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Motivation

Conformal Field Theories (CFTs) typically appear as fixed points of the renormalization group,

and are important for both high-energy and statistical phisics
Conformal invariance = tight constraints on correlators
= all the n-point functions are in principle determined by the CFT data:

e Scaling dimensions: Ol(z") = Q(z) =2 0;(x)
= (0i(2)0;(y)) = 65 /|lz — y|*>
e OPE coefficients: 0i(2)0;(y) = >4 cijuP(x, 0y) Ok (y)

= fixes higher n-point functions

Unitarity (reflection positivity in Euclidean case) imposes additional constraints:
Aj,cijr € R, and unitarity bounds (e.g. A; > (d — 2)/2 for scalar operators)

However, in statistical physics there is no reason to have reflection positivity
= complex CFT data are in principle allowed

Complex CFTs could be of theoretical interest [Gorbenko, Rychkov, Zan - 2018
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Complex scaling dimensions

Complex scaling dimensions appear in various ways:

@ Real fixed points with diagonalizable but non-symmetric stability matrix
= Focus or spiral point

(e.g. in systems with long-range disorder [weinrib, Halperin 1952])

@ At complex fixed points appearing after a merger of real fixed points
(e.g. fate of Banks-Zaks fixed point at Ny < Nj‘%rit(]\lc) [Gies, Jaeckel 2005; Kaplan et al. 2000] )

Bly) LG
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Scaling dimensions in the “principal series”

In the large-N limit of tensor models in d dimensions, a special case of complex scaling
dimensions is often found, namely

d
A:5+i’f‘, TGR

also labelling the principal series representations of the Euclidean conformal group SO(d + 1,1)

Such type of dimensions appeared before in other contexts, always in some large-N limit, e.g.:

@ non-supersymmetric orbifolds of N = 4 super Yang-Mills [pymarsky, Kiebznov, Roiban 2005
@ gauge theories with matter in the Veneziano limit [Kaplan et al. 2009]
@ fishnet models [Kazakov et a1 2017-2019]

Typical mechanism:
in the OPE ¢ x ¢, 3 operator O(z) (~ Tr(¢?)) whose dimension A merges with that of its
“shadow operator” A =d — A (= at A = d/2) and then moves into the complex plane
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Spontaneous breaking of conformal symmetry?

If the assumption of conformal invariance in a large N theory leads to a single-trace operator
with a complex scaling dimension of the form d/2 + if,
then in the true low-temperature phase this operator acquires a VEV

Actually two statements at once:
@ Implicit: the conformal vacuum is unstable (AdS/CFT argument)

@ Explicit: there exists a stable vacuum with spontaneous breaking of conformal invariance
({(O(z)) =0in a CFT)

They provided a very neat d = 1 example, in the melonic limit:
two flavors SYK, or SYK-like tensor model, for which both statements can be checked explicitly
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Spontaneous breaking of conformal symmetry?

If the assumption of conformal invariance in a large N theory leads to a single-trace operator
with a complex scaling dimension of the form d/2 + if,
then in the true low-temperature phase this operator acquires a VEV

Actually two statements at once:
@ Implicit: the conformal vacuum is unstable (AdS/CFT argument)

@ Explicit: there exists a stable vacuum with spontaneous breaking of conformal invariance
({(O(z)) =0in a CFT)

They provided a very neat d = 1 example, in the melonic limit:
two flavors SYK, or SYK-like tensor model, for which both statements can be checked explicitly

= can it be proved in some generality? J
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The AdS/CFT picture

AdS/CFT dictionary:

Scalar operator with dimension A in CFT; < scalar field with mass m? = A(A —d) in

AdSg4+1
4
d d?
Ay = — +4/— 2
+ 5 4+m
(!
d d?
A= —+4i = 2 _
2+1r m- < 1
N~
BF bound

= Tachyonic/thermodynamic BF instability (BF = Breitenlohner-Freedman)

2
(notice: no instability for — 4~ < m? < 0, thanks to AdS curvature)
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The AdS/CFT picture

AdS/CFT dictionary:

Scalar operator with dimension A in CFT; < scalar field with mass m? = A(A —d) in

AdSg4+1
4
d d?
Ay = — +4/— 2
+ 5 4+m
(!
d d?
A= —+4i = 2 _
2+1r m- < 1
N~
BF bound

= Tachyonic/thermodynamic BF instability (BF = Breitenlohner-Freedman)

2
(notice: no instability for — 4~ < m? < 0, thanks to AdS curvature)

= First goal: prove instability from the CFT side, without referring to AdS/CFT J
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A standard example of instability

Consider the effective potential of a (Euclidean) scalar field theory in flat space:

W] = log / [dgle= ST e Plg] ——— V(9)

Legendre tr. ¢=const.

