Algebraic Structures in Renormalization of Tensorial Fields

Johannes Thürigen, = based on arXiv:2102.12453 (MPAG24(2)19), 2103.01136 (SIGMA17(2021)094) and w.i.p.

Random Geometry in Heidelberg, 17 May 2022

Gefördert durch

DFG

Tensorial Field Theory

Propagating tensorial field d.o.f. provide an interesting class of field theories!

- generating random geometry
- renormalizability fairly well understood
- cases of UV asymptotic free field theories
- RG flow: non-autonomous equations
\rightarrow dimensional flow [see talk Ben Geloun!]

Still many aspects poorly understood:

- Phase space: UV asymptotics in general, fixed points
- Relation to (non-dynamic) Tensor Models, Tensor fields on space(time)?
- Universality classes beyond trees and planar from propagating d.o.f.?
- Solvable/integrable structure (like Grosse-Wulkenhaar model)??

Here: Exploit algebraic structure of perturbative renormalization
[as started by Tanasa et. al. 0907, 1306, 1507]

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Half-edge graphs + strands

A 1-graph is a tuple $g=(\mathcal{V}, \mathcal{H}, \nu, \iota)$ with

- a set of vertices \mathcal{V}
- a set of half-edges \mathcal{H}
- an adjacency map $\nu: \mathcal{H} \rightarrow \mathcal{V}$

- an involution $\iota: \mathcal{H} \rightarrow \mathcal{H}$ pairing edges (fixed points are external edges)

A 2-graph $G=\left(\mathcal{V}, \mathcal{H}, \nu, \iota ; \mathcal{S}, \mu, \sigma_{1}, \sigma_{2}\right)$:

- a set of strand sections \mathcal{S}
- an adjacency map $\mu: \mathcal{S} \rightarrow \mathcal{H}$
- fixed-point free involution $\sigma_{1}: \mathcal{S} \rightarrow \mathcal{S}$ with $\forall s \in \mathcal{S}: \nu \circ \mu \circ \sigma_{1}(s)=\nu \circ \mu(s)$

- an involution $\sigma_{2}: \mathcal{S} \rightarrow \mathcal{S}$ pairing strands at edges: $\forall s \in \mathcal{S}$: $\iota \circ \mu(s)=\mu \circ \sigma_{2}(s)$ and s is fixed point of σ_{2} iff $\mu(s)$ is fixed point of ι.

Involutions $\iota, \sigma_{1}, \sigma_{2}$ are equivalent to edge sets $\mathcal{E} \subset \mathbf{2}^{\mathcal{H}}$ and $\mathcal{S}^{v}, \mathcal{S}^{e} \in \mathbf{2}^{\mathcal{S}}$

Vertex-graph representation

Vertex graph $g_{v}=\left(\mathcal{V}_{v}, \mathcal{H}_{v}, \nu_{v}, \iota_{v}\right):=\left(\nu^{-1}(v),(\nu \circ \mu)^{-1}(v),\left.\mu\right|_{\mathcal{H}_{v}},\left.\sigma_{1}\right|_{\mathcal{H}_{v}}\right)$

Represent 2-graphs via vertex graphs: first try

$$
\pi_{\mathrm{vg}}:\left(\mathcal{V}, \mathcal{H}, \nu, \iota ; \mathcal{S}, \mu, \sigma_{1}, \sigma_{2}\right) \mapsto\left(\bigsqcup_{v \in \mathcal{V}} g_{v}, \iota, \sigma_{2}\right)
$$

Not bijective! In general $g_{v}=\sqcup_{i} g_{v}^{(i)}$ (e.g. (\$), vertex belonging information lost...

$$
\beta_{\mathrm{vg}}:\left(\mathcal{V}, \mathcal{H}, \nu, \iota ; \mathcal{S}, \mu, \sigma_{1}, \sigma_{2}\right) \mapsto\left(\left\{g_{v}\right\}_{v \in \mathcal{V}}, \iota, \sigma_{2}\right) \text { is bijection }
$$

Example: edge-coloured graphs

Feynman diagrams of rank- r tensor theories: regular edge-coloured graphs
$(r+1)$-coloured graphs are 2-graphs with r strands per edge

- colour $c=0$ edges $\rightarrow 2$-graph edges
- colour $c \neq 0$ subgraph components \rightarrow vertex graphs
- stranding of edges σ_{2} fixed by colour preservation

Bijective only for connected vertex graphs!!

