the domain of the group field is extended by a timelike normal vector, these symmetries

can be imposed in a covariant and commuting way. The non-compactness of the Lorentz

group together with its intricate representation theory requires the introduction of a careful

regularization scheme via a Wick rotation and a discussion on the correlation length prior

to inferring results on the critical behavior of such theories afterwards in Section 4.

2.1 Tensorial group field theory with Lorentzian signature in the extended

formulation including local directions

Kinematics: In tensorial group field theory aiming to describe 4d quantum geometries

with Lorentzian signature, the complex or real-valued field � lives on rank r = 4 copies

of the Lie Group G = SL(2,C), the local gauge group of gravity. These geometric degrees

of freedom are subject to combinatorially non-local interactions. In this work, we import

and apply the prescription given for extending the domain of the GFT field to include the

3-hyperboloid H
3, as developed in the context of the extended Lorentzian Barrett Crane

GFT model in Ref. [4] in which the non-local interactions are only of simplicial type. No-

tice that the extended version of the Euclidean and Lorentzian Barrett Crane model [5–8]

was developed in Refs. [4, 9] to resolve the issues of non-covariant and non-commutative

imposition of simplicity and closure constraints (given below) of the earlier formulations.

In addition, we introduce frame coordinates � 2 R
dloc , which can be motivated through the

minimal coupling of scalar fields to the quantum geometry [10–12], which extend the con-

figuration space of the field to R
dloc⇥SL(2,C)4⇥H

3. The interactions, however, are local in

these variables. Understood as internal degrees of freedom, such coordinates are commonly

used as physical reference frames in the classical and quantum gravity literature [10, 12–18]

which allow to extract the relational evolution of physical quantities.

With this, the fields

�(�, g, X) = �(�1, ...,�dloc , g1, ..., g4, X) : Rdloc ⇥ SL(2,C)4 ⇥H
3
! R or C (2.1)
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was developed in Refs. [4, 9] to resolve the issues of non-covariant and non-commutative

imposition of simplicity and closure constraints (given below) of the earlier formulations.

In addition, we introduce frame coordinates � 2 R
dloc , which can be motivated through the

minimal coupling of scalar fields to the quantum geometry [10–12], which extend the con-

figuration space of the field to R
dloc⇥SL(2,C)4⇥H

3. The interactions, however, are local in

these variables. Understood as internal degrees of freedom, such coordinates are commonly

used as physical reference frames in the classical and quantum gravity literature [10, 12–18]

which allow to extract the relational evolution of physical quantities.

With this, the fields

�(�, g, X) = �(�1, ...,�dloc , g1, ..., g4, X) : Rdloc ⇥ SL(2,C)4 ⇥H
3
! R or C (2.1)
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wherein dg denotes the Haar measure on SL(2,C).Need to clarify here the Haar measure

via the KAK decomposition and relate that to the volume of the hyperboloid. Both diverge

equally like aH3volA+ .1,2 In these expressions X 2 H
3 denotes a timelike vector which is

normal to the tetrahedra described by the GFT fields. It warrants that the geometricity

constraints, given and explained in detail hereafter, are covariantly imposed and commute

with each other. However, since the normal is non-dynamical it does not appear in the

perturbative expansion of the path integral as explained below. The field is subject to the

following symmetries

�(�, g1, g2, g3, g4, X) = �(�, g1u1, g2u2, g3u3, g4u4, X), 8ui 2 SU(2)X , (2.3)

�(�, g1, g2, g3, g4, X) = �(�, g1h
�1

, g2h
�1

, g3h
�1

, g4h
�1

, h ·X), 8h 2 SL(2,C), (2.4)

known as simplicity and right-covariance. The latter implies that the flux variables dual to

the group elements in Eq. (2.1) close to form a 3-simplex, i.e. a tetrahedron, and that the

Feynman amplitudes of the TGFT model assume the form of a generalized lattice gauge

theory partition function []. Typically, the simplicity constraint converts GFT description

of topological BF -theory in 4d, the Ooguri model [19], into one describing gravitational

degrees of freedom.3 The geometric interpretation of these constraints will be further

clarified hereafter.

In fact, the geometric interpretation of the field configurations is most transparent in

the flux representation [20–22] which also expatiates the relation of GFTs and simplicial

path integrals explicit [23, 24]. It is defined by the non-commutative Fourier transform of

the field, i.e.

�̃(�,B, X) = �̃(�, B1, ..., B4, X) =

Z
dgeg1(B1)...eg4(B4)�(�, g1, ..., g4, X) (2.5)

wherein egi denote non-commutative plane waves. Their product is non-commutative, that

is eg(B) ? eg0(B) = egg0(B), as indicated by the star product [21, 22]. The flux variables

Bi 2 sl(2,C) parametrize the momentum space and are bivectors associated to triangles

of a tetrahedron (t 2 ⌧) and their norm yields the area of the respective triangle. Bearing

1Notice that the volume of the Lorentz group is infinite. For the purpose of the Landau-Ginzburg

analysis with a uniform mean-field ansatz this will necessitate a regularization procedure in terms of a

Wick rotation e↵ectively compactifying the group to bypass the occurrence of unphysical divergences, see

Appendix ?? for details. At the final step of our analysis, however, we undo the Wick rotation to obtain

physically meaningful results.
2The remainder of this article is only concerned with real-valued fields. The main conclusions are not

altered by this choice and could be easily carried over to the complex-valued case.
3While in case of the Barrett Crane model the simplicity constraint turns the Ooguri model into one for

Palatini gravity, in the case of the EPRL GFT model it is turned into one for Palatini-Holst gravity.
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• can be expanded in modes (group irreps):

the vector space isomorphism sl(2,C) ⇠=
V2

R
1,3 in mind, the simplicity condition (2.3)

enforces that bivectors are simple with respect to the timelike normal X, that is

XA
�
?B

AB
�
= 0 ) 9ut, vt 2 R

1,3 : Bt = ut ^ vt, (2.6)

with Lorentz indices A,B. Moreover, due to the right-covariance condition (2.4), after

integrating out the timelike normal as explained in a moment, one finds that the bivectors

close, i.e. X

t2⌧
Bt = 0. (2.7)

To determine the correlation function from the linearized equation of motion later on,

we will work in “Fourier” space. For this we give the expansion of the group field subject

to the aforementioned symmetries in terms of representation labels, i.e.

