Instability of complex CFTs with operators in the principal series

Dario Benedetti

May 16, 2022 - Heidelberg

Motivation

Conformal Field Theories (CFTs) typically appear as fixed points of the renormalization group, and are important for both high-energy and statistical phisics

Conformal invariance \Rightarrow tight constraints on correlators
\Rightarrow all the n-point functions are in principle determined by the CFT data:

- Scaling dimensions:

$$
\begin{aligned}
& O_{i}^{\prime}\left(x^{\prime}\right)=\Omega(x)^{-\Delta_{i}} O_{i}(x) \\
& \quad \Rightarrow\left\langle O_{i}(x) O_{j}(y)\right\rangle=\delta_{i j} /|x-y|^{2 \Delta_{i}}
\end{aligned}
$$

- OPE coefficients:
$O_{i}(x) O_{j}(y)=\sum_{k} c_{i j k} P\left(x, \partial_{y}\right) O_{k}(y)$ \Rightarrow fixes higher n-point functions

Unitarity (reflection positivity in Euclidean case) imposes additional constraints: $\Delta_{i}, c_{i j k} \in \mathbb{R}$, and unitarity bounds (e.g. $\Delta_{i} \geq(d-2) / 2$ for scalar operators)

However, in statistical physics there is no reason to have reflection positivity \Rightarrow complex CFT data are in principle allowed

Complex CFTs could be of theoretical interest [Gorbenko, Rychkov, Zan - 2018]

Complex scaling dimensions

Complex scaling dimensions appear in various ways:

- Real fixed points with diagonalizable but non-symmetric stability matrix
\Rightarrow Focus or spiral point

(e.g. in systems with long-range disorder [Weinrib, Halperin 1982])
- At complex fixed points appearing after a merger of real fixed points (e.g. fate of Banks-Zaks fixed point at $N_{f}<N_{f}^{\text {crit }}\left(N_{c}\right)$ [Gies, Jaeckel 2005; Kaplan et al. 2009]

Scaling dimensions in the "principal series"

In the large- N limit of tensor models in d dimensions, a special case of complex scaling dimensions is often found, namely

$$
\Delta=\frac{d}{2}+\mathrm{i} r, \quad r \in \mathbb{R}
$$

also labelling the principal series representations of the Euclidean conformal group $S O(d+1,1)$

Such type of dimensions appeared before in other contexts, always in some large- N limit, e.g.:

- non-supersymmetric orbifolds of $\mathcal{N}=4$ super Yang-Mills [Dymarsky, Klebanov, Roiban 2005]
- gauge theories with matter in the Veneziano limit [Kaplan et al. 2009]
- fishnet models [Kazakov et al. 2017-2019]

Typical mechanism:
in the OPE $\phi \times \phi, \exists$ operator $\mathcal{O}(x)\left(\sim \operatorname{Tr}\left(\phi^{2}\right)\right)$ whose dimension Δ merges with that of its "shadow operator" $\widetilde{\Delta}=d-\Delta(\Rightarrow$ at $\Delta=d / 2)$ and then moves into the complex plane

Spontaneous breaking of conformal symmetry?

Conjecture [Kim, Klebanov, Tarnopolsky, Zhao - 2019]

If the assumption of conformal invariance in a large N theory leads to a single-trace operator with a complex scaling dimension of the form $d / 2+i f$, then in the true low-temperature phase this operator acquires a VEV

Actually two statements at once:

- Implicit: the conformal vacuum is unstable (AdS/CFT argument)
- Explicit: there exists a stable vacuum with spontaneous breaking of conformal invariance $(\langle\mathcal{O}(x)\rangle=0$ in a CFT)

They provided a very neat $d=1$ example, in the melonic limit: two flavors SYK, or SYK-like tensor model, for which both statements can be checked explicitly

Spontaneous breaking of conformal symmetry?

Conjecture [Kim, Klebanov, Tarnopolsky, Zhao - 2019]

If the assumption of conformal invariance in a large N theory leads to a single-trace operator with a complex scaling dimension of the form $d / 2+i f$, then in the true low-temperature phase this operator acquires a VEV

Actually two statements at once:

- Implicit: the conformal vacuum is unstable (AdS/CFT argument)
- Explicit: there exists a stable vacuum with spontaneous breaking of conformal invariance $(\langle\mathcal{O}(x)\rangle=0$ in a CFT)

They provided a very neat $d=1$ example, in the melonic limit: two flavors SYK, or SYK-like tensor model, for which both statements can be checked explicitly
\Rightarrow can it be proved in some generality?