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Subgraphs $H \subset G$

For a 2-graph G, a subgraph H is a 2-graph differing from G only in $\mathcal{E}_{H} \subset \mathcal{E}_{G}$ and $\mathcal{S}_{H}^{e} \subset \mathcal{S}_{G}^{e}$. Then one writes $H \subset G$.
$2^{E_{G}}$ subgraphs per 2-graph G, for example for

Contraction G / H

Contraction of $H \subset G$: shrinking all stranded edges of H :

- $\mathcal{V}_{G / H}=\mathcal{K}_{H}$ the set of connected components of H
- $\mathcal{H}_{G / H}=\mathcal{H}_{H}^{\text {ext }}, \mathcal{S}_{G / H}=\mathcal{S}_{H}^{\text {ext }}$, only external half-edges of H remain
- $\mathcal{E}_{G / H}=\mathcal{E}_{G} \backslash \mathcal{E}_{H}, \mathcal{S}_{G / H}^{e}=\mathcal{S}_{G}^{e} \backslash \mathcal{S}_{H}^{e}$ (deleting stranded edges of H)
- $\mathcal{S}_{G / H}^{v}=\left\{\left\{s_{1}, s_{2 n}\right\} \mid\left(s_{1} \ldots s_{2 n}\right) \in \mathcal{F}_{H}^{\text {ext }}\right\}$, external faces are shrunken to the strands at the new contracted vertices

Example:
G/H for $H=1$

Labelled vs. Unlabelled

Unlabelled 2-graphs

Isomorphism $j: G_{1} \rightarrow G_{2}$ is a triple of bijections $j=\left(j_{\mathcal{V}}, j_{\mathcal{H}}, j_{\mathcal{S}}\right)$ s.t.:

- $\nu_{G_{2}}=j \mathcal{V} \circ \nu_{G_{1}} \circ j_{\mathcal{H}}{ }^{-1}$ and $\mu_{G_{2}}=j_{\mathcal{H}} \circ \mu_{G_{1}} \circ j_{\mathcal{S}}{ }^{-1}$
- $\iota_{G_{2}}=j_{\mathcal{H}} \circ \iota_{G_{1}} \circ j_{\mathcal{H}}{ }^{-1}$
- $\sigma_{1 G_{2}}=j_{\mathcal{S}} \circ \sigma_{1 G_{1}} \circ j_{\mathcal{S}}{ }^{-1}$ and $\sigma_{2 G_{2}}=j_{\mathcal{S}} \circ \sigma_{2 G_{1}} \circ j_{\mathcal{S}}{ }^{-1}$

Then equivalence $G_{1} \cong G_{2}$, unlabelled 2-graph, $\Gamma=\left[G_{1}\right]_{\cong}=\left[G_{2}\right]_{\cong}$.
Compatible with contractions.
Example:

$$
\Rightarrow\left[G / H_{1}\right]_{\cong}=\left[H_{1}=\left[G / H_{2}\right]_{2}=[\right.
$$

Boundary and external structure

Residue and skeleton

2-graph has two characteristic 2-graphs without edges $\mathbf{R}^{*} \subset \mathbf{G}_{2}$:

- res: $\mathbf{G}_{2} \rightarrow \mathbf{R}^{*}, \Gamma \mapsto \Gamma / \Gamma$, the "external structure"
- skl : $\mathbf{G}_{2} \rightarrow \mathbf{R}^{*}, \Gamma \mapsto \Theta_{0} \quad$, the subgraph without edges

Boundary and vertex graphs

Can be used to define the boundary 1-graph of a 2-graph:

- $\partial: \mathbf{G}_{2} \rightarrow \mathbf{G}_{1}, \quad \Gamma \mapsto \partial \Gamma:=\pi_{\mathrm{vg}}(\operatorname{res}(\Gamma))$

For r-coloured 2-graphs: indeed $(r-1)$-dimensional boundary ps. manifolds
External structure must be sensitive to con. comp. (e.g. (1)

- $\widetilde{\partial}: \mathbf{G}_{2} \rightarrow \mathcal{P}\left(\mathbf{G}_{1}\right), \Gamma=\bigsqcup_{i} \Gamma_{i} \mapsto \widetilde{\partial} \Gamma:=\left\{\partial \Gamma_{i}\right\}_{i}=\beta_{\mathrm{vg}}(\operatorname{res}(\Gamma))$
- $\widetilde{\varsigma}: \mathbf{G}_{2} \rightarrow \mathcal{P}\left(\mathbf{G}_{1}\right), \quad \Gamma \mapsto \widetilde{\varsigma}:=\left\{\gamma_{v}\right\}_{v \in \mathcal{V}_{\Gamma}}=\beta_{\mathrm{vg}}(\operatorname{skl}(\Gamma))$

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Coalgebra

Algebra

Let $\mathcal{G}:=\left\langle\mathbf{G}_{2}\right\rangle$ be the \mathbb{Q}-algebra generated by all 2-graphs $\Gamma \in \mathbf{G}_{2}$ with

$$
m: \mathcal{G} \otimes \mathcal{G} \rightarrow \mathcal{G} \quad, \quad \Gamma_{1} \otimes \Gamma_{2} \mapsto \Gamma_{1} \sqcup \Gamma_{2}
$$

Unital commutative algebra with $u: \mathbb{Q} \rightarrow \mathcal{G}, q \mapsto q \mathbb{1}$ ($\mathbb{1}$ empty 2-graph)
Coalgebra

$$
\Delta: \mathcal{G} \rightarrow \mathcal{G} \otimes \mathcal{G}, \quad \Gamma \mapsto \sum_{\Theta \subset \Gamma} \Theta \otimes \Gamma / \Theta
$$

Associative counital coalgebra with counit $\epsilon=\chi_{\mathbf{R}^{*}}: \mathcal{G} \rightarrow \mathbb{Q}$ In fact, also bialgebra (all proofs completely parallel to 1 -graphs)
Example: Δ

Subalgebras

Contraction closure

Let $\mathbf{P}, \mathbf{K} \subset \mathbf{G}_{2}$.

- P-contraction closure ${ }^{\mathbf{P}} \overline{\mathbf{K}}:=\left\{\Gamma=\Gamma^{\prime} / \Theta \mid \Theta \subset \Gamma^{\prime} \in \mathbf{K}, \Theta \in \mathbf{P}\right\}$
- contraction closure $\overline{\mathbf{K}}:=\mathbf{G}_{2} \overline{\mathbf{K}}$

2-graph subbialgebra

- 2-graphs of restricted vertex types $\mathbf{V}: \mathbf{G}_{2}(\mathbf{V}):=\left\{\Gamma \in \mathbf{G}_{2} \mid \varsigma \Gamma \in \mathcal{P}(\mathbf{V})\right\}$
- Prop: $\left\langle\overline{\mathbf{G}_{2}(\mathbf{V})}\right\rangle$ is a subbialgebra of \mathcal{G}.
- for field theory with interactions $\mathbf{V} \in \mathbf{G}_{1}$: "theory space" $\left\langle\overline{\mathbf{G}_{2}(\mathbf{V})}\right\rangle$

Example: Matrix/Tensor field theory

- 2-graphs characterized by fixed \# of strands at edges = tensor rank r
- for all rank-r interactions $\mathbf{V}_{r}: \overline{\mathbf{G}_{2}\left(\mathbf{V}_{r}\right)}=\mathbf{G}_{2}\left(\mathbf{V}_{r}\right)$ contraction closed
- r-coloured diagrams generate subbialgebra $\left\langle\mathbf{G}_{2}\left(\mathbf{V}_{r}\right)\right\rangle$

Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms $\phi, \psi: \mathcal{G} \rightarrow \mathcal{A}$ wrt

$$
\text { convolution product: } \quad \phi * \psi:=m_{\mathcal{A}} \circ(\phi \otimes \psi) \circ \Delta_{\mathcal{G}}
$$

Hopf algebra of 2-graphs

- The bialgebra of 2-graphs \mathcal{G} is a Hopf algebra, i.e. there is a coinverse S :

$$
S * \operatorname{id}=\operatorname{id} * S=u \circ \epsilon .
$$

- The set $\Phi_{\mathcal{A}}^{\mathcal{G}}$ of algebra homomorpisms from \mathcal{G} to a unital commutative algebra \mathcal{A} is a group with inverse $S^{\phi}=\phi \circ S$ for every $\phi \in \Phi_{\mathcal{A}}^{\mathcal{G}}$,

$$
S^{\phi} * \phi=\phi * S^{\phi}=u_{\mathcal{A}} \circ \epsilon_{\mathcal{G}} .
$$

- The subbialgebra $\left\langle\overline{\mathbf{G}_{2}(\mathbf{V})}\right\rangle$ for specific vertex graphs $\mathbf{V} \subset \mathbf{G}_{1}$ is a Hopf subalgebra of \mathcal{G}.

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Renormalizability

${ }^{c}$ NLFT $T=(\mathbf{E}, \mathbf{V}, \omega, d)$ given by dimension $d \in \mathbb{N}, \mathbf{E}, \mathbf{V} \subset \mathbf{G}_{1}$, weights

$$
\omega: \mathbf{E} \cup \mathbf{V} \rightarrow \mathbb{Z}
$$

Feynman diagrams $\mathbf{G}_{2}^{T}:=\mathbf{G}_{2}(\mathbf{V})$ generate a Hopf algebra $\mathcal{G}_{T}:=\left\langle\overline{\mathbf{G}_{2}^{T}}\right\rangle$
Hopf algebra of divergent Feynman 2-graphs

- Superficial degree of divergence $\omega^{\mathrm{sd}}(\Gamma)=\sum_{v \in \mathcal{V}_{\Gamma}} \omega\left(\gamma_{v}\right)-\sum_{e \in \mathcal{E}_{\Gamma}} \omega\left(\gamma_{e}\right)+d \cdot F_{\Gamma}$
- T is renormalizable iff $\omega^{\text {sd }}(\Gamma)=\omega(\partial \Gamma)-\delta_{\Gamma}$ for all Γ with $\omega^{\text {sd }}(\Gamma)>0$;

$$
\mathbf{P}_{T}^{\text {s.d. }}:=\left\{\Gamma=\bigsqcup_{i \in I} \Gamma_{i} \in \mathbf{G}_{2}^{T} 1 \mathrm{PI} \mid \forall i \in I: \Gamma_{i} \notin \mathbf{R} \Rightarrow \omega^{\text {sd }}\left(\Gamma_{i}\right) \geq 0\right\}
$$

- $\mathcal{H}_{T}^{\mathrm{f} 2 \mathrm{~g}}=\left\langle\mathbf{P}_{T}^{\text {s.d. }}\right\rangle$ is the Hopf algebra of divergent 2-graphs of T
- Hopf subalgebra of \mathcal{G}_{T} when contraction closed due to renormalizablity.

Tensorial field theory

$\phi_{d, r}^{n}$ tensorial field theory [BenGeloun'14] (melonic regime):

- similar to $d_{r}=d(r-1)$ dimensional local field theory
- interactions \mathbf{V} are r-coloured graphs, $\omega\left(\gamma_{v}\right)=d_{r}-\frac{d_{r}-2 \zeta}{2} V_{\gamma_{v}}$