�(�, g, X) =
4Y

i=1

0

@
Z

d⇢i4⇢
2
i

X

ji,mi

D
(⇢i,0)
jimi00

(giX)

1

A�⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

(�) (2.8)

with �⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

(�) ⌘ �⇢10⇢20⇢30⇢40
j1m100j2m200j3m300j4m400

(�). We refer for details on the

representation theory of SL(2,C) to Appendix ??. Here, we notice that a part of the

discrete representation labels vanishes due to the simplicity condition. It implies that the

second SL(2,C)-Casimir operator Cas2 = Bt · ?Bt with eigenvalues ⇢t · ⌫t vanishes. In

this work we focus on the first solution given by ⌫i = 0 which we yield by integrating

out the rotational subgroup SU(2) leading to the homogeneous space SL(2,C)/SU(2). By

plugging this solution into the first Casimir, one observes that the corresponding bivectors

are spacelike. Hence, the fields expressed by Eq. (2.8) form spacelike tetrahedra.4

Since the timelike normals are non-dynamical and solely assist as auxiliary variables

containing extrinsic information information about the embedding of the tetrahedra, they

are integrated out and thus do not appear in the Feynman amplitudes of corresponding

GFT models. Importantly, together with Eq. (2.4) this leads to the closure of the Barrett-

Crane tetrahedron [4].5 The expansion of the fields is then given by

�(�, g) =

Z

H3
dX�(�, g, X)

=
4Y

i=1

0

BB@

Z
d⇢i4⇢

2
i

X

ji,mi;
li,ni

D
(⇢i,0)
jimilini

(gi)

1

CCAB
⇢1⇢2⇢3⇢4
l1n1l2n2l3n3l4n4

�⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

(�), (2.9)

4Notice that the second solution ⇢i = 0 is realized for the field configurations by integrating out the

subgroup SU(1, 1) which leads to the homogeneous space SL(2,C)/SU(1, 1). Its normal X is spacelike and

its bivectors can be either timelike or spacelike, as explained in detail in Refs. [5, 7].
5Alternatively, the timelike normal could also be fixed to some value X0 like in the time-gauge X0 = e,

inducing a preferred (and therefore undesirable) spatial foliation structure. Moreover, for the geometric

interpretation of the field as a tetrahedron to be well-defined, an additional closure condition would have

to be added by hand. Keeping the normal arbitrary and averaging over it, corresponds to a covariant

treatment wherein the closure and thus the BC intertwiner shows up directly and and all spatial foliations

are treated on an equal footing, see also Ref. [4].
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in terms of Barrett-Crane intertwiner

wherein the so-called Barrett-Crane intertwiners [5, 25] are defined by
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Finally, we present the standard Fourier transform on R
dloc which connects the refer-

ence frame representation of the field to that given in terms of its canonically conjugate

momentum space variables k, that is
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wherein � · k ⌘
Pdloc

i=1 ki�i.6

Explain that we only integrate the X out in the action.

Dynamics: As touched on above, the geometric degrees of freedom g of the group field

interact via combinatorially non-local pairing patterns while the interactions are local from

the point of view of the frame coordinates �. Since the timelike normals are non-dynamical

and thus play an ancillary role, they appear in the interactions without any coupling

among fields and are just identified in the kinetic kernel. Hence, the TGFT action on

R
dloc ⇥ SL(2,C)4 ⇥H

3 assumes the general form
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case study: Lorentzian Barrett-Crane model coupled to scalar matter
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Figure 1. From left to right: diagrammatic representation of double-trace melon, melonic, necklace
and simplicial interaction vertex graphs for rank-4 fields. Green half-edges indicate the pairwise
convolution of non-local group arguments g

a
i while red ones are labelled with momenta ki. Red

vertices correspond to fields �(�, gi, Xi) while black ones represent point-like interactions with
respect to �.

We remind the reader that Landau-Ginzburg mean-field theory is most commonly

employed to describe a continuous transition between a symmetric and a broken phase of

a global symmetry of the action such as Z2, U(1) or O(N). Since we focus on real-valued

fields in this work, to model such a second-order phase transition in GFT restricts the

theory space to models with even-powered potentials like the first three which display a

global Z2-symmetry. At rank 4, the simplicial interaction is quintic and thus does not

accommodate this symmetry. It is well known, however, that Landau-Ginzburg mean-field

theory can also be applied to models including an odd-order term in the potential. These

always force the transition to be of first-order and they do not entail a change in global

symmetry [26, 27]. Hence, we can still include the simplicial interaction term in the ensuing

analysis. Before venturing forward, however, we would still like to give further motivation

and context for these types of interaction terms and how they are related to each other.

Should the group field � exhibit tensorial symmetry, i.e. transform under orthogonal

transformations like a rank-4 covariant real tensor, then Eq. (2.13), Eq. (2.14) and Eq. (2.15)

actually correspond to tensor-invariant interactions. In fact, models with this type of

interaction can be related to that with simplicial interaction. As is well-known from the
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but if we want to restrict attention to symmetry breaking phase transition for discrete Z2 symmetry, 
we would pick up only first three

Extension to quantum geometric models (in progress)

case study: Lorentzian Barrett-Crane model coupled to scalar matter



• action

wherein the so-called Barrett-Crane intertwiners [5, 25] are defined by
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Finally, we present the standard Fourier transform on R
dloc which connects the refer-

ence frame representation of the field to that given in terms of its canonically conjugate
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, (2.11)

wherein � · k ⌘
Pdloc

i=1 ki�i.6

Explain that we only integrate the X out in the action.

Dynamics: As touched on above, the geometric degrees of freedom g of the group field

interact via combinatorially non-local pairing patterns while the interactions are local from

the point of view of the frame coordinates �. Since the timelike normals are non-dynamical

and thus play an ancillary role, they appear in the interactions without any coupling

among fields and are just identified in the kinetic kernel. Hence, the TGFT action on

R
dloc ⇥ SL(2,C)4 ⇥H

3 assumes the general form

S[�] = K + V = (�,K�) +
X
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(2.12)

In the following, we will lay out the details of the kinetic and interaction terms therein.

To start o↵, the sum in the interaction term V exhausts a set of vertex graphs � (for

examples, see Fig. 1) with V� denoting the number of vertices therein. Explain the Tr in

the interaction term... The product of Dirac delta distributions runs over the edges of �

which are labelled by (i, a; j, b) with i, j = 1, 2, ..., V� and a, b = 1, 2, ..., 4. While in the local

frame coordinates the interaction terms assume the common point-like form, wherefore a

single integration d� appears, the combinatorial non-locality of the TGFT interactions

with respect to the geometric degrees of freedom describes through its pairing pattern how

di↵erent 3-simplices are glued together across their faces to form the boundary of a 4d

cellular complex. The timelike normals are not coupled in between fields and are only

integrated out. For the sake of transparency, we briefly write out some interaction terms

SIA at rank 4 of this type which are most relevant to this work and depict them in Fig. 1.

6In this article we only consider frame coordinates with Euclidean signature which is common practice

in mean-field studies of statistical field theory.
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with '1234(�, X) = '(�, g1, g2, g3, g4, X) etc.

Figure 1. From left to right: diagrammatic representation of double-trace melon, melonic, necklace
and simplicial interaction vertex graphs for rank-4 fields. Green half-edges indicate the pairwise
convolution of non-local group arguments g

a
i while red ones are labelled with momenta ki. Red

vertices correspond to fields �(�, gi, Xi) while black ones represent point-like interactions with
respect to �.