The AdS/CFT picture

AdS/CFT dictionary:
Scalar operator with dimension Δ in $\mathrm{CFT}_{d} \Leftrightarrow$ scalar field with mass $m^{2}=\Delta(\Delta-d)$ in AdS_{d+1}
\Downarrow

$$
\begin{gathered}
\Delta_{ \pm}=\frac{d}{2} \pm \sqrt{\frac{d^{2}}{4}+m^{2}} \\
\Downarrow \\
\Delta=\frac{d}{2}+\mathrm{i} r \Leftrightarrow m^{2}<\underbrace{-\frac{d^{2}}{4}}_{\mathrm{BF} \text { bound }}
\end{gathered}
$$

\Rightarrow Tachyonic/thermodynamic BF instability ($\mathrm{BF}=$ Breitenlohner-Freedman)
(notice: no instability for $-\frac{d^{2}}{4} \leq m^{2}<0$, thanks to AdS curvature)

The AdS/CFT picture

AdS/CFT dictionary:
Scalar operator with dimension Δ in $\mathrm{CFT}_{d} \Leftrightarrow$ scalar field with mass $m^{2}=\Delta(\Delta-d)$ in AdS_{d+1}
\Downarrow

$$
\begin{gathered}
\Delta_{ \pm}=\frac{d}{2} \pm \sqrt{\frac{d^{2}}{4}+m^{2}} \\
\Downarrow \\
\Delta=\frac{d}{2}+\mathrm{i} r \Leftrightarrow m^{2}<\underbrace{-\frac{d^{2}}{4}}_{\mathrm{BF} \text { bound }}
\end{gathered}
$$

\Rightarrow Tachyonic/thermodynamic BF instability ($\mathrm{BF}=$ Breitenlohner-Freedman)
(notice: no instability for $-\frac{d^{2}}{4} \leq m^{2}<0$, thanks to AdS curvature)
\Rightarrow First goal: prove instability from the CFT side, without referring to AdS/CFT

A standard example of instability

Consider the effective potential of a (Euclidean) scalar field theory in flat space:

$$
W[J]=\log \int[d \varphi] e^{-S[\varphi]+J \cdot \varphi} \underset{\text { Legendre tr. }}{ } \Gamma[\phi] \xrightarrow[\phi=\text { const. }]{ } V(\phi)
$$

Free energy: $F=\Gamma\left[\phi_{0}\right]$, with ϕ_{0} solution of $\delta \Gamma / \delta \phi=0$ ("on shell")

If $V(\phi)=m^{2} \phi^{2}+O\left(\phi^{3}\right)$, then:

- for $m^{2}>0$, the $\phi_{0}=0$ configuration is stable (local minimum of F);
- for $m^{2}<0$, the $\phi_{0}=0$ configuration is unstable (local maximum of F).

Notice: on AdS, the constant configuration is not a normalizable mode $\Rightarrow \phi\left(-\nabla^{2}\right) \phi$ contributes a positive term \Rightarrow instability bound is shifted to $m^{2}<0$

Aim

Claim

Consider a Euclidean quantum field theory whose Schwinger-Dyson equations admit a conformal solution. If the OPE of two fundmental scalar fields includes a contribution from one primary operator $\mathcal{O}_{h_{\star}}$ of dimension $h_{\star}=\frac{d}{2}+\mathrm{i} r_{\star}$, with non-vanishing $r_{\star} \in \mathbb{R}$, then the conformal solution is unstable.

Unlike usual SSB, we are not solving for the VEV of the field ϕ ($=0$ in a CFT), but for the two-point function

And we want to show that the conformal solution is unstable

Aim

Claim

Consider a Euclidean quantum field theory whose Schwinger-Dyson equations admit a conformal solution. If the OPE of two fundmental scalar fields includes a contribution from one primary operator $\mathcal{O}_{h_{\star}}$ of dimension $h_{\star}=\frac{d}{2}+\mathrm{i} r_{\star}$, with non-vanishing $r_{\star} \in \mathbb{R}$, then the conformal solution is unstable.

Unlike usual SSB, we are not solving for the VEV of the field ϕ ($=0$ in a CFT), but for the two-point function

And we want to show that the conformal solution is unstable
\Rightarrow For our purpose we will need the 2 PI effective action $\Gamma[G]$

2PI formalism

Multifield notation:
$\phi_{a}(x)=\phi(X)$ with $X=(x, a) ; \int_{X}=\sum_{a} \int \mathrm{~d}^{d} x, \delta\left(X-X^{\prime}\right)=\delta_{a a^{\prime}} \delta\left(x-x^{\prime}\right)$, etc.
Introduce a bilocal source:

$$
\mathbf{W}[\mathcal{J}]=\ln Z[\mathcal{J}]=\ln \int[d \phi] \exp \left\{-S[\phi]+\frac{1}{2} \int_{X, Y} \phi(X) \mathcal{J}(X, Y) \phi(Y)\right\}
$$

The 2PI effective action is defined by the Legendre transform:

$$
\begin{aligned}
\boldsymbol{\Gamma}[G] & =\left.\left(-\mathbf{W}[\mathcal{J}]+\frac{1}{2} \operatorname{Tr}[\mathcal{J} G]\right)\right|_{\frac{\delta \mathbf{W}}{\delta \mathcal{J}}=\frac{1}{2} G} \\
& =\frac{1}{2} \operatorname{Tr}\left[C^{-1} G\right]+\frac{1}{2} \operatorname{Tr}\left[\ln G^{-1}\right]+\boldsymbol{\Gamma}_{2}[G]
\end{aligned}
$$

$\boldsymbol{\Gamma}_{2}[G]$: sum of 2 PI diagrams constructed from the vertices of $S[\phi]$, but with G as propagator.