Free energy: F' = I'[¢o], with ¢ solution of 6I'/d¢ = 0 (“on shell”)

If V() = m2¢2 + O(43), then:
@ for m? > 0, the ¢9 = 0 configuration is stable (local minimum of F);

@ for m? < 0, the ¢g = 0 configuration is unstable (local maximum of F).

Notice: on AdS, the constant configuration is not a normalizable mode
= ¢(—V?)¢ contributes a positive term = instability bound is shifted to m? < 0
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Aim

Consider a Euclidean quantum field theory whose Schwinger-Dyson equations admit a conformal
solution. If the OPE of two fundmental scalar fields includes a contribution from one primary
operator Oy, of dimension h, = ‘% + i7., with non-vanishing . € R, then the conformal
solution is unstable.

Unlike usual SSB, we are not solving for the VEV of the field ¢ (= 0 in a CFT), but for the
two-point function

And we want to show that the conformal solution is unstable

8/26



Aim

Consider a Euclidean quantum field theory whose Schwinger-Dyson equations admit a conformal
solution. If the OPE of two fundmental scalar fields includes a contribution from one primary
operator Oy, of dimension h, = ‘% + i7., with non-vanishing . € R, then the conformal
solution is unstable.

Unlike usual SSB, we are not solving for the VEV of the field ¢ (= 0 in a CFT), but for the
two-point function

And we want to show that the conformal solution is unstable

= For our purpose we will need the 2PI effective action I'[G] J

8/26



2Pl formalism

Multifield notation:
Ba(x) = $(X) with X = (z,a); [y =2, [ d%, 6(X — X') = 64ar6(z — '), etc.

Introduce a bilocal source:

Wi =t 217] = [lglexp {8l + 5 [ o070x 00}

The 2PI effective action is defined by the Legendre transform:

r[c)

(_W[J] + %Tr[JG]) | ow

1
7 =3C

1 1
51&«[0*(;] + 5 Tr[in G711+ I2[G]

I'2[G]: sum of 2P| diagrams constructed from the vertices of S[¢], but with G as propagator.

The field equations of I'[G] are the Schwinger-Dyson equations:

or
5G(X1, Xz) G=G4

with the self energy given by X[G] = —26I'2/5G

=0 = G UX,X)=CT1X,X")-%(X,X")
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First Hypothesis

Hypothesis 1

Let a Euclidean quantum field theory of N real scalar fields in R% be given, and assume that the
Schwinger-Dyson equations for the two-point functions, for some choice of renormalized
couplings corresponding to a fixed point of the renormalization group, admit a conformal solution

G*(X17X2) ~ 5a1a2|$1 —x2\72A1 ,

where A; € R is the scaling dimension of ¢q,; moreover, also the four-point functions (and
possibly all the other n-point functions, the ones with even n being related to functional
derivatives of T'[G] with respect to G, evaluated at G,) are conformal.

On-shell effective action = free energy : F = I'[G4]

Stability test: introduce fluctuations G = G — G4, expand I'[G] as

6°r
Xl,XQ)éG(Xg, X4) G=Gy

0G(X3,X4)

1
TG -Fe~ - §G(X1, X
Y

and check whether there are perturbations giving a negative contribution.
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First Hypothesis

Hypothesis 1

Let a Euclidean quantum field theory of N real scalar fields in R% be given, and assume that the
Schwinger-Dyson equations for the two-point functions, for some choice of renormalized
couplings corresponding to a fixed point of the renormalization group, admit a conformal solution

G*(X17X2) ~ 5a1a2|$1 —x2\72A1 ,

where A; € R is the scaling dimension of ¢q,; moreover, also the four-point functions (and
possibly all the other n-point functions, the ones with even n being related to functional
derivatives of T'[G] with respect to G, evaluated at G,) are conformal.

On-shell effective action = free energy : F = I'[G4]

Stability test: introduce fluctuations G = G — G4, expand I'[G] as

6°r
Xl,XQ)éG(Xg, X4) G=Gy

0G(X3,X4)

1
TG -Fe~ - §G(X1, X
Y

and check whether there are perturbations giving a negative contribution.