We remind the reader that Landau-Ginzburg mean-field theory is most commonly

employed to describe a continuous transition between a symmetric and a broken phase of

a global symmetry of the action such as Z2, U(1) or O(N). Since we focus on real-valued

fields in this work, to model such a second-order phase transition in GFT restricts the

theory space to models with even-powered potentials like the first three which display a

global Z2-symmetry. At rank 4, the simplicial interaction is quintic and thus does not

accommodate this symmetry. It is well known, however, that Landau-Ginzburg mean-field

theory can also be applied to models including an odd-order term in the potential. These

always force the transition to be of first-order and they do not entail a change in global

symmetry [26, 27]. Hence, we can still include the simplicial interaction term in the ensuing

analysis. Before venturing forward, however, we would still like to give further motivation

and context for these types of interaction terms and how they are related to each other.

Should the group field � exhibit tensorial symmetry, i.e. transform under orthogonal

transformations like a rank-4 covariant real tensor, then Eq. (2.13), Eq. (2.14) and Eq. (2.15)

actually correspond to tensor-invariant interactions. In fact, models with this type of

interaction can be related to that with simplicial interaction. As is well-known from the
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but if we want to restrict attention to symmetry breaking phase transition for discrete Z2 symmetry, 
we would pick up only first three

• giving eqns motion for constant fields (pending regularization):
�(�; g;X) = �0 therein, one yields

0 = µ
�
a
3
H3volA+
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�0 +

X
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H3volA+

�4V��2
2 +V��1

�
V��2
0
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�
a
3
H3volA+

�
�0. (2.18)

Clearly, the factors proportional to
�
a
3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given

momentarily. From Eq. (2.18) we obtain the minimizers of the classical action. These are

given by the trivial solution and solutions to an algebraic equation of order two less than

the interaction of highest-order. For instance, for a vertex graph � with the same number

of vertices V� = V the minimizers are the i = 1, 2, ..., V� � 2 roots

�
a
3
H3volA+

� 4
2+

V��1
V��2 �0 = ⇣i

0

@�
µ

P
�
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(V��1)!

1

A

1
V��2

, (2.19)

wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields

�0 = 0 if µ > 0 and
�
a
3
H3volA+

� 4
2+

3
2 �0 = ±

s
�

µ
P

�
��

3!

if µ < 0. (2.20)

The latter corresponds to a non-vanishing mean order parameter which describes the phase

of broken global Z2-symmetry.

Clarify variational principle. Correct notation without X otherwise e.g. 2.24 is confus-

ing...In the Gaussian (or quasi-Gaussian) approximation one studies small fluctuations ��

around this state, that is, one linearizes the equation of motion Eq. (2.17) with the ansatz

�(�, g, X) = �0 + ��(�, g, X) (2.21)

yielding
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Tr�\v (�0, ��v0) = 0, (2.22)

wherein ��v0 signifies the insertion of the field �� at v
0
2 �\v while �0 is injected at all

the other vertices. We can rewrite this expression in the following compact form

✓Z

H3
dXK + F [�0]

◆
��(�, g, X) = 0 (2.23)
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• for example, we can choose interactions:

SIA,double melon[�] =
�

4!

Z

R
dloc

d�

Z

SL(2,C)8
[dg]8

Z

H3·4
[dX]4⇥

⇥ �1234(�, X1)�1234(�, X2)�5678(�, X3)�5678(�, X4) (2.13)

SIA,melonic[�] =
�

4!

Z

R
dloc

d�

Z

SL(2,C)8
[dg]8

Z

H3·4
[dX]4⇥

⇥ �1234(�, X1)�5234(�, X2)�5678(�, X3)�1678(�, X4), (2.14)

SIA,necklace[�] =
�

4!

Z

R
dloc

d�

Z

SL(2,C)8
[dg]8

Z

H3·4
[dX]4⇥

⇥ �1234(�, X1)�5634(�, X2)�5678(�, X3)�1278(�, X4), (2.15)

SIA,simplex[�] =
�

5!

Z

R
dloc

d�

Z

SL(2,C)10
[dg]10

Z

H3·5
[dX]5⇥

⇥ �1234(�, X1)�4567(�, X2)�7389(�, X3)�9620(�, X4)�0851(�, X5)

(2.16)

with '1234(�, X) = '(�, g1, g2, g3, g4, X) etc.

Figure 1. From left to right: diagrammatic representation of double-trace melon, melonic, necklace
and simplicial interaction vertex graphs for rank-4 fields. Green half-edges indicate the pairwise
convolution of non-local group arguments g

a
i while red ones are labelled with momenta ki. Red

vertices correspond to fields �(�, gi, Xi) while black ones represent point-like interactions with
respect to �.

We remind the reader that Landau-Ginzburg mean-field theory is most commonly

employed to describe a continuous transition between a symmetric and a broken phase of

a global symmetry of the action such as Z2, U(1) or O(N). Since we focus on real-valued

fields in this work, to model such a second-order phase transition in GFT restricts the

theory space to models with even-powered potentials like the first three which display a

global Z2-symmetry. At rank 4, the simplicial interaction is quintic and thus does not

accommodate this symmetry. It is well known, however, that Landau-Ginzburg mean-field

theory can also be applied to models including an odd-order term in the potential. These

always force the transition to be of first-order and they do not entail a change in global

symmetry [26, 27]. Hence, we can still include the simplicial interaction term in the ensuing

analysis. Before venturing forward, however, we would still like to give further motivation

and context for these types of interaction terms and how they are related to each other.

Should the group field � exhibit tensorial symmetry, i.e. transform under orthogonal

transformations like a rank-4 covariant real tensor, then Eq. (2.13), Eq. (2.14) and Eq. (2.15)

actually correspond to tensor-invariant interactions. In fact, models with this type of

interaction can be related to that with simplicial interaction. As is well-known from the
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but if we want to restrict attention to symmetry breaking phase transition for discrete Z2 symmetry, 
we would pick up only first three

• giving eqns motion for constant fields (pending regularization):
�(�; g;X) = �0 therein, one yields

0 = µ
�
a
3
H3volA+

�
�0 +

X

�

��

(V� � 1)!

�
a
3
H3volA+

�4V��2
2 +V� �

V��1
0

=

 
µ+

X

�

��

(V� � 1)!

�
a
3
H3volA+

�4V��2
2 +V��1

�
V��2
0

!
�
a
3
H3volA+

�
�0. (2.18)

Clearly, the factors proportional to
�
a
3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given

momentarily. From Eq. (2.18) we obtain the minimizers of the classical action. These are

given by the trivial solution and solutions to an algebraic equation of order two less than

the interaction of highest-order. For instance, for a vertex graph � with the same number

of vertices V� = V the minimizers are the i = 1, 2, ..., V� � 2 roots

�
a
3
H3volA+

� 4
2+

V��1
V��2 �0 = ⇣i

0

@�
µ

P
�

��

(V��1)!