The field equations of $\Gamma[G]$ are the Schwinger-Dyson equations:

$$
\left.\frac{\delta \boldsymbol{\Gamma}}{\delta G\left(X_{1}, X_{2}\right)}\right|_{G=G_{\star}}=0 \Rightarrow G^{-1}\left(X, X^{\prime}\right)=C^{-1}\left(X, X^{\prime}\right)-\Sigma\left(X, X^{\prime}\right)
$$

with the self energy given by $\Sigma[G]=-2 \delta \boldsymbol{\Gamma}_{2} / \delta G$

First Hypothesis

Hypothesis 1

Let a Euclidean quantum field theory of N real scalar fields in \mathbb{R}^{d} be given, and assume that the Schwinger-Dyson equations for the two-point functions, for some choice of renormalized couplings corresponding to a fixed point of the renormalization group, admit a conformal solution

$$
G_{\star}\left(X_{1}, X_{2}\right) \sim \delta_{a_{1} a_{2}}\left|x_{1}-x_{2}\right|^{-2 \Delta_{1}}
$$

where $\Delta_{i} \in \mathbb{R}$ is the scaling dimension of $\phi_{a_{i}}$; moreover, also the four-point functions (and possibly all the other n-point functions, the ones with even n being related to functional derivatives of $\Gamma[G]$ with respect to G, evaluated at G_{\star}) are conformal.

On-shell effective action $=$ free energy : $\mathbf{F}=\boldsymbol{\Gamma}\left[G_{\star}\right]$
Stability test: introduce fluctuations $\delta G=G-G_{\star}$, expand $\Gamma[G]$ as

$$
\boldsymbol{\Gamma}[G]-\left.\mathbf{F} \simeq \frac{1}{2} \int_{X_{1} \ldots X_{4}} \delta G\left(X_{1}, X_{2}\right) \frac{\delta^{2} \boldsymbol{\Gamma}}{\delta G\left(X_{1}, X_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}} \delta G\left(X_{3}, X_{4}\right)
$$

and check whether there are perturbations giving a negative contribution.

First Hypothesis

Hypothesis 1

Let a Euclidean quantum field theory of N real scalar fields in \mathbb{R}^{d} be given, and assume that the Schwinger-Dyson equations for the two-point functions, for some choice of renormalized couplings corresponding to a fixed point of the renormalization group, admit a conformal solution

$$
G_{\star}\left(X_{1}, X_{2}\right) \sim \delta_{a_{1} a_{2}}\left|x_{1}-x_{2}\right|^{-2 \Delta_{1}}
$$

where $\Delta_{i} \in \mathbb{R}$ is the scaling dimension of $\phi_{a_{i}}$; moreover, also the four-point functions (and possibly all the other n-point functions, the ones with even n being related to functional derivatives of $\boldsymbol{\Gamma}[G]$ with respect to G, evaluated at G_{\star}) are conformal.

On-shell effective action $=$ free energy : $\mathbf{F}=\boldsymbol{\Gamma}\left[G_{\star}\right]$
Stability test: introduce fluctuations $\delta G=G-G_{\star}$, expand $\Gamma[G]$ as

$$
\boldsymbol{\Gamma}[G]-\left.\mathbf{F} \simeq \frac{1}{2} \int_{X_{1} \ldots X_{4}} \delta G\left(X_{1}, X_{2}\right) \frac{\delta^{2} \boldsymbol{\Gamma}}{\delta G\left(X_{1}, X_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}} \delta G\left(X_{3}, X_{4}\right)
$$

and check whether there are perturbations giving a negative contribution.
\Rightarrow We need to control the space of fluctuations and the structure of the Hessian

Hessian of $\Gamma[G]$ and Bethe-Salpeter kernel

We write the Hessian of the 2PI effective action as

$$
\left.\frac{\delta^{2} \boldsymbol{\Gamma}[G]}{\delta G\left(X_{1}, X_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}}=\frac{1}{2} \int_{Y_{1}, Y_{2}} G_{\star}^{-1}\left(X_{1}, Y_{1}\right) G_{\star}^{-1}\left(X_{2}, Y_{2}\right)(\mathbb{I}-K)\left(Y_{1}, Y_{2}, X_{3}, X_{4}\right)
$$

where \mathbb{I} is the identity operator

$$
\mathbb{I}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\frac{1}{2}\left(\delta\left(X_{1}-X_{3}\right) \delta\left(X_{2}-X_{4}\right)+\delta\left(X_{1}-X_{4}\right) \delta\left(X_{2}-X_{3}\right)\right)
$$

and K is the Bethe-Salpeter kernel defined by

$$
\begin{aligned}
K\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =-\left.2 \int_{Y_{1}, Y_{2}} G_{\star}\left(X_{1}, Y_{1}\right) G_{\star}\left(X_{2}, Y_{2}\right) \frac{\delta^{2} \boldsymbol{\Gamma}_{2}[G]}{\delta G\left(Y_{1}, Y_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}} \\
& =-\quad \mid
\end{aligned}
$$