= We need to control the space of fluctuations and the structure of the Hessian J

10/26



Hessian of I'[G] and Bethe-Salpeter kernel

We write the Hessian of the 2Pl effective action as

3°T(G) 1/ 1 1
== GTY (X1, Y1)GT (X2, Ys) (I — K) (Y1, Yo, X3, X
5G(X17X2)5G(X3,X4)’G:G* 2 Y1,Ys * ( ! 1) * ( 2 2)( )( 1 T2 3 4)

where [ is the identity operator

I(X1, X2, X3, X4) = % (6(X1 — X3)5(X2 — X4) + 6(X1 — X4)5(X2 — X3))

and K is the Bethe-Salpeter kernel defined by

52T2[G)
K(X1,Xo, X3, X =72/ G (X1, Y1)Gy (Xo, Y
( ! 2 3 4) Y1,Ys *( ! 1) ( 2 2)5G(Y1,Y2)(5G(X3,X4) G=G,
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The vector space of perturbations

[Dobrev et al. “Harmonic analysis on the n-dimensional Lorentz group and its applications to conformal quantum field theory” 1977]

0G(X1,X2) €V, the space of smooth symmetric functions which are square integrable with
respect to inner product

(f1, f2) = %/X ) (67 (X0 X6 (X, X)

+GH (X1, X4)Gy (X2, X)) f2(X5, X4)
and satisfy the asymptotic boundary conditions!
fi(X1, X2) ~ 21| 7251 for |z1| = oo

fi(X1, X2) ~ |z2] 7222 for |z2| — oo
Shadow space: V= VA, L&,

Notice: G:lG;l V)

V is the union of Kronecker products of two type | (scalar) complementary series representations, satisfying
[Re(Ay — €)| + |Re(ag — &) < ¢

12/26



A basis of bilocal functions o .. o

f €V has the representation

f(X1, X5) = Z /dd / -p(h, J)ZV}{E;HM"(XLXQ;Z)F}i;”“'](z)

JEN

where J is the spin, and
d . o .
P=1<h ) h= 5 +ir,r € Ry : “principal series”

r¢+J) r(h—1)rh- )

p(h, J) = 2(2m)4/2 0 T (4 — h)D(4 — h)

The functions

VELTHI (X1, Xajag) = Nin b 22 (6, (21) 6, (w2) O (23))es EE;

s “ajaz

form a complete and orthonormal basis (in the continuous sense)
and F}'L 17 (z) is the projection of f(X1,X2) on the basis

Analogy to Fourier decomposition: V' <+ plane waves, F' <+ Fourier transform of f
Group theory analogy: V' ~ Clebsch-Gordan coefficients

(h+J—1)(h+J—1): “Plancherel weight”
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Eigenbasis of the Bethe-Salpeter kernel

Hypothesis of conformal invariance = K transforms in the A; X Ag X 33 X 54 rep.

Moreover, if the kernel is real, as we will assume, then it can be shown to be also self-adjoint
(wrt to inner product on V), and thus diagonalizable

J
= we can choose Eg}q, s.t.

/X N K (X1, X2, X3, Xa) VLM (X3, Xa; 2) = ko (R, J) VLM (X1, X235 2)
3,84

3

1
PG -Feg [ 600, Xa)6 (X0, Xs) G (X, Xo)
4 Jx,.. . Xe
x (I- K) (X5, X6, X3, X4)0G (X3, X4)

P> / o P D) 2 (L= ko (b, J))/dsz;‘;Z"”J(z)F;i‘;é’w(z)

JEN
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Eigenbasis of the Bethe-Salpeter kernel

Hypothesis of conformal invariance = K transforms in the A; X Ag X 33 X 54 rep.

Moreover, if the kernel is real, as we will assume, then it can be shown to be also self-adjoint
(wrt to inner product on V), and thus diagonalizable

J
= we can choose Eg}q, s.t.

/ K (X1, Xa, Xg, Xa) V}'U R (Xg, Xa3 2) = ko (hy J) VP19 (X3, X 2)
X3,X4 ’ ’

3

1
r[G] —F:7/ 8G(X1, X2)G7 (X1, X5)G7 (X2, X6)
4 Jx,.. . Xe

x (I—-K) (X5, X6, X3, X4)0G(X3,Xy)

P A-TURP ML B el

JEN

Now we need to introduce the hypothesis of existence of a primary operator Oy, of dimension
e )
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4-point function and Bethe-Salpeter kernel

The Hessian is the inverse of the four-point function, connected and 1Pl in the s-channel:

/ TG Fu(Y1,Ya, X3, Xa) = [(X1, X2, X3, X2)
Y. Ys 6G(X1,X2)5G(Y17Y2) G=a, s 1,12, A3,A4) = 1,2, A3, A4

with

Fs(X1, X2, X3, Xa) =(¢(X1)d(X2)p(X3)p(X4)) — Gu(X1, X2)Gs (X3, X4)

*/Y , ((X1)p(X2)p(Y1)) G 1 (Y1, Y2) (9(Y2)$(X3)$(X4))
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OPE spectrum

_2p(h,J)
Fu(X1, Xo, X3, X4) = Z/
= 27r1 1—ko(h,J)

x / ddzv,:t;,"W(xl,xQ;z)ng;"'“~f<x3,x4;z>
QﬁAf;(h: J) VAV] J J
N J%; / 27r1 1—ko(h,J) Gy (@) Eqay By,

Im(h)

poles at solutions of ks (h,J) =1

» Re(h)
hy ho...