1

A

1
V��2

, (2.19)

wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields

�0 = 0 if µ > 0 and
�
a
3
H3volA+

� 4
2+

3
2 �0 = ±

s
�

µ
P

�
��

3!

if µ < 0. (2.20)

The latter corresponds to a non-vanishing mean order parameter which describes the phase

of broken global Z2-symmetry.

Clarify variational principle. Correct notation without X otherwise e.g. 2.24 is confus-

ing...In the Gaussian (or quasi-Gaussian) approximation one studies small fluctuations ��

around this state, that is, one linearizes the equation of motion Eq. (2.17) with the ansatz

�(�, g, X) = �0 + ��(�, g, X) (2.21)

yielding
Z

H3
dXK��+

X

�

��

V� !

V�Y

i=1

✓Z

H3
dXi

◆ X

v,v02V�

Tr�\v (�0, ��v0) = 0, (2.22)

wherein ��v0 signifies the insertion of the field �� at v
0
2 �\v while �0 is injected at all

the other vertices. We can rewrite this expression in the following compact form

✓Z

H3
dXK + F [�0]

◆
��(�, g, X) = 0 (2.23)

– 10 –

�(�; g;X) = �0 therein, one yields

0 = µ
�
a
3
H3volA+

�
�0 +

X

�

��

(V� � 1)!

�
a
3
H3volA+

�4V��2
2 +V� �

V��1
0

=

 
µ+

X

�

��

(V� � 1)!

�
a
3
H3volA+

�4V��2
2 +V��1

�
V��2
0

!
�
a
3
H3volA+

�
�0. (2.18)

Clearly, the factors proportional to
�
a
3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given

momentarily. From Eq. (2.18) we obtain the minimizers of the classical action. These are

given by the trivial solution and solutions to an algebraic equation of order two less than

the interaction of highest-order. For instance, for a vertex graph � with the same number

of vertices V� = V the minimizers are the i = 1, 2, ..., V� � 2 roots

�
a
3
H3volA+

� 4
2+

V��1
V��2 �0 = ⇣i

0

@�
µ

P
�

��

(V��1)!

1

A

1
V��2

, (2.19)

wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields

�0 = 0 if µ > 0 and
�
a
3
H3volA+

� 4
2+

3
2 �0 = ±

s
�

µ
P

�
��

3!

if µ < 0. (2.20)

The latter corresponds to a non-vanishing mean order parameter which describes the phase

of broken global Z2-symmetry.

Clarify variational principle. Correct notation without X otherwise e.g. 2.24 is confus-

ing...In the Gaussian (or quasi-Gaussian) approximation one studies small fluctuations ��

around this state, that is, one linearizes the equation of motion Eq. (2.17) with the ansatz

�(�, g, X) = �0 + ��(�, g, X) (2.21)

yielding
Z

H3
dXK��+

X

�

��

V� !

V�Y

i=1

✓Z

H3
dXi

◆ X

v,v02V�

Tr�\v (�0, ��v0) = 0, (2.22)

wherein ��v0 signifies the insertion of the field �� at v
0
2 �\v while �0 is injected at all

the other vertices. We can rewrite this expression in the following compact form

✓Z

H3
dXK + F [�0]

◆
��(�, g, X) = 0 (2.23)

– 10 –
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wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields
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(order 4 interactions)
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(order 4 interactions)• in Gaussian approximation
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Clearly, the factors proportional to
�
a
3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given

momentarily. From Eq. (2.18) we obtain the minimizers of the classical action. These are

given by the trivial solution and solutions to an algebraic equation of order two less than

the interaction of highest-order. For instance, for a vertex graph � with the same number

of vertices V� = V the minimizers are the i = 1, 2, ..., V� � 2 roots
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wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields
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if µ < 0. (2.20)

The latter corresponds to a non-vanishing mean order parameter which describes the phase

of broken global Z2-symmetry.

Clarify variational principle. Correct notation without X otherwise e.g. 2.24 is confus-

ing...In the Gaussian (or quasi-Gaussian) approximation one studies small fluctuations ��

around this state, that is, one linearizes the equation of motion Eq. (2.17) with the ansatz
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wherein ��v0 signifies the insertion of the field �� at v
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2 �\v while �0 is injected at all

the other vertices. We can rewrite this expression in the following compact form
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with the Hessian of the interaction part
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which is computed at �(�, g, X) = �0 and entails various combinations of Dirac distri-

butions in the group variables. In particular, when considering the case of a sum over

interaction terms of the same order V , if we inject Eq. (2.19) into Eq. (2.24), we find
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and the operator X�(g,h) corresponds to a sum of products of Dirac distributions the

details of which depend on the combinatorics of the graph �. Comment on the correct

power of the volume factor. Transferred to representation space, one has for the Hessian
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with X
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c0,...,cp denoting combinatorial factors depending on the structure of the graph �. For

the aforementioned tenor-invariant interactions these are all non-trivial. Add a comment

on the form of the expressions in the continuum: How does the Dirac distribution with

complex argument come about? (Need to give examples in the appendix...) Emphasize

and explain need to regularize.
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with operators (in representation space):



case study: Lorentzian Barrett-Crane model coupled to scalar matter

Extension to quantum geometric models (in progress)

• interested in phase transition between

�(�; g;X) = �0 therein, one yields
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Clearly, the factors proportional to
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3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given

momentarily. From Eq. (2.18) we obtain the minimizers of the classical action. These are

given by the trivial solution and solutions to an algebraic equation of order two less than

the interaction of highest-order. For instance, for a vertex graph � with the same number

of vertices V� = V the minimizers are the i = 1, 2, ..., V� � 2 roots
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wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared

to our previous works. Here its due to the integrations over the normals. Below, all nicely

cancels and gives what one expects from a theory where gauge-invariance is imposed. In

particular, for a sum of quartic-order interactions, that is V = 4, one yields
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The latter corresponds to a non-vanishing mean order parameter which describes the phase

of broken global Z2-symmetry.
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Clearly, the factors proportional to
�
a
3
H3volA+

�
are divergent. Their presence is due to

homogenous mean-field ansatz in combination with the imposition of the closure constraint

and the non-local interactions which yields empty integrals. For the purpose of book-

keeping, we retain these factors and note here that a proper regularization will be given
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wherein ⇣i denotes the i’th root of unity. Comment on the extra volume factors as compared
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of broken global Z2-symmetry.