Hessian of $\Gamma[G]$ and Bethe-Salpeter kernel

We write the Hessian of the 2PI effective action as

$$
\left.\frac{\delta^{2} \boldsymbol{\Gamma}[G]}{\delta G\left(X_{1}, X_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}}=\frac{1}{2} \int_{Y_{1}, Y_{2}} G_{\star}^{-1}\left(X_{1}, Y_{1}\right) G_{\star}^{-1}\left(X_{2}, Y_{2}\right)(\mathbb{I}-K)\left(Y_{1}, Y_{2}, X_{3}, X_{4}\right)
$$

where \mathbb{I} is the identity operator

$$
\mathbb{I}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\frac{1}{2}\left(\delta\left(X_{1}-X_{3}\right) \delta\left(X_{2}-X_{4}\right)+\delta\left(X_{1}-X_{4}\right) \delta\left(X_{2}-X_{3}\right)\right)
$$

and K is the Bethe-Salpeter kernel defined by

$$
\begin{aligned}
K\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =-\left.2 \int_{Y_{1}, Y_{2}} G_{\star}\left(X_{1}, Y_{1}\right) G_{\star}\left(X_{2}, Y_{2}\right) \frac{\delta^{2} \boldsymbol{\Gamma}_{2}[G]}{\delta G\left(Y_{1}, Y_{2}\right) \delta G\left(X_{3}, X_{4}\right)}\right|_{G=G_{\star}} \\
& =-\quad \mid
\end{aligned}
$$

The vector space of perturbations

[Dobrev et al. "Harmonic analysis on the n-dimensional Lorentz group and its applications to conformal quantum field theory" 1977]
$\delta G\left(X_{1}, X_{2}\right) \in \mathcal{V}$, the space of smooth symmetric functions which are square integrable with respect to inner product

$$
\begin{aligned}
\left(f_{1}, f_{2}\right)=\frac{1}{2} \int_{X_{1} \ldots X_{4}} \overline{f_{1}\left(X_{1}, X_{2}\right)}(& G_{\star}^{-1}\left(X_{1}, X_{3}\right) G_{\star}^{-1}\left(X_{2}, X_{4}\right) \\
& \left.+G_{\star}^{-1}\left(X_{1}, X_{4}\right) G_{\star}^{-1}\left(X_{2}, X_{3}\right)\right) f_{2}\left(X_{3}, X_{4}\right)
\end{aligned}
$$

and satisfy the asymptotic boundary conditions ${ }^{1}$

$$
\begin{array}{ll}
f_{i}\left(X_{1}, X_{2}\right) \sim\left|x_{1}\right|^{-2 \Delta_{1}} & \text { for }
\end{array}\left|x_{1}\right| \rightarrow \infty, ~\left(\left.x_{2}\right|^{-2 \Delta_{2}} \quad \text { for }\left|x_{2}\right| \rightarrow \infty\right.
$$

Shadow space: $\tilde{\mathcal{V}}=\mathcal{V}_{\Delta_{i} \rightarrow \tilde{\Delta}_{i}}$
Notice: $G_{\star}^{-1} G_{\star}^{-1}: \mathcal{V} \rightarrow \tilde{\mathcal{V}}$

[^0]
A basis of bilocal functions

$f \in \mathcal{V}$ has the representation

$$
f\left(X_{1}, X_{2}\right)=\frac{1}{2} \sum_{J \in \mathbb{N}_{0}} \int \mathrm{~d}^{d} z \int_{\mathcal{P}} \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \rho(h, J) \sum_{\sigma} V_{\tilde{h} ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{1}, X_{2} ; z\right) F_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z)
$$

where J is the spin, and

$$
\begin{gathered}
\mathcal{P}=\left\{h \left\lvert\, h=\frac{d}{2}+\mathrm{i} r\right., r \in \mathbb{R}\right\}: \text { "principal series" } \\
\rho(h, J)=\frac{\Gamma\left(\frac{d}{2}+J\right)}{2(2 \pi)^{d / 2} J!} \frac{\Gamma(\tilde{h}-1) \Gamma(h-1)}{\Gamma\left(\frac{d}{2}-h\right) \Gamma\left(\frac{d}{2}-\tilde{h}\right)}(h+J-1)(\tilde{h}+J-1): \quad \text { "Plancherel weight" }
\end{gathered}
$$

The functions

$$
V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{1}, X_{2} ; x_{3}\right)=\mathcal{N}_{h, J}^{\Delta_{1}, \Delta_{2}}\left\langle\phi_{\Delta_{1}}\left(x_{1}\right) \phi_{\Delta_{2}}\left(x_{2}\right) \mathcal{O}_{h}^{\mu_{1} \cdots \mu_{J}}\left(x_{3}\right)\right\rangle_{\mathrm{cs}} E_{a_{1} a_{2}}^{\sigma, J}
$$

form a complete and orthonormal basis (in the continuous sense)
and $F_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z)$ is the projection of $f\left(X_{1}, X_{2}\right)$ on the basis

Analogy to Fourier decomposition: $V \leftrightarrow$ plane waves, $F \leftrightarrow$ Fourier transform of f Group theory analogy: $V \sim$ Clebsch-Gordan coefficients

Eigenbasis of the Bethe-Salpeter kernel

Hypothesis of conformal invariance $\Rightarrow K$ transforms in the $\Delta_{1} \times \Delta_{2} \times \widetilde{\Delta}_{3} \times \widetilde{\Delta}_{4}$ rep.
Moreover, if the kernel is real, as we will assume, then it can be shown to be also self-adjoint (wrt to inner product on \mathcal{V}), and thus diagonalizable
\Rightarrow we can choose $E_{a_{1} a_{2}}^{\sigma, J}$ s.t.