Divergence degree (for general propagator $\omega\left(\gamma_{e}\right)=2 \zeta$):

$$
\omega^{\mathrm{sd}}(\Gamma)=d_{r}-\frac{d_{r}-2 \zeta}{2} V_{\partial \Gamma}-d\left(\delta_{\Gamma}^{\mathrm{G}}+K_{\partial \Gamma}-1\right)
$$

reduced degree $\delta_{\Gamma}^{\mathrm{G}}=\frac{2 \omega_{\Gamma}^{\mathrm{G}}-2 \omega_{\partial \Gamma}^{\mathrm{G}}}{(r-1)!}$, Gurau degree $\omega^{\mathrm{G}}=\sum_{J} g_{J}$

- theories renormalizable for interactions up to $n=\left\lfloor\frac{2 d_{r}}{d_{r}-2 \zeta}\right\rfloor$
- just-renormalizable $\phi_{d, r}^{4}$ theories: $d_{r}=4 \zeta$ (e.g. $\zeta=\frac{1}{2}: \phi_{2,2}^{4}, \phi_{1,3}^{4}$)
- coproduct preserves δ^{G} [Raasakka/Tanasa 1309] \Rightarrow renormalizability for $\delta_{\Gamma}^{\mathrm{G}}>0$
- $K_{\partial \Gamma}>1$ possible: e.g. $\phi_{1,4}^{6}$ theory [BenGeloun/Rivasseau'13] needs

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Momemtum scheme in cNLFT

algebra homo. $A: \mathcal{G} \rightarrow \mathcal{A}$ to the alg. \mathcal{A} of integrals with rational integrands

$$
A_{\Gamma}=A(\Gamma):\left\{p_{f}\right\}_{f \in \tilde{\mathcal{F}}_{\Gamma}^{\text {ext }},} \mapsto A_{\Gamma}\left(\left\{p_{f}\right\}\right):=\prod_{v \in \mathcal{V}_{\Gamma}} \lambda_{\gamma_{v}} \prod_{f \in \mathcal{F}_{\Gamma}^{\text {int }}} \int_{\mathbb{R}^{d}} \mathrm{~d} q_{f} \prod_{\{i, j\} \in \mathcal{E}_{\Gamma}} \tilde{P}\left(q_{i}\right)
$$

Momentum subtraction operator: Taylor expansion

$$
R\left[A_{\Gamma}\right]\left(\left\{p_{f}\right\}\right):=\left(T_{\left\{p_{f}\right\}}^{\omega} A_{\Gamma}\right)\left(\left\{p_{f}\right\}\right)=\sum_{|\vec{k}| \leq \omega^{\mathrm{sd}}(\Gamma)} \frac{\frac{1}{\vec{k}!}}{} \frac{\partial^{|\vec{k}|} A_{\Gamma^{\wedge}}^{\Lambda}}{\prod_{f} \partial p_{f}^{k_{f}}}(0) \prod_{f \in \widetilde{\mathcal{F}}_{\Gamma}^{\mathrm{ext}}} p_{f}^{k_{f}}
$$

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

$$
A_{\mathrm{R}}(\Gamma):=(A-R \circ A)(\Gamma)
$$

Example: Tadpole diagrams in tensorial theories

$\phi_{d=2, r=2}^{4}$ theory with $\tilde{P}(\boldsymbol{p})=\frac{1}{\left\lvert\, \frac{1}{\left|p_{1}\right|+p_{2} \mid+1}\right.}$ (i.e. $\left.\omega\left(\gamma_{\boldsymbol{r}}\right)=1\right): \Omega \cong \overline{\text { X }}$

$$
\begin{aligned}
& =2 \pi \lambda_{\text {go? }}\left(\left(\left|p_{1}\right|+1\right) \log \left(\left|p_{1}\right|+1\right)-\left|p_{1}\right|\right)
\end{aligned}
$$