Clarify variational principle. Correct notation without X otherwise e.g. 2.24 is confus-
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with the Hessian of the interaction part

F [�](�, g, X;�0
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which is computed at �(�, g, X) = �0 and entails various combinations of Dirac distri-

butions in the group variables. In particular, when considering the case of a sum over

interaction terms of the same order V , if we inject Eq. (2.19) into Eq. (2.24), we find
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wherein

�̃� =
��P
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(2.26)

and the operator X�(g,h) corresponds to a sum of products of Dirac distributions the

details of which depend on the combinatorics of the graph �. Comment on the correct

power of the volume factor. Transferred to representation space, one has for the Hessian

F̂ [�0](k,⇢, j,m;k0
,⇢0

, j0,m0) =

� µ�(k + k0)
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c mc (2.27)

wherein

X̂�(⇢, j,m) =
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�(⇢c � i)

4⇢2c (volA+)
�jc,0�mc,0 (2.28)

with X
(�)
c0,...,cp denoting combinatorial factors depending on the structure of the graph �. For

the aforementioned tenor-invariant interactions these are all non-trivial. Add a comment

on the form of the expressions in the continuum: How does the Dirac distribution with

complex argument come about? (Need to give examples in the appendix...) Emphasize

and explain need to regularize.

Likewise, in representation space the kinetic operator reads
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with operators (in representation space):

With this, the 2-point correlation function reads

C(�, g) =

Z

H3
dXC(�, g, X)

=

Z

R
dloc

dk

(2⇡)dloc
ei�·k

4Y

i=1

0

BB@

Z
d⇢i4⇢

2
i

X

ji,mi;
li,ni

D
(⇢i,0)
jimilini

(gi)

1

CCAB
⇢1⇢2⇢3⇢4
l1n1l2n2l3n3l4n4

Ĉ
⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

(k)

(2.30)

with Fourier coe�cients

Ĉ
⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

(k) = Ĉ(k,⇢, j,m)

=
⇣
K̂ + F̂ [�0]

⌘�1
(k,⇢, j,m)

=
1

↵(⇢, j,m)
P

i k
2
i +

1
a2
H3

P
cCas1,⇢c + b⇢,j,m

(2.31)

and the e↵ective mass

b⇢,j,m := µ

 
1�

X

�

�̃�X̂�(⇢, j,m)

!
. (2.32)

Notice that in juxtapositon to local field theories where the e↵ective mass is a constant, here

it depends on the combinatorics of the non-local interactions. For clarity, we give explicit

calculations of the correlation functions for models with the above-discussed interaction

terms Eq. (2.13), Eq. (2.14) and Eq. (2.15) in Appendix D.

-Discussion of non-local structure necessitaing regularization together with non-compactness

of the domain. this serves as a motivation

In particular, we show how the regularized version of the correlation function is related

to the original one by means the simultaneous analytic continuation of the Lie algebras,

Lie group elements and unitary irreducible representations of SL(2,C) and Spin(4). This

mapping was introduced in Ref. [45] where it was referred to as “Wick rotation” in analogy

with the well-known operation in QFT which shifts between Euclidean and Lorentzian

signature for the underlying spacetime manifold.

While the Lie group SL(2,C) is non-compact which leads to infinite-dimensional uni-

tary representations known to be di↵cult to handle, Spin(4) is compact and has finite-

dimensional unitary irreducible representations which are more easily tractable. In partic-

ular, this is due to the fact that Spin(4) ⇠= SU(2)⇥ SU(2) and consequently one can write

its irreducible representations as tensor products of those of SU(2).

construct a mapping the map is realized through

-give wick rotated version of the correlation function: Need to give: -mapping of the
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(k) = Ĉ(k,⇢, j,m)

=
⇣
K̂ + F̂ [�0]

⌘�1
(k,⇢, j,m)

=
1

↵(⇢, j,m)
P

i k
2
i +

1
a2
H3

P
cCas1,⇢c + b⇢,j,m

(2.31)

and the e↵ective mass

b⇢,j,m := µ

 
1�

X

�

�̃�X̂�(⇢, j,m)

!
. (2.32)

Notice that in juxtapositon to local field theories where the e↵ective mass is a constant, here

it depends on the combinatorics of the non-local interactions. For clarity, we give explicit

calculations of the correlation functions for models with the above-discussed interaction

terms Eq. (2.13), Eq. (2.14) and Eq. (2.15) in Appendix D.

-Discussion of non-local structure necessitaing regularization together with non-compactness

of the domain. this serves as a motivation

In particular, we show how the regularized version of the correlation function is related

to the original one by means the simultaneous analytic continuation of the Lie algebras,

Lie group elements and unitary irreducible representations of SL(2,C) and Spin(4). This

mapping was introduced in Ref. [45] where it was referred to as “Wick rotation” in analogy

with the well-known operation in QFT which shifts between Euclidean and Lorentzian

signature for the underlying spacetime manifold.

While the Lie group SL(2,C) is non-compact which leads to infinite-dimensional uni-

tary representations known to be di↵cult to handle, Spin(4) is compact and has finite-

dimensional unitary irreducible representations which are more easily tractable. In partic-

ular, this is due to the fact that Spin(4) ⇠= SU(2)⇥ SU(2) and consequently one can write

its irreducible representations as tensor products of those of SU(2).

construct a mapping the map is realized through

-give wick rotated version of the correlation function: Need to give: -mapping of the

Lorentzian BC intertwiner to that of the Euclideanized/Wick rotated case is simple: The

WR transforms the hyberboloid to the sphere and thus SU(2). One should get expressions

as in the Oriti/Baratin paper on reconsidering the BC model. -To give the expression for

– 12 –

• and the correlation function is given by:With this, the 2-point correlation function reads

C(�, g) =

Z

H3
dXC(�, g, X)

=

Z

R
dloc

dk

(2⇡)dloc
ei�·k

4Y

i=1

0

BB@

Z
d⇢i4⇢

2
i

X

ji,mi;
li,ni

D
(⇢i,0)
jimilini

(gi)

1

CCAB
⇢1⇢2⇢3⇢4
l1n1l2n2l3n3l4n4

Ĉ
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

correlation length

b) via the second moment of the correlation function  

Extension to quantum geometric models (in progress)

• value of correlation length dictated by zero modes contributing to correlation function as: 

Luca Marchetti Research Diary Last modified: May 10, 2022

Zero-modes contributions to the correlation function

Let us compute explicitly the contribution to the correlation function due to different zero modes. In
general, for an s-fold zero mode, we have

Cs(gc1 , . . . , gc%�s) =
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, (II.81)

where % is the rank of the group, B⇢1,...,⇢%�s

0,...,0 is the BC intertwiner evaluated on the s-fold zero modes, and
bc1,...,cs is the effective mass of the s-fold zero mode. Using equation (A.1) we can decompose the above
integral in terms of the small Wigner matrices d(⇢u,0)

ju00
(ru/a) (notice that here we have introduced a scale a

so that r is dimensionful). We then have
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where ku is an element of SU(2). What is especially important for our purposes is the evaluation of the
integral over d⇢u, Ijc1 ,...,jc%�s

. Let us consider the case in which %� s > 0, since the remaining case is trivial.
In this case, let us recall a couple of important properties of the functions present in the above integral.