$$
\int_{X_{3}, X_{4}} K\left(X_{1}, X_{2}, X_{3}, X_{4}\right) V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{3}, X_{4} ; z\right)=k_{\sigma}(h, J) V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{1}, X_{2} ; z\right)
$$

$$
\begin{aligned}
\boldsymbol{\Gamma}[G]-\mathbf{F} & \simeq \frac{1}{4} \int_{X_{1} \ldots X_{6}} \delta G\left(X_{1}, X_{2}\right) G_{\star}^{-1}\left(X_{1}, X_{5}\right) G_{\star}^{-1}\left(X_{2}, X_{6}\right) \\
& \times(\mathbb{I}-K)\left(X_{5}, X_{6}, X_{3}, X_{4}\right) \delta G\left(X_{3}, X_{4}\right) \\
& =\frac{1}{8} \sum_{J \in \mathbb{N}_{0}} \int_{\mathcal{P}} \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \rho(h, J) \sum_{\sigma}\left(1-k_{\sigma}(h, J)\right) \int \mathrm{d}^{d} z F_{\tilde{h} ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z) F_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z)
\end{aligned}
$$

Eigenbasis of the Bethe-Salpeter kernel

Hypothesis of conformal invariance $\Rightarrow K$ transforms in the $\Delta_{1} \times \Delta_{2} \times \widetilde{\Delta}_{3} \times \widetilde{\Delta}_{4}$ rep.
Moreover, if the kernel is real, as we will assume, then it can be shown to be also self-adjoint (wrt to inner product on \mathcal{V}), and thus diagonalizable
\Rightarrow we can choose $E_{a_{1} a_{2}}^{\sigma, J}$ s.t.

$$
\int_{X_{3}, X_{4}} K\left(X_{1}, X_{2}, X_{3}, X_{4}\right) V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{3}, X_{4} ; z\right)=k_{\sigma}(h, J) V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{1}, X_{2} ; z\right)
$$

$$
\begin{aligned}
\boldsymbol{\Gamma}[G]-\mathbf{F} & \simeq \frac{1}{4} \int_{X_{1} \ldots X_{6}} \delta G\left(X_{1}, X_{2}\right) G_{\star}^{-1}\left(X_{1}, X_{5}\right) G_{\star}^{-1}\left(X_{2}, X_{6}\right) \\
& \times(\mathbb{I}-K)\left(X_{5}, X_{6}, X_{3}, X_{4}\right) \delta G\left(X_{3}, X_{4}\right) \\
& =\frac{1}{8} \sum_{J \in \mathbb{N}_{0}} \int_{\mathcal{P}} \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \rho(h, J) \sum_{\sigma}\left(1-k_{\sigma}(h, J)\right) \int \mathrm{d}^{d} z F_{\tilde{h} ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z) F_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z)
\end{aligned}
$$

Now we need to introduce the hypothesis of existence of a primary operator $\mathcal{O}_{h_{\star}}$ of dimension $h_{\star} \in \mathcal{P}$

4-point function and Bethe-Salpeter kernel

The Hessian is the inverse of the four-point function, connected and 1 PI in the s-channel:

$$
\left.\int_{Y_{1}, Y_{2}} \frac{\delta^{2} \boldsymbol{\Gamma}[G]}{\delta G\left(X_{1}, X_{2}\right) \delta G\left(Y_{1}, Y_{2}\right)}\right|_{G=G_{\star}} \mathcal{F}_{s}\left(Y_{1}, Y_{2}, X_{3}, X_{4}\right)=\mathbb{I}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

with

$$
\begin{aligned}
\mathcal{F}_{s}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \equiv & \left\langle\phi\left(X_{1}\right) \phi\left(X_{2}\right) \phi\left(X_{3}\right) \phi\left(X_{4}\right)\right\rangle-G_{\star}\left(X_{1}, X_{2}\right) G_{\star}\left(X_{3}, X_{4}\right) \\
& -\int_{Y_{1}, Y_{2}}\left\langle\phi\left(X_{1}\right) \phi\left(X_{2}\right) \phi\left(Y_{1}\right)\right\rangle G_{\star}^{-1}\left(Y_{1}, Y_{2}\right)\left\langle\phi\left(Y_{2}\right) \phi\left(X_{3}\right) \phi\left(X_{4}\right)\right\rangle
\end{aligned}
$$

OPE spectrum

$$
\begin{aligned}
& \mathcal{F}_{s}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)= \sum_{J \in \mathbb{N}_{0}} \int_{\mathcal{P}_{+}} \\
& \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \sum_{\sigma} \frac{2 \rho(h, J)}{1-k_{\sigma}(h, J)} \\
& \times \int \mathrm{d}^{d} z V_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{1}, X_{2} ; z\right) V_{\tilde{h} ; \sigma}^{\mu_{1} \cdots \mu_{J}}\left(X_{3}, X_{4} ; z\right) \\
&= \sum_{J \in \mathbb{N}_{0}} \int_{\mathcal{P}} \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \sum_{\sigma} \frac{2 \hat{\rho}_{\Delta_{i}}(h, J)}{1-k_{\sigma}(h, J)} \mathcal{G}_{h, J}^{\Delta_{i}}\left(x_{i}\right) E_{a_{1} a_{2}}^{\sigma, J} E_{a_{3} a_{4}}^{\sigma, J}
\end{aligned}
$$

$$
\Rightarrow \quad=\sum_{J} \sum_{n} \underbrace{c_{h_{n}(J), J}^{2}}_{\text {OPE coeff. Conformal blocks }} \underbrace{\mathcal{G}_{h_{i}}^{\Delta_{i}}\left(x_{i}\right)}_{h_{n}(J), J} E_{a_{1} a_{2}}^{\sigma, J} E_{a_{3} a_{4}}^{\sigma, J}
$$

