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here: TGFT models for QG from random geometry perspective (and, in the end, quantum geometric ones)



How to extract continuum gravitational physics?

. _ AV
- / DeDp el ™0 = ) AT

I
=S w(A) /pgA Ji5a(9a) — /Dg ;i 5(9)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model



How to extract continuum gravitational physics?

. _ AV
- / DeDp el ™0 = ) AT

T
— Zw(A) /DgA el Salga) = /Dg et 5(9)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model

what is continuum physics in TGFT (from perspective of in-built lattice gravity?



How to extract continuum gravitational physics?

. _ AV
- / DeDp el ™0 = ) AT

T
— Zw(A) /DgA el Salga) = /Dg e!5(9)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model

what is continuum physics in TGFT (from perspective of in-built lattice gravity?

coarse-grained description of QG data no detailed info on lattice data -

- coarse grained quantum states result of summing over lattice data



How to extract continuum gravitational physics?

. _ AV
- / DeDp el ™eP = ) AT

T
— Zw(A) /DgA el 9a(9a) = /Dg ¢! 5(9)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model

what is continuum physics in TGFT (from perspective of in-built lattice gravity?

coarse-grained description of QG data no detailed info on lattice data -

- coarse grained quantum states result of summing over lattice data

need to re-sum (at least approximately)
sum over lattices and discrete QG data
- beyond lattice gravity and spin foams arising in perturbative TGFT description

non-perturbative QG physics



How to extract continuum gravitational physics?

. _ AV
- / DeDp el ™eP = ) AT

T
— Zw(A) /DgA el 9a(9a) = /Dg ¢! 5(9)
A

TGFT as (non-perturbative) completion of simplicial path integral/spin foam models for quantum gravity

defining full continuum path integral for quantum gravity = defining full TGFT path integral for suitable model

what is continuum physics in TGFT (from perspective of in-built lattice gravity?

no detailed info on lattice data -

coarse-grained description of QG data
result of summing over lattice data

- coarse grained quantum states

non-perturbative QG phvsics need to re-sum (at least approximately)
P PRy sum over lattices and discrete QG data

- beyond lattice gravity and spin foams arising in perturbative TGFT description

result of collective quantum dynamics of

collective QG physics
fundamental discrete degrees of freedom

- need distinctively field-theoretic approximations
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F\(J) = In Zy[J] Lol = supy(J-¢p—F(J)) (p)=¢ "mean field"

i.e. evaluate (analytically? numerically?) full quantum dynamics!
(full sum over triangulations weighted by simplicial gravity path integral)

expect different phases

and phase transitions

as result of quantum dynamics

which ones are “geometric” geometric phase

in which one does spacetime emerge?

077

same from quantum geometric perspective

Koslowski, '07; DO, ‘07

A. Ashtekar, J. Lewandowski, '94  T. Koslowski, H.
Sahlmann, '10  B. Dittrich, M. Geiller, ’14; B. Bahr, B.
Dittrich, M. Geiller, '16; S. Gielen, DO, L. Sindoni, '13
A. Kegeles, DO, C. Tomlin, '16
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in TGFT models with matter, matter adds non-compact directions » expect different results!
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% full RG analysis for complicated TGFTs very hard

especially true for quantum geometric TGFTs (or GFTs)

» need to learn as much as possible by approximate methods

* look for approximations - simplest approximation: mean field theory

saddle point evaluation of path integral - ~
quantum effective action approx. classical action F [¢] ~ S A (¢)

(used also to extract cosmology from quantum geometric TGFTs)
L. Sindoni, DO, E. Wilson-Ewing, '16 L. Marchetti, DO, '20

« can we say anything about phase transitions at such approximate level?

-« can we estimate when mean field approximation is to be trusted?
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(dynamical field is order parameter)

- compute fluctuations of order parameter (in Gaussian approximation over constant background)

- deduce characteristic scale of correlations (correlation length): §

for continuous phase transitions: § diverges at criticality
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 deduce critical dimension below which mean field theory (and above analysis) fails (fluctuations too large)
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- action: S|®] = (¢, KP) + Z Ay / d¢ Tr.,(®) (correponds to discrete scalar fields with no potential)
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>

interactions combine non-local convolution wrt to group variables (depending on combinatorial graph)
and local integration over flat directions

Vy V4
/Rd]dqurv(CI’) ;= /Rdldlqb/Gwv7 Hdgz' H 5(g§/g§)£[1cp(¢,gi)

example:

kinetic kernel is combined differential operator (here, coupled Laplacian)

d
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- consider eqns of motion: P + Z Ay Z Tr\,(®) =0
8 veV,

variation removes one field (corresp. to one vertex) for any interaction vertex (corresp. to one graph)

« project onto constant field solutions ®(¢,g) = P
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- for sum of interactions with same number of vertices: at®Po =G | — or zero
Vv 27 Ay