1. First, the representation functions d⇢u,0
ju00

are entire functions of ⇢u, and they are exponentially
suppressed for large imaginary parts of ⇢; moreover, they are even in ⇢u.

2. The same properties apply for the BC intertwiner, which is after all just the integration of the
representation functions d⇢u,0000 (r/a) over r.

Then, suppose that we want to integrate the above expression over d⇢1. We can use the residue theorem,
closing the contour for instance on the upper half of the complex plane. The only pole circled by the
contour is then

⇢̄1 = i

vuut
%�sX

v=2

⇢2v + (%� s) + a2bc1,...,cs (II.83)

Now, we want to study the asymptotic behavior of the integral for large values of rc1 , . . . , rc⇢�s . To do this,
let us restrict to the isotropic configuration rc1 = rc2 = · · · = rc⇢�s ⌘ r. Now, the asymptotic behavior of
the integral is of course determined by the asymptotic behavior of the representation functions. As long as
the values of ⇢u are not in with n an integer, this asymptotic behavior is given by equation (A.10). On
those points, the expansion of the Gauss hypergeometric function used in order to obtain that result is not
well defined. We assume that these points are avoided by appropriately deforming the contour of integration
in the following computations; as we will see below, this assumption is a posteriori well motivated. Using
the symmetries of the integral, we can again restrict any analytic continuation of the functions involved
to the upper side of the complex plane, and we can thus write the d(⇢u,0)

ju00
(r/a) ⇠ e�r/aei⇢ur/ac⇢(ju). The

phase appearing in the integral Ijc1 ,...,jc%�s
, therefore, after being evaluated on ⇢̄1 becomes
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we find that, around the critical point µ ! 0 (i.e. by expanding the exponential factor in equation (II.88)
in b), the correlation length is given by

⇠s =
1

abc1,...,cs
/

1

aµ
. (II.90)

The largest of the ⇠s for all s thus determines the correlation length of the system. Notice that here, one
must exclude the situations in which bc1,...,cs  0, in which case there is no effective exponential suppression.
As we have discussed in the other paper, these contributions are unphysical.

Flat limit. We can compare these results to those we have obtained in the first paper by considering the
limit a ! 1 before the limit µ ! 0. Indeed, in this case the measure becomes µ(r/a) ⇠ (r/a)2, i.e. the
hyperboloid becomes a simple three-dimensional flat vector space. In this case we have that the exponential
behavior is given by

exp

(
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q
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, (II.91)

so
⇠2s =

1

a(%� s)bc1,...,cs
/ µ�1 , (II.92)

which is what we expected.

Computation of the Q-integral

In order to compute the Q-integral in the SL(2,C) case we first need to define properly the map between
Spin(4) and SL(2,C) data. In the group space, this map amounts to a Wick rotation t ! it = r and an
extension of the domain from t 2 [0, 2⇡a) to r 2 [0,1). Here, a is a scale that has been introduced in order
to make t dimensionful. We could see it to be equivalent to a curvature scale; indeed, the map t ! it = r
can be equivalently obtained by mapping a ! �ia, so to make a2 ! �a2 go from positive to negative.
Since mapping a2 ! �a2 maps a space of positive curvature into one of negative curvature, a2 has the
natural interpretation of “curvature” of the space.

Technically, we cannot deal with the unregularized SL(2,C) group, so we will consider, when necessary, the
domain of r to be in [0,⇤], with ⇤ very large. This means that the group volume of the abelian subgroup
of Spin(4)

Vol(Spin(4)) = Vol(T+) =

Z 2⇡a

0

dt

a
sin2

t

a
= ⇡ (II.93)

(where we have taken to be normalized the SU(2) parts of Spin(4)) becomes, after Wick rotation,
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⇤) . (II.94)

At this point, it is useful to compare the Fourier transforms of functions defined on the two different groups.
In Spin(4) we have

F
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• result, in vicinity of phase transition (vanishing mass coupling) is:

• value of correlation length dictated by zero modes contributing to correlation function as: 
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Now, we want to study the asymptotic behavior of the integral for large values of rc1 , . . . , rc⇢�s . To do this,
let us restrict to the isotropic configuration rc1 = rc2 = · · · = rc⇢�s ⌘ r. Now, the asymptotic behavior of
the integral is of course determined by the asymptotic behavior of the representation functions. As long as
the values of ⇢u are not in with n an integer, this asymptotic behavior is given by equation (A.10). On
those points, the expansion of the Gauss hypergeometric function used in order to obtain that result is not
well defined. We assume that these points are avoided by appropriately deforming the contour of integration
in the following computations; as we will see below, this assumption is a posteriori well motivated. Using
the symmetries of the integral, we can again restrict any analytic continuation of the functions involved
to the upper side of the complex plane, and we can thus write the d(⇢u,0)

ju00
(r/a) ⇠ e�r/aei⇢ur/ac⇢(ju). The

phase appearing in the integral Ijc1 ,...,jc%�s
, therefore, after being evaluated on ⇢̄1 becomes
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we find that, around the critical point µ ! 0 (i.e. by expanding the exponential factor in equation (II.88)
in b), the correlation length is given by

⇠s =
1

abc1,...,cs
/

1

aµ
. (II.90)

The largest of the ⇠s for all s thus determines the correlation length of the system. Notice that here, one
must exclude the situations in which bc1,...,cs  0, in which case there is no effective exponential suppression.
As we have discussed in the other paper, these contributions are unphysical.

Flat limit. We can compare these results to those we have obtained in the first paper by considering the
limit a ! 1 before the limit µ ! 0. Indeed, in this case the measure becomes µ(r/a) ⇠ (r/a)2, i.e. the
hyperboloid becomes a simple three-dimensional flat vector space. In this case we have that the exponential
behavior is given by

exp

(
�(%� s)

r
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"
1 +

s

1 +
a2bc1,...,cs
%� s

#)
⇠ exp

⇢
�r

q
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�
, (II.91)

so
⇠2s =

1

a(%� s)bc1,...,cs
/ µ�1 , (II.92)

which is what we expected.

Computation of the Q-integral

In order to compute the Q-integral in the SL(2,C) case we first need to define properly the map between
Spin(4) and SL(2,C) data. In the group space, this map amounts to a Wick rotation t ! it = r and an
extension of the domain from t 2 [0, 2⇡a) to r 2 [0,1). Here, a is a scale that has been introduced in order
to make t dimensionful. We could see it to be equivalent to a curvature scale; indeed, the map t ! it = r
can be equivalently obtained by mapping a ! �ia, so to make a2 ! �a2 go from positive to negative.
Since mapping a2 ! �a2 maps a space of positive curvature into one of negative curvature, a2 has the
natural interpretation of “curvature” of the space.