Second Hypothesis

Solutions of $k_{\sigma}(h, J)=1 \Rightarrow$ spectrum of primary operators in the OPE of $\phi \times \phi$

Hypothesis 2

Let $K\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ be the Bethe-Salpeter kernel of the conformal field theory of Hypothesis 1 , and assume that it is real, and hence diagonalizable, with eigenvalue $k_{\sigma}(h, J)$, which for each J and σ is real on $h \in \mathcal{P}$, and analytically continued to a meromorphic function in the half-plane $\operatorname{Re}(h) \geq d / 2$.
Moreover, let the equation $k_{\sigma}(h, J)=1$ admit, for some fixed J and σ, a simple root of the form $h=h_{\star} \equiv \frac{d}{2}+\mathrm{i} r_{\star}$, with $r_{\star} \in \mathbb{R}$ and different from zero.

Putting the pieces back together

By Hypothesis 1, we have obtained:

$$
\begin{aligned}
\boldsymbol{\Gamma}[G]-\mathbf{F} \simeq & \frac{1}{4} \int_{X_{1} \ldots X_{6}} \delta G\left(X_{1}, X_{2}\right) G_{\star}^{-1}\left(X_{1}, X_{5}\right) G_{\star}^{-1}\left(X_{2}, X_{6}\right) \\
& \times(\mathbb{I}-K)\left(X_{5}, X_{6}, X_{3}, X_{4}\right) \delta G\left(X_{3}, X_{4}\right) \\
= & \frac{1}{8} \sum_{J \in \mathbb{N}_{0}} \int_{\mathcal{P}} \frac{\mathrm{d} h}{2 \pi \mathrm{i}} \rho(h, J) \sum_{\sigma}\left(1-k_{\sigma}(h, J)\right) \int \mathrm{d}^{d} z F_{\tilde{h} ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z) F_{h ; \sigma}^{\mu_{1} \cdots \mu_{J}}(z)
\end{aligned}
$$

where $\rho(h, J)$ and the z-integrand are positive functions.
By Hypothesis 2, ($1-k_{\sigma}(h, J)$) must change sign on the integration contour around the simple root $h_{\star} \in \mathcal{P}$

Theorem

Given Hypothesis 1 and 2, there exist perturbations $\delta G\left(X_{1}, X_{2}\right) \in \mathcal{V}$ such that the second variation of the $2 P I$ effective action $\Gamma[G]$ around the solution $G_{\star}\left(X_{1}, X_{2}\right)$ is negative.
Therefore, the conformal solution $G_{\star}\left(X_{1}, X_{2}\right)$ is unstable.
Generalizations to complex and/or Grassmann fields, and to $d=1$, are possible

Pictorial explanation

Illustration in the complex h plane of some hypothetical solutions of $k(h, J)=1$:

Black crosses: physical solutions
Gray crosses: their shadow
Blue intervals: $1-k(h, J)>0$
Red intervals: $1-k(h, J)<0$

Example 1: long-range $O(N)^{3}$ model

[Giombi, Klebanov, Tarnopolsky 2017; DB, Gurau, Harribey 2019]

$$
\begin{aligned}
& \boldsymbol{\Gamma}[G]=N^{3}\left(\frac{1}{2} \operatorname{Tr}\left[\left(-\partial^{2}\right)^{\zeta} G\right]+\right.\left.\frac{1}{2} \operatorname{Tr}\left[\ln G^{-1}\right]+\frac{m^{2 \zeta}}{2} \int_{x} G(x, x)+\frac{\lambda_{2}}{4} \int_{x} G(x, x)^{2}-\frac{\lambda^{2}}{8} \int_{x, y} G(x, y)^{4}\right) \\
& \Rightarrow \operatorname{SDE} \Rightarrow G_{\star}(x, y) \sim|x-y|^{-d / 2}
\end{aligned}
$$

$$
K\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=G_{\star}\left(x_{1}, x_{3}\right) G_{\star}\left(x_{2}, x_{4}\right)\left(3 \lambda^{2} G_{\star}\left(x_{3}, x_{4}\right)^{2}-\lambda_{2} \delta\left(x_{3}-x_{4}\right)\right)
$$

$$
=3 \lambda^{2} \bigcup^{-\cdots}-\lambda_{2}
$$

$$
\Rightarrow \quad k(h, J)=\frac{3 g^{2}}{(4 \pi)^{d}} \frac{\Gamma\left(-\frac{d}{4}+\frac{h+J}{2}\right) \Gamma\left(\frac{d}{4}-\frac{h-J}{2}\right)}{\Gamma\left(\frac{3 d}{4}-\frac{h-J}{2}\right) \Gamma\left(\frac{d}{4}+\frac{h+J}{2}\right)}
$$