- for order 4 interactions, Landau-Ginzburg analysis concern the transition between:

L
— to u <0
427)\7

- Gaussian approximation: consider fluctuations around uniform background (¢, g) = ®g + §P(¢, g)

Bo=0topu>0 and aéCI)O:I:\/

- get 1st order egn for fluctuation: [CoP + Z Ay Z Tr,Y\U(CIDO, 0®,) =0
Y ORVESYVN
the quadratic form in 2nd term is Hessian of interaction term of action (similar to FRG eqgn)
(K + F[®o])6®($,9) = 0

, 0SiA[P ,
F|®|(d,9;0 ., h) = 5<I>(¢,g)5[<1>(]¢’,h) =d0(¢p—¢) ; Ay Z Trp oo ()  at (¢, 9) = &

v, VS
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 then the 2-point correlation function can be computed as:

A ~ - ]:[.
k,j) = (K+ F[®]) " (k,j) = " +
C(k,j) = (K + F[®o])" " (k. j) a(f) X, k2 + - >3-, Casje + 1 — 1o, Ay ()

with non-local interactions producing an effective mass: bj 1= (1 — Z 5\7)87 (3))
Y
- with closure condition (on group variables) [dh®'_, D’<(h)
- c—=

> C(k,j) =
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- definition correlation length = Taylor coefficient of the susceptibility at order two in the momenta =

caveats: = second moment of the correlation function

non-local TGFT interactions
TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

- field expands as: @(k,n) = /ddnleddlqbe_i‘b'ke_w'n/“@(qb,0) 0 = {51, ,@} 0, = {0c1,... 004,
n = {ﬁla 7ﬁr} ﬁc = {nc,la '7nCd(;'}
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note: from now on, restrict to abelian groups G" = U(1)dn1 dy = rda ac = a% = (2ra)de
- definition correlation length = Taylor coefficient of the susceptibility at order two in the momenta =

caveats: = second moment of the correlation function

non-local TGFT interactions
TGFT field domain is not spacetime, thus correlation length indicates "internal" scale

- field expands as: @(k,n) = /ddnleddlqbe_i¢'ke_w'n/“<b(¢,0) 0 = {51, ,@} 0, = {0c1,... 004,
n = {ﬁla 7ﬁr} ﬁc = {nc,la ‘7nCd(;'}
« up to 2nd order in "momenta" (and using isotropy):
C(k,n 1 k? 2
A( ) 1— — [ / ddgdh g p2C(¢, 0) + — — / d19d% ¢ 920(¢,0)]
C(0,0) C(0,0) | 2n 2d,1d
with 0-mode contribution: 0(070) = / d% ¢ d19 C(0,0) = bi
D 0
- obtaining: coupling between
2 = 1 /dd 1«9ddlgbq520(¢ 0) a(O)/ local/non-local dofs
local correlation length”: 1 = 2dlé(0,0) T T
_ 1 bo 27m3a° a’ 4m(—1)"
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for finite a, can consider limit of small 1 to get: &2 ~ s’ Lo Tmbod”
| OOk S = T 13T T 180 o(11)

* in vicinity of phase transition, then: finite non-local contribution to correlation length,
negligible to (diverging) local contirbution - no phase transition without local directions
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* focus on non-local correlation function:
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group is not of this form, but results generalize))

* focus on non-local correlation function:
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non-local contribution in non-compact limit

« consider limit of large a G =~ Rdc (decompactify uniformly; general non-compact Abelian
group is not of this form, but results generalize))

* focus on non-local correlation function:

A

CO) = o | 2O Y amg 3 GOl CO0)
n#£0 c=1 {n}\{iic}#£0

A 1 1
GQchn =) AX() ~2chn

» single out (limiting) contribution from s-fold zero modes, with effective mass bcl,...,cs

Cs (0. A dde(r=s)p  gtprosbr-s
S\VC1y o Ver—s) ™ o dgs (QW)dG(T_S) p%_s + bcl,...,cs

positive effective mass: exponential decay with scale 1/4/bc,.....c.

negative effective mass: polynomially suppressed oscillatory behaviour

- correlation length is then (after subtracting divergent factor)

- infinite (for any mass coupling) if eﬁ?c:tlc\l/e(mass )IS negatlveb d So = minimal number of delta
- : 2 _ a\I" = 50 0 functions in interactions
for positive effective mass & E_ 0: d ( Z ) b2,
s=s C1,-.+,Cs s

diverges at phase transition, just like local case (differences only quantitative)
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For non-local directions only:
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Ginzburg criterion for validity of Gaussian mean field-approx is: ]Q\ < 1

several contributions, from different TGFT interaction vertices, each giving different number of zero-modes

restrict attention to terms with positive effective mass

(only interested in vicinity of phase transition, when correlation length becomes divergent,
and negative effective mass gives divergent correlation length at any value of mass coupling)
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r d dy d
non-local + local directions 0 fgg d"g d%¢ C(g,9) _ fgg d™¢ d%¢ C(6,9)
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- consider Q in vicinity of phase transition