Technically, we cannot deal with the unregularized SL(2,C) group, so we will consider, when necessary, the
domain of r to be in [0,⇤], with ⇤ very large. This means that the group volume of the abelian subgroup
of Spin(4)

Vol(Spin(4)) = Vol(T+) =

Z 2⇡a

0

dt

a
sin2

t

a
= ⇡ (II.93)

(where we have taken to be normalized the SU(2) parts of Spin(4)) becomes, after Wick rotation,
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⌘ �iVol(SL(2,C)⇤) = �iVol(A+

⇤) . (II.94)

At this point, it is useful to compare the Fourier transforms of functions defined on the two different groups.
In Spin(4) we have

F
p

jmln
(1) =

Z
dg D̄(p,0)

jmln
(g) = Vol(T+)�p,1�j,0�l,0�m,0�n,0 , (II.95)
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Zero-modes contributions to the correlation function

Let us compute explicitly the contribution to the correlation function due to different zero modes. In
general, for an s-fold zero mode, we have
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where % is the rank of the group, B⇢1,...,⇢%�s

0,...,0 is the BC intertwiner evaluated on the s-fold zero modes, and
bc1,...,cs is the effective mass of the s-fold zero mode. Using equation (A.1) we can decompose the above
integral in terms of the small Wigner matrices d(⇢u,0)
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where ku is an element of SU(2). What is especially important for our purposes is the evaluation of the
integral over d⇢u, Ijc1 ,...,jc%�s

. Let us consider the case in which %� s > 0, since the remaining case is trivial.
In this case, let us recall a couple of important properties of the functions present in the above integral.

1. First, the representation functions d⇢u,0
ju00

are entire functions of ⇢u, and they are exponentially
suppressed for large imaginary parts of ⇢; moreover, they are even in ⇢u.

2. The same properties apply for the BC intertwiner, which is after all just the integration of the
representation functions d⇢u,0000 (r/a) over r.

Then, suppose that we want to integrate the above expression over d⇢1. We can use the residue theorem,
closing the contour for instance on the upper half of the complex plane. The only pole circled by the
contour is then
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Now, we want to study the asymptotic behavior of the integral for large values of rc1 , . . . , rc⇢�s . To do this,
let us restrict to the isotropic configuration rc1 = rc2 = · · · = rc⇢�s ⌘ r. Now, the asymptotic behavior of
the integral is of course determined by the asymptotic behavior of the representation functions. As long as
the values of ⇢u are not in with n an integer, this asymptotic behavior is given by equation (A.10). On
those points, the expansion of the Gauss hypergeometric function used in order to obtain that result is not
well defined. We assume that these points are avoided by appropriately deforming the contour of integration
in the following computations; as we will see below, this assumption is a posteriori well motivated. Using
the symmetries of the integral, we can again restrict any analytic continuation of the functions involved
to the upper side of the complex plane, and we can thus write the d(⇢u,0)
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• study of Ginzburg criterion requires detailed control of map between Spin(4) and SL(2,C), and 
in particular the relation between abelian subgroup of Spin(4) and boost direction in SL(2,C), 
whose regularized volume is:
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we find that, around the critical point µ ! 0 (i.e. by expanding the exponential factor in equation (II.88)
in b), the correlation length is given by
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. (II.90)

The largest of the ⇠s for all s thus determines the correlation length of the system. Notice that here, one
must exclude the situations in which bc1,...,cs  0, in which case there is no effective exponential suppression.
As we have discussed in the other paper, these contributions are unphysical.

Flat limit. We can compare these results to those we have obtained in the first paper by considering the
limit a ! 1 before the limit µ ! 0. Indeed, in this case the measure becomes µ(r/a) ⇠ (r/a)2, i.e. the
hyperboloid becomes a simple three-dimensional flat vector space. In this case we have that the exponential
behavior is given by
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which is what we expected.

Computation of the Q-integral

In order to compute the Q-integral in the SL(2,C) case we first need to define properly the map between
Spin(4) and SL(2,C) data. In the group space, this map amounts to a Wick rotation t ! it = r and an
extension of the domain from t 2 [0, 2⇡a) to r 2 [0,1). Here, a is a scale that has been introduced in order
to make t dimensionful. We could see it to be equivalent to a curvature scale; indeed, the map t ! it = r
can be equivalently obtained by mapping a ! �ia, so to make a2 ! �a2 go from positive to negative.
Since mapping a2 ! �a2 maps a space of positive curvature into one of negative curvature, a2 has the
natural interpretation of “curvature” of the space.

Technically, we cannot deal with the unregularized SL(2,C) group, so we will consider, when necessary, the
domain of r to be in [0,⇤], with ⇤ very large. This means that the group volume of the abelian subgroup
of Spin(4)

Vol(Spin(4)) = Vol(T+) =

Z 2⇡a
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(where we have taken to be normalized the SU(2) parts of Spin(4)) becomes, after Wick rotation,
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At this point, it is useful to compare the Fourier transforms of functions defined on the two different groups.
In Spin(4) we have
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this is what will be taken to infinity in thermodynamic limit, recovering the full SL(2,C)

a = size of compact sectionsP. Dona', F. Gozzini, A. Nicotra, '21
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where we have used that
[Vol(A+

⇤)]
%+3�2

0 ⇠ �µ/� . (II.103)
Let us now come to the denumerator. There, we have to compute
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Z
d%�sg Cs(gc1 , . . . gc%�s) , (II.104)

where I have explicitly considered C to be just a function of g (so, no explicit dependence on X) in order
to define the integration domain (the subscript ⇠ in the integration symbol represents an integration of
each r up to ⇠ < ⇤ ! 1). Moreover, the sum has been restricted to those s (whose minimum is s0) such
that the correlation length is positive. In that case, the correlation function is exponentially decaying and
we can extend the integration over the whole space. The integration can be easily performed in momentum
space recalling equation (II.97). So, we have

Z
d%�sg Cs(gc1 , . . . gc%�s) ⇠

Vol(A+
⇤)

bc1,...,cs
, (II.105)

where the Vol(A+
⇤) comes from the BC intertwiner. As a result, we have
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⇠ ⇠2�̃e2(%�s0)(⇤�⇠)/a , (II.106)

where we have rescaled �̃ ⌘ �Vol(A+
⇤)

3, defined a function f independent on µ and used that µ ⇠ ⇠�1. We
see that the behavior in ⇠ is exponentially suppressed, and dominated by the lowest physical zero-mode.

Instead, notice that if we had taken the flat limit a ! 1 before, the exponential factors would just reduce
to powers, since Vol(A+

⇠
) ⇠ ⇠3 in this limit. Thus, we would have obtained a result of the form

Q ⇠
�̃

µ2


⇠

⇤

�3(%�s0)

⇠ ⇠4�3(%�s0) , (II.107)

since in this limit µ ⇠ ⇠�2.

A SL(2,C) representation function properties

The SL(2,C) representation functions can be decomposed accordingly to the standard KAK decomposition
of the group [10, 4]:
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from which we see that the dependence on r is encoded only on the reduced representation function d(⇢,⌫)
jlq

(r).
This can be in general written as (notation identical to [10], but somewhat similar to [4])
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thus we find exponential suppression, dominated by lowest zero ode

vanishes for each s < r because the integration over the r � s variables produces delta

functions over the corresponding momenta, which are, however, by construction di↵erent

from zero. On the other hand, for s = r, we only have one contribution, proportional to a
2.