Re(h) = 4

— J J
- = ZZ hn J) J h (J) J(‘T’)EalazEgs%
J N N | !

OPE coeff. Conformal blocks
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Second Hypothesis

Solutions of ks (h, J) =1 = spectrum of primary operators in the OPE of ¢ x ¢

U

Hypothesis 2

Let K(X1, X2, X3, X4) be the Bethe-Salpeter kernel of the conformal field theory of
Hypothesis 1, and assume that it is real, and hence diagonalizable, with eigenvalue ks (h, J),
which for each J and o is real on h € P, and analytically continued to a meromorphic function
in the half-plane Re(h) > d/2.

Moreover, let the equation kq(h, J) = 1 admit, for some fixed J and o, a simple root of the

form h = h, = g +iry, with 7, € R and different from zero.
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Putting the pieces back together

By Hypothesis 1, we have obtained:
1
r[G] - F :f/ 8G (X1, X2)Gy (X1, X5)Gy H (X2, Xo)
4 Jx,.. . Xe

x (I- K) (X5, X6, X3, X4)0G(X3, Xy4)

- Z / %Ph J) Z(l7kc(h’J))/ddZF;i;"uJ(Z)F;;L;;”“J(Z)

JEN

where p(h, J) and the z-integrand are positive functions.

By Hypothesis 2, (1 — ko (h, J)) must change sign on the integration contour around the simple
root hy € P

Theorem

Given Hypothesis 1 and 2, there exist perturbations 6G(X1,X2) € V such that the second
variation of the 2Pl effective action T'|G] around the solution G+ (X1, X2) is negative.
Therefore, the conformal solution G« (X1, X2) is unstable.

Generalizations to complex and/or Grassmann fields, and to d = 1, are possible
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Pictorial explanation

Illustration in the complex h plane of some hypothetical solutions of k(h, J) = 1:

Im(h)
A

1—k(h,J) >0

7

» Re(h)

Re(h) = 4

Black crosses: physical solutions
Gray crosses: their shadow

Blue intervals: 1 — k(h,J) >0
Red intervals: 1 — k(h,J) <0

Im(h)

[

3

1—k(h,J) <0

» Re(h)

Re(h) = ¢
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Example 1: long-range O(N)? model

[Giombi, Klebanov, Tarnopolsky 2017; DB, Gurau, Harribey 2019]

m2¢ 2
r[G] =N? (%m(ﬂs@)%] + %Tr[lnG_l] +— /z G(z,z) + %2 /z G(z,z)? — % /Iy G(z,y)4>

= SDE = G*(z,y)~|z7y|_d/2

K (21,22, 23, 24) = G (21, 23) Gy (2, 24) (3>\2G*(w3,z4)2 — Aad(as — m))

302 T(—d 4 htdyped _ h=J
R A R
(4m)¢ T3 - 250)0(§ + 5)
N\
\\\ “””
Atd=3and g =1: |
- | /
\\\\‘ ,///

mn
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Example 2: Two-flavor SYK-like model 1. e o 210 2009

2N3 Majorana fermions wi”bc, with action:

1 Az
sl = [ar 3 (Gur0u8 + JSimeaviubusud )

i=1.2
)‘7&% a b jc;d a b ;c;d a b ;c ;d
+/dT S Opea (VTUPUSYS + vivkutus +utubusef) |
Symmetry group G D Za X Z2 = G12(7) = (Y3 (7)¥5(0)) =0

3

Conformal solution: G12 = G21 =0,

1
1 1 sgn(r)
Gui = G2 = Gu() = (4#(1+3o¢2)) |AT|1/2

Fluctuations:  (6G11,8G22,8G12,5G21)

1+ a? 202 0 0

: = 2a® 1+ o? 0 0 Kc(71,72373,74)
Bethe-Salpeter kernel: K = 0 0 9e 902 | T iR
0 0 202 2«
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Example 2: Two-flavor SYK-like model .. e oo 20

The matrix structure is diagonalized by the following eigenvectors:

1 1 0 0
1 -1 0 0

1_ 2 _ 3 _ 4
E = 0 , BT = 0 B = 1 » B 1
0 0 1 -1

The kernel K. is diagonalized as usual by (two) three-point conformal structures

_3a(l-a) tan(%(h+%))
1+3a? h—1/2

The interesting eigenvalue is k4(h) =

For oo < 0, the equation k4(h) = 1 admits the solutions h = % +i f(a), where

ftanh(mf/2) = —%

= instability in the (§G12,5G21) sector
= Za2 X Z2 breaks down to diagonal subgroup Zs

e Existence of a stable symmetry-breaking solution shown numerically by Kim et al.

o Similar results in SU(N)2 x O(N) x U(1)? model
(complex scaling dimension = breaking of U(1)? to diagonal subgroup)

2019]
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Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner,Gromov,Kazakov,Korchemsky (2017); Kazakov,Olivucci (2018)]

A non-melonic model which however has a similar structure

@ Two (matrix) complex scalar fields in the adjoint of SU(N), with action

N.
Stamec = — [ (Til6] (<092 61 + 0} (=092 60 + 0] 8l
(4m)2 Jax

2
+ai D> Tr(¢igi) Tr(gl o)) — a3 Tr(g162) Tr(g]6])

i=1

— a3 Tr(161) Tr(¢29]))
Notice: U(1)2 symmetry

@ First line (lack of hermitian conjugate of single-trace vertex) gives in the large-N limit a
very rigid structure of diagrams (fishnets)

@ No wave function renormalization in d < 4 because long-range; but also in d = 4, because
of planar fishnet structure (no melonic two-point function) = trivial solution for G
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Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner,Gromov,Kazakov,Korchemsky (2017); Kazakov,Olivucci (2018)]

@ Double-trace terms are needed for renormalization

@ They are renormalized by a special case of fishnets, those with cycle of length two edges,

i.e. ladders!

% XX X
. x5 % E 15 X

= same renormalization structure as pillow and double-trace in O(N)3 model

@ Spectrum of bilinears is found in the same way from the Bethe-Salpeter equation, with
similar complex scaling dimension in P appearing for real ¢2

@ But trivial solution of SDE G(z,y) = C(z,y) = I'2[G] =07
How can the theorem apply?
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Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner,Gromov,Kazakov,Korchemsky (2017); Kazakov,Olivucci (2018)]

Actually, the vanishing of the self-energy relies on the assumption of unbroken U(1)? symmetry

Source terms:

Soymm [6.7) = N [ oty 3 Ty, y)trlo] (@) (o)

i=1,2
break. [, T ] = zd%y si (2, y)tr[os (z) di (y iz, y)tele] (2)0] (y
Sbreak [¢, T) = N [ d%ad? Tii(@,9)tr[9i (2): (y)] + Fii (. y)trlo] ()] ()]
i=1,2

Breaking term reduces U(1)2 symmetry to Zo?

Legendre transform = new diagrammatic rules with non-vanishing G;;(z,y) and G;;(z,vy) =

non-trivial I'z[G]

Diagrams necessarily have an even number of “symmetry breaking” propagators, hence
5[‘2 _ 5F2 _ §F2
6G7,1G1=G;3=0  6Gi; 1Gu=G:=0  8G571G1=G5;=0
=G5 (z,y) =C(z,y), G;;=G5=0

1

=0,

However, K, ;5;(z1,z2,z3,24) # 0, and at large-N limit, only two 2Pl planar diagrams with
exactly one G;; and one Gj; leading to the same kernel as in O(N)3 model, having a complex
scaling dimension in P

= The fishnet model has an instability associated to the perturbations dG;; and 6G53; )
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Summary and outlook

@ A proof of the Breitenlohner-Freedman instability directly on the CFT side
i.e. CFTs with a primary operator of dimension h = d/2 4 ir are unstable
@ Several melonic examples, as well as fishnet model
@ |t should be stressed that sometimes instability can be avoided (e.g. at imaginary coupling)

@ The large-N limit is not needed for the proof, but probably it is needed for finding an
operator dimension with real part exactly equal to d/2

(open question)

@ Conjecture: “Under the same assumptions, in the true vacuum of the theory, the operator
O}, acquires a non-trivial vacuum expectation value: (Op, ) 7 0.” [Kim, Kiebanov, Tarnopolsky, Zhao
2019

Probably needs further assumptions on the 2Pl effective action

@ Similar technique for a derivation of AdS/CFT from O(N) model
[de Mello Koch, Jevicki, Suzuki,Yoon 2018; Aharony, Chester, Urbach 2020]
= understand the relation between our construction and the proof of the
Breitenlohner-Freedman bound in AdSg4q 7
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