Example 2: Two-flavor SYK-like model

$2 N^{3}$ Majorana fermions $\psi_{i}^{a b c}$, with action:

$$
\begin{aligned}
S[\psi]= & \int \mathrm{d} \tau \sum_{i=1,2}\left(\frac{1}{2} \psi_{i}^{\mathbf{a}} \partial_{\tau} \psi_{i}^{\mathbf{a}}+\frac{\lambda}{4} \hat{\delta}_{\mathbf{a b c d}}^{t} \psi_{i}^{\mathbf{a}} \psi_{i}^{\mathbf{b}} \psi_{i}^{\mathbf{c}} \psi_{i}^{\mathbf{d}}\right) \\
& +\int \mathrm{d} \tau \frac{\lambda \alpha}{2} \hat{\delta}_{\mathbf{a b c d}}^{t}\left(\psi_{1}^{\mathbf{a}} \psi_{1}^{\mathbf{b}} \psi_{2}^{\mathbf{c}} \psi_{2}^{\mathbf{d}}+\psi_{1}^{\mathbf{a}} \psi_{2}^{\mathbf{b}} \psi_{1}^{\mathbf{c}} \psi_{2}^{\mathbf{d}}+\psi_{1}^{\mathbf{a}} \psi_{2}^{\mathbf{b}} \psi_{2}^{\mathbf{c}} \psi_{1}^{\mathbf{d}}\right),
\end{aligned}
$$

Symmetry group $\mathcal{G} \supset \mathbb{Z}_{2} \times \mathbb{Z}_{2} \Rightarrow G_{12}(\tau)=\left\langle\psi_{1}^{\mathbf{a}}(\tau) \psi_{2}^{\mathbf{a}}(0)\right\rangle=0$

$$
\Downarrow
$$

Conformal solution: $G_{12}=G_{21}=0$,

$$
G_{11}=G_{22}=G_{\star}(\tau)=\left(\frac{1}{4 \pi\left(1+3 \alpha^{2}\right)}\right)^{\frac{1}{4}} \frac{\operatorname{sgn}(\tau)}{|\lambda \tau|^{1 / 2}}
$$

Fluctuations: $\quad\left(\delta G_{11}, \delta G_{22}, \delta G_{12}, \delta G_{21}\right)$

Bethe-Salpeter kernel: $K=\left(\begin{array}{cccc}1+\alpha^{2} & 2 \alpha^{2} & 0 & 0 \\ 2 \alpha^{2} & 1+\alpha^{2} & 0 & 0 \\ 0 & 0 & 2 \alpha & 2 \alpha^{2} \\ 0 & 0 & 2 \alpha^{2} & 2 \alpha\end{array}\right) \frac{K_{c}\left(\tau_{1}, \tau_{2} ; \tau_{3}, \tau_{4}\right)}{1+3 \alpha^{2}}$

Example 2: Two-flavor SYK-like model

The matrix structure is diagonalized by the following eigenvectors:

$$
E^{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), \quad E^{2}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) \quad E^{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right), \quad E^{4}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

The kernel K_{c} is diagonalized as usual by (two) three-point conformal structures
The interesting eigenvalue is $k_{4}(h)=-\frac{3 \alpha(1-\alpha)}{1+3 \alpha^{2}} \frac{\tan \left(\frac{\pi}{2}\left(h+\frac{1}{2}\right)\right)}{h-1 / 2}$
For $\alpha<0$, the equation $k_{4}(h)=1$ admits the solutions $h=\frac{1}{2} \pm$ if $f(\alpha)$, where

$$
f \tanh (\pi f / 2)=-\frac{3 \alpha(1-\alpha)}{1+3 \alpha^{2}}
$$

\Rightarrow instability in the ($\delta G_{12}, \delta G_{21}$) sector
$\Rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ breaks down to diagonal subgroup \mathbb{Z}_{2}

- Existence of a stable symmetry-breaking solution shown numerically by Kim et al.
- Similar results in $S U(N)^{2} \times O(N) \times U(1)^{2}$ model (complex scaling dimension \Rightarrow breaking of $U(1)^{2}$ to diagonal subgroup)

Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner, Gromov, Kazakov, Korchemsky (2017); Kazakov, Olivucci (2018)]
A non-melonic model which however has a similar structure

- Two (matrix) complex scalar fields in the adjoint of $S U(N)$, with action

$$
\begin{aligned}
S_{\text {fishnet }}=\frac{N_{c}}{(4 \pi)^{\frac{d}{2}}} \int_{x}(& \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(-\partial^{2}\right)^{d / 2} \phi_{1}+\phi_{2}^{\dagger}\left(-\partial^{2}\right)^{d / 2} \phi_{2}+\xi^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right] \\
& +\alpha_{1}^{2} \sum_{i=1}^{2} \operatorname{Tr}\left(\phi_{i} \phi_{i}\right) \operatorname{Tr}\left(\phi_{i}^{\dagger} \phi_{i}^{\dagger}\right)-\alpha_{2}^{2} \operatorname{Tr}\left(\phi_{1} \phi_{2}\right) \operatorname{Tr}\left(\phi_{2}^{\dagger} \phi_{1}^{\dagger}\right) \\
& \left.-\alpha_{2}^{2} \operatorname{Tr}\left(\phi_{1} \phi_{2}^{\dagger}\right) \operatorname{Tr}\left(\phi_{2} \phi_{1}^{\dagger}\right)\right)
\end{aligned}
$$

Notice: $U(1)^{2}$ symmetry

- First line (lack of hermitian conjugate of single-trace vertex) gives in the large- N limit a very rigid structure of diagrams (fishnets)
- No wave function renormalization in $d<4$ because long-range; but also in $d=4$, because of planar fishnet structure (no melonic two-point function) \Rightarrow trivial solution for G

Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner,Gromov, Kazakov, Korchemsky (2017); Kazakov, Olivucci (2018)]

- Double-trace terms are needed for renormalization
- They are renormalized by a special case of fishnets, those with cycle of length two edges, i.e. ladders!