- local dofs do not contribute (effectively) to numerator

compact case

42"}/ 8 dl

* oneobtains: () ~ 2

Z Ay 4 9 thus critical dimension = 4; same as in local QFT

non-local dofs give negligible contribution

non-compact case
54—d1—dg (r—so)

- we find: Q ~ A critical dimension satisfies: 4 = dj+d¢(r.—s0)
T gda(so—r)
in €2N€2N —1252 ]
using  Spr ~ o YH = theory becomes effectively local
2V-
- can generalize to arbitrary interactions i £V —5 —di—da(r—so)
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- Landau-Ginzburg analysis can be generalised to TGFTs (with both local and non-local directions)
- results consistent with full FRG results (when available)
- additional local directions ("matter components") affect non-trivially the results ("matter matters")

* in non-compact abelian case, critical dimension depends on: rank, order of interaction, minimal
number of zero modes corresponding to interaction

« mean field critical behaviour of TGFT is like local QFT in effective dimension
* melonic interactions drive the critical behaviour
« gauge constraint gives simple rescaling of critical dimension

* in compact abelian case, TGFT at criticality behaves like local QFT driven by local directions only;
non-local directions are negligible (no phase transition in purely non-local compact TGFTs)

* phase transitions requires non-compact group or local directions
 presence of local directions improves validity of mean field treatment ("matter matters")
* Interesting to generalise to more involved "matter” couplings

* no insight yet (because of simplicity of models) on geometric/spacetime/physics interpretation
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

- field  ®(¢,9,X) = P(d1, .., Payr Gy oy Ga, X ) : Roc x SL(2,C)* x H? = R or C

 subject to "geometricity constraints

D(p, 91,92, 93, 94, X) = O(, g1u1, gauz, gsus, gauq, X), Vu; € SU(2)x, "simplicity"
(@, 91,92, 93,91, X) = ®(p, g1h™ ", goh ™', gsh™ ', gsh™ ' h- X), Vh € SL(2,C) gauge covariance (closure)

justification:

impose geometricity of simplicial structures dual to TGFT quanta and Feynman diagrams,
discrete counterpart of constraints that reduce topological BF theory to 4d gravity

 can be expanded in modes (group irreps):

4
_ (pi,0 p1P203p4 p1P203 P4
(I)(qﬁ,g) — /I[-]I3 qu)<¢7ga X) o H /dpz4,02 Z Djzmzl T gz Bl1ﬂ112n2l3n3l4n4(I)j1m1j2m2j3m3j4m4(¢)

1=1 Ji,M;
liani

P1P2P3P4 . (¢) _ dk P1P2P3P4 . (k)ez‘qb-k:
J1M17J2M2J3M3J4M4 Rilioc (27T)dloc J1M1J2M27J3M3J4M4

. . . P1P2P3 P4 Pi,
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

- action S[®|=K+V = (9,KP) +Z 'H(/ )/Rdl de Tr., ()
dioc

— d d / dX P (¢, g, ;03 A+ (9,9,
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d / dg,dX; 5(g (o, 9;,
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1=1 (4,0;5,b)

- for example, we can choose interactions:

M ) E

but if we want to restrict attention to symmetry breaking phase transition for discrete Z2 symmetry,
we would pick up only first three

« giving egns motion for constant fields (pending regularization):

A Vy—2 _
0 = pu (agsvola+) ®o + Z (V. Z D) (a%3VOlA+)4 Tt CIDX7 !
¥
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

4.3
* interested in phase transition between ®; =0 if 4 >0 and <CL]%[3V01 A+ 272 \/ if <0

> 5

* in Gaussian approximation ®(¢,g,X) = &9+ 0P(¢p, g, X) (order 4 interactions)

dynamics becomes: ( / dXK + F [%]) 0P (¢, g,X) =0 with operators (in representation space):
H
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

4.3
* interested in phase transition between ®; =0 if 4 >0 and <CL]%[3VOI A+ 272 \/ if <0

> 5

* in Gaussian approximation ®(¢,g,X) = &9+ 0P(¢p, g, X) (order 4 interactions)

dynamics becomes: ( / dXK + F [%]) 0P (¢, g,X) =0 with operators (in representation space):
H3

4
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 and the correlation function is given by:
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

- calculations require regularization:  "Wick rotation" (incl. compactification) to Riemannian BC model

Lorentz group mapped to Spin(4); 3-hyperboloid mapped to

P. Dona', F. ini, A. Nicotra, '21 . / :
ona’, F. Gozzini, cotra, 3-sphere; irreps of Lorentz mapper to irreps of Spin(4); ...