This is somehow expected since the non-compactness scale a was introduced in order to

tame the divergences associated to non-locality and the mean-field uniform solution. The

quantity ⇠
2 can be seen in principle as proportional to both the scales of the theory: the

physical one µ
�1 and the regulator a

2, having the same ‘dimension’. We argue that the

divergence ⇠ a
2 of the correlation length is unphysical and that, similarly to what is done

in the usual renormalization procedure of dimensionful quantities in local field theories, it

should be subtracted in order to obtain the physical correlation length [58, 77].

Let us therefore consider the remaining contributions. The integration over ddgs✓

cancels with a
s
G, so the only non-trivial integral involves the remaining r � s variables.

This is easily done in the limit of very large aG. In this case, the sum over the non-zero

momenta divided by a
r�s
G turns into an integral, and we have to compute

Z
ddg(r�s)

p

(2⇡)dg(r�s)

1

p2r�s + bc1,...,cs

Z
ddg(r�s)

✓ ✓
2
r�se

ipppr�s·✓✓✓r�s , (3.22)

where we have denoted, as before, nc/ã ⌘ pc, with pc 2 R, and15
P

nc
/a !

R
dpc/(2⇡). For

a negative e↵ective mass bc1,...,cs < 0, the integral diverges. In this sense, all the s-fold zero-

modes with a negative e↵ective mass produce an infinite correlation length. This is expected

since we have seen above that they generate oscillating correlations suppressed only by a

power-law. This behavior is indeed indicative of correlations at any scale, regardless of

the precise value of µ, taken here to be finite. Here, we are however interested in a finite

correlation length, diverging only when the critical point is reached (i.e. when µ ! 0), in

terms of which one can interpret the behavior of the system around the phase transition.

For this purpose, it is therefore natural to just not consider the terms with negative e↵ective

mass. From the structure of the interaction terms and the arguments discussed below

equation Eq. (3.17), it is clear that a negative e↵ective mass can be obtained only from

s-fold zero-modes with s < s0, where dgs0 is the minimum number of delta functions

appearing in the interactions. For example, a multi-trace containing a fundamental melon

(two vertices connected by r edges) has s0 = 0, a melonic interaction s0 = 1, a necklace

interaction s0 = r/2 and a simpicial interaction s = r � 1, see Table 1 for examples. In

practice, this means that we need to compute the contribution to the correlation length

coming from s � s0-fold zero-modes.

Eq. (3.22) can be easily computed, for a positive e↵ective mass. It is just

X

l

Z
dp

(2⇡)

1

p2cl + bc1,...,cs

Z
d✓ ✓2cle

ipcl✓cl =
2dg(r � s0)

b2c1,...,cs

, (3.23)

15
As in the previous paragraph, the point pc = 0 has also be added to the domain of integration. We

remark again that, being the integrand regular at pc = 0 (for finite µ < 0), and pc = 0 being zero measure,

this does not change the result.

– 18 –

= minimal number of delta 
functions in interactions

• study of Ginzburg criterion requires detailed control of map between Spin(4) and SL(2,C), and 
in particular the relation between abelian subgroup of Spin(4) and boost direction in SL(2,C), 
whose regularized volume is:
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we find that, around the critical point µ ! 0 (i.e. by expanding the exponential factor in equation (II.88)
in b), the correlation length is given by
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The largest of the ⇠s for all s thus determines the correlation length of the system. Notice that here, one
must exclude the situations in which bc1,...,cs  0, in which case there is no effective exponential suppression.
As we have discussed in the other paper, these contributions are unphysical.

Flat limit. We can compare these results to those we have obtained in the first paper by considering the
limit a ! 1 before the limit µ ! 0. Indeed, in this case the measure becomes µ(r/a) ⇠ (r/a)2, i.e. the
hyperboloid becomes a simple three-dimensional flat vector space. In this case we have that the exponential
behavior is given by
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which is what we expected.

Computation of the Q-integral

In order to compute the Q-integral in the SL(2,C) case we first need to define properly the map between
Spin(4) and SL(2,C) data. In the group space, this map amounts to a Wick rotation t ! it = r and an
extension of the domain from t 2 [0, 2⇡a) to r 2 [0,1). Here, a is a scale that has been introduced in order
to make t dimensionful. We could see it to be equivalent to a curvature scale; indeed, the map t ! it = r
can be equivalently obtained by mapping a ! �ia, so to make a2 ! �a2 go from positive to negative.
Since mapping a2 ! �a2 maps a space of positive curvature into one of negative curvature, a2 has the
natural interpretation of “curvature” of the space.

Technically, we cannot deal with the unregularized SL(2,C) group, so we will consider, when necessary, the
domain of r to be in [0,⇤], with ⇤ very large. This means that the group volume of the abelian subgroup
of Spin(4)

Vol(Spin(4)) = Vol(T+) =

Z 2⇡a

0

dt

a
sin2

t

a
= ⇡ (II.93)

(where we have taken to be normalized the SU(2) parts of Spin(4)) becomes, after Wick rotation,

�i

Z ⇤

0

dr

a
sinh2

r

a
⌘ �iVol(SL(2,C)⇤) = �iVol(A+

⇤) . (II.94)

At this point, it is useful to compare the Fourier transforms of functions defined on the two different groups.
In Spin(4) we have

F
p

jmln
(1) =

Z
dg D̄(p,0)

jmln
(g) = Vol(T+)�p,1�j,0�l,0�m,0�n,0 , (II.95)
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this is what will be taken to infinity in thermodynamic limit, recovering the full SL(2,C)

a = size of compact sectionsP. Dona', F. Gozzini, A. Nicotra, '21



Conclusions

• Landau-Ginzburg analysis can be generalised to TGFTs (with both local and non-local directions)


• results consistent with full FRG results (when available)


• additional local directions ("matter components") affect non-trivially the results ("matter matters")


• in non-compact abelian case, critical dimension depends on: rank, order of interaction, minimal 
number of zero modes corresponding to interaction


• mean field critical behaviour of TGFT is like local QFT in effective dimension


• melonic interactions drive the critical behaviour


• gauge constraint gives simple rescaling of critical dimension


• in compact abelian case, TGFT at criticality behaves like local QFT driven by local directions only; 
non-local directions are negligible (no phase transition in purely non-local compact TGFTs)


• phase transitions requires non-compact group or local directions


• presence of local directions improves validity of mean field treatment ("matter matters")


• interesting to generalise to more involved "matter" couplings


• no insight yet (because of simplicity of models) on geometric/spacetime/physics interpretation


• analyses can be performed for quantum geometric models, e.g. Lorentzian Barrett-Crane model ....
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Thank you for your attention!