\Rightarrow same renormalization structure as pillow and double-trace in $O(N)^{3}$ model
- Spectrum of bilinears is found in the same way from the Bethe-Salpeter equation, with similar complex scaling dimension in \mathcal{P} appearing for real ξ^{2}
- But trivial solution of SDE $G(x, y)=C(x, y) \Rightarrow \boldsymbol{\Gamma}_{2}[G]=0$?

How can the theorem apply?

Example 3: Fishnet model

[Gurdogan,Kazakov (2015); Grabner, Gromov, Kazakov, Korchemsky (2017); Kazakov, Olivucci (2018)]
Actually, the vanishing of the self-energy relies on the assumption of unbroken $U(1)^{2}$ symmetry
Source terms:

$$
\begin{gathered}
S_{\text {symm. }}[\phi, \mathcal{J}]=N \int \mathrm{~d}^{d} x \mathrm{~d}^{d} y \sum_{i=1,2} \mathcal{J}_{\bar{i} i}(x, y) \operatorname{tr}\left[\phi_{i}^{\dagger}(x) \phi_{i}(y)\right] \\
S_{\text {break. }}[\phi, \mathcal{J}]=N \int \mathrm{~d}^{d} x \mathrm{~d}^{d} y \sum_{i=1,2}\left(\mathcal{J}_{i i}(x, y) \operatorname{tr}\left[\phi_{i}(x) \phi_{i}(y)\right]+\mathcal{J}_{\bar{i} \bar{i}}(x, y) \operatorname{tr}\left[\phi_{i}^{\dagger}(x) \phi_{i}^{\dagger}(y)\right]\right)
\end{gathered}
$$

Breaking term reduces $U(1)^{2}$ symmetry to $\mathbb{Z}_{2}{ }^{2}$
Legendre transform \Rightarrow new diagrammatic rules with non-vanishing $G_{i i}(x, y)$ and $G_{\bar{i} \bar{i}}(x, y) \Rightarrow$ non-trivial $\boldsymbol{\Gamma}_{2}[G]$
Diagrams necessarily have an even number of "symmetry breaking" propagators, hence

$$
\begin{aligned}
& \left.\frac{\delta \boldsymbol{\Gamma}_{2}}{\delta G_{\bar{i} i}}\right|_{G_{i i}=G_{\bar{i} \bar{i}}=0}=\left.\frac{\delta \boldsymbol{\Gamma}_{2}}{\delta G_{i i}}\right|_{G_{i i}=G_{\bar{i} \bar{i}}=0}=\left.\frac{\delta \boldsymbol{\Gamma}_{2}}{\delta G_{\bar{i} \bar{i}}}\right|_{G_{i i}=G_{\bar{i} \bar{i}}=0}=0, \\
& \Rightarrow G_{\bar{i} i}^{\star}(x, y)=C(x, y), \quad G_{i i}^{\star}=G_{\bar{i} \bar{i}}^{\star}=0
\end{aligned}
$$

However, $K_{i i \bar{i} \bar{i}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \neq 0$, and at large- N limit, only two 2PI planar diagrams with exactly one $G_{i i}$ and one $G_{\bar{i} \bar{i}}$ leading to the same kernel as in $O(N)^{3}$ model, having a complex scaling dimension in \mathcal{P}
\Rightarrow The fishnet model has an instability associated to the perturbations $\delta G_{i i}$ and $\delta G_{\bar{i}}^{\bar{i}}$

Summary and outlook

- A proof of the Breitenlohner-Freedman instability directly on the CFT side
i.e. CFTs with a primary operator of dimension $h=d / 2+\mathrm{i} r$ are unstable
- Several melonic examples, as well as fishnet model
- It should be stressed that sometimes instability can be avoided (e.g. at imaginary coupling)
- The large- N limit is not needed for the proof, but probably it is needed for finding an operator dimension with real part exactly equal to $d / 2$
(open question)
- Conjecture: "Under the same assumptions, in the true vacuum of the theory, the operator $\mathcal{O}_{h_{\star}}$ acquires a non-trivial vacuum expectation value: $\left\langle\mathcal{O}_{h_{\star}}\right\rangle \neq 0$." ${ }_{\text {KKim, Klebanov, Tarnopolsky, Zhao - }}$ 2019]
Probably needs further assumptions on the 2PI effective action
- Similar technique for a derivation of AdS/CFT from $O(N)$ model
[de Mello Koch, Jevicki, Suzuki, Yoon 2018; Aharony, Chester, Urbach 2020]
\Rightarrow understand the relation between our construction and the proof of the Breitenlohner-Freedman bound in AdS_{d+1} ?

[^0]: ${ }^{1} \mathcal{V}$ is the union of Kronecker products of two type I (scalar) complementary series representations, satisfying $\left|\operatorname{Re}\left(\Delta_{1}-\frac{d}{2}\right)\right|+\left|\operatorname{Re}\left(\Delta_{2}-\frac{d}{2}\right)\right| \leq \frac{d}{2}$