need also generalised regularization including different size of "boost direction”
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Extension to quantum geometric models (in progress)

case study: Lorentzian Barrett-Crane model coupled to scalar matter

- calculations require regularization:  "Wick rotation" (incl. compactification) to Riemannian BC model

P. Dona', F. Gozzini, A. Nicotra, '21 Lorentz group mapped to Spin(4); 3-hyperboloid mapped to
3-sphere; irreps of Lorentz mapper to irreps of Spin(4); ...

need also generalised regularization including different size of "boost direction”

- correlation length
two strategies:
a) via the reciprocal value of the logarithm of the asymptotic correlation function in direct space
b) via the second moment of the correlation function
different routes and different assumptions required to proceed, but same result
« technical challenges:
closure and simplicity (thus projection onto homogeneous space) constraints

non-compactness and non-abelian nature (curvature) of Lorentz group

intricacies of representation theory for Lorentz group

curvature requires taking into account contribution from integration measure

expansion in moments requires care with non-commutative plane waves and/or representation functions
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

correlation length
b) via the second moment of the correlation function

+ value of correlation length dictated by zero modes contributing to correlation function as:

PP

Cs(Gers -1 9c,_s) Y Y H [/dpu4pu ;Z%u)oo(gcu) 0,...,0

My 70 ju70 u=1 a2 qu 1(10u + 1) + bCl, -C

and we are interested in large "distances" on the group (large boosts)

1 1
- result, in vicinity of phase transition (vanishing mass coupling) is: &s = X —
abey,....c  ap

* s0, full correlation length determined by the largest contribution by zero modes
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- study of Ginzburg criterion requires detailed control of map between Spin(4) and SL(2,C), and
in particular the relation between abelian subgroup of Spin(4) and boost direction in SL(2,C),
whose regularized volume is: /A dr
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P. Dona', F. Gozzini, A. Nicotra, '21 a = size of compact sections
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case study: Lorentzian Barrett-Crane model coupled to scalar matter

- study of Ginzburg criterion requires detailed control of map between Spin(4) and SL(2,C), and
in particular the relation between abelian subgroup of Spin(4) and boost direction in SL(2,C),
whose regularized volume is: /A dr

0

—i [ = sinh® L = —iVol(SL(2,C),) = —iVol(A})
a a
this is what will be taken to infinity in thermodynamic limit, recovering the full SL(2,C)

P. Dona', F. Gozzini, A. Nicotra, '21 a = size of compact sections

- Ginzburg parameter is then given by:

4 +)\3
AVol(A -
Q~ gwmx)i’)§3e2<@—8><A—f>/a >~ AL e, e

S=50 Cl,...c5 ClrCs K

thus we find exponential suppression, dominated by lowest zero ode

dcSo = minimal number of delta
functions in interactions



Conclusions

Landau-Ginzburg analysis can be generalised to TGFTs (with both local and non-local directions)
results consistent with full FRG results (when available)
additional local directions ("matter components") affect non-trivially the results ("matter matters")

in non-compact abelian case, critical dimension depends on: rank, order of interaction, minimal
number of zero modes corresponding to interaction

mean field critical behaviour of TGFT is like local QFT in effective dimension
melonic interactions drive the critical behaviour
gauge constraint gives simple rescaling of critical dimension

in compact abelian case, TGFT at criticality behaves like local QFT driven by local directions only;
non-local directions are negligible (no phase transition in purely non-local compact TGFTs)

phase transitions requires non-compact group or local directions

presence of local directions improves validity of mean field treatment ("matter matters")
interesting to generalise to more involved "matter” couplings

no insight yet (because of simplicity of models) on geometric/spacetime/physics interpretation

analyses can be performed for quantum geometric models, e.g. Lorentzian Barrett-Crane model ....
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Landau-Ginzburg analysis can be generalised to TGFTs (with both local and non-local directions)
results consistent with full FRG results (when available)
additional local directions ("matter components") affect non-trivially the results ("matter matters")

in non-compact abelian case, critical dimension depends on: rank, order of interaction, minimal
number of zero modes corresponding to interaction

mean field critical behaviour of TGFT is like local QFT in effective dimension
melonic interactions drive the critical behaviour
gauge constraint gives simple rescaling of critical dimension

in compact abelian case, TGFT at criticality behaves like local QFT driven by local directions only;
non-local directions are negligible (no phase transition in purely non-local compact TGFTs)

phase transitions requires non-compact group or local directions

presence of local directions improves validity of mean field treatment ("matter matters")
interesting to generalise to more involved "matter” couplings

no insight yet (because of simplicity of models) on geometric/spacetime/physics interpretation

analyses can be performed for quantum geometric models, e.g. Lorentzian Barrett-Crane model ....

.... stay tuned ....
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