$\phi_{d=1, r=3}^{4}$ theory with $\tilde{P}(\boldsymbol{p})=\frac{1}{\left|p_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right|+1}$: two tadpoles for each colour

$$
\begin{aligned}
& A_{\mathrm{R}}\left(p_{1}\right)=\lambda_{\mathbb{R}}\left(1-T_{p_{1}}^{1}\right) \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\mathrm{d} q_{2} \mathrm{~d} q_{3}}{\left|p_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+1} \\
& =4 \lambda_{\text {ge }}\left(\left(\left|p_{1}\right|+1\right) \log \left(\left|p_{1}\right|+1\right)-\left|p_{1}\right|\right) \\
& A_{\mathrm{R}}\left(p_{2}, p_{3} \xlongequal{\text { qTi }}\right)=\lambda_{\mathrm{g}}\left(1-T_{p_{2}, p_{3}}^{0}\right) \int_{\mathbb{R}} \frac{\mathrm{d} q_{1}}{\left|q_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right|+1} \\
& =-2 \lambda_{\mathrm{g}} \log \left(\left|p_{2}\right|+\left|p_{3}\right|+1\right)
\end{aligned}
$$

Subdivergences

In a renormalizable local field theory T :

- BPHZ: $\forall \Gamma$ with $\omega^{\text {sd }}(\Gamma) \geq 0$ there is a counter term s.t. $A_{\mathrm{R}}(\Gamma)$ converges
- Zimmermann: forest formula for counter term of nested subdivergences
- Kreimer: counter term $S_{\mathrm{R}}^{\mathrm{A}}: \mathcal{H}^{\mathrm{fg}} \rightarrow \mathcal{A}$ from antipode S in Hopf alg. $\mathcal{H}^{\mathrm{fg}}$:

$$
\begin{aligned}
A_{\mathrm{R}} & =S_{\mathrm{R}}^{\mathrm{A}} * A \\
S_{\mathrm{R}}^{\mathrm{A}}(\Gamma) & =-R\left[\left(S_{\mathrm{R}}^{\mathrm{A}} * A \circ P\right)(\Gamma)\right]=-\sum_{\substack{\Theta \in \mathcal{H}^{\mathrm{fg}} \\
\Theta \subseteq \Gamma}} R\left[S_{\mathrm{R}}^{\mathrm{A}}(\Theta) A(\Gamma / \Theta)\right]
\end{aligned}
$$

Renormalization in cNLFT

- counter term $S_{\mathrm{R}}^{\mathrm{A}}$ in the same way on the Hopf algebra of 2-graphs
- if cNLFT T is renormalizable, $A_{\mathrm{R}}=S_{\mathrm{R}}^{\mathrm{A}} * A$ on $\mathcal{H}_{T}^{\mathrm{f2g}}$ gives ren. amplitudes
- BPHZ momentum scheme: $S_{\mathrm{R}}^{\mathrm{A}}$ is algebra homomorphism since R is a Rota-Baxter operator $(R[A B]+R[A] R[B]=R[R[A] B+A R[B]])$ as in local QFT

Example: sunrise diagram in $\phi_{2,2}^{4}$ theory

Sunrise 2-graph $\Gamma=-\bigcirc \cong$

$$
A_{\mathrm{R}}(\Gamma)\left(p_{1}, p_{2}\right)=A(
$$

Last counter term calculated recursively:

$$
\begin{aligned}
S_{\mathrm{R}}^{\mathrm{A}}(\Gamma)=-R[& A(
\end{aligned}
$$

Example: sunrise diagram in $\phi_{2,2}^{4}$ theory

$$
\begin{aligned}
& =\lambda_{\dot{\circ} \mathrm{D}}^{2}\left(1-T_{p_{1}, p_{2}}^{1}\right) \int_{\mathbb{R}^{2}} \mathrm{~d} q_{1} \int_{\mathbb{R}^{2}} \mathrm{~d} q_{2}\left(\frac{1}{\left|p_{1}\right|+\left|q_{2}\right|+1} \frac{1}{\left|q_{1}\right|+\left|q_{2}\right|+1} \frac{1}{\left|q_{1}\right|+\left|p_{2}\right|+1}\right. \\
& +\frac{1}{\left|q_{1}\right|+\left|p_{2}\right|+1}\left(-T_{p_{1}, q_{1}}^{0}\right) \frac{1}{\left|p_{1}\right|+\left|q_{2}\right|+1} \frac{1}{\left|q_{1}\right|+\left|q_{2}\right|+1} \\
& \left.+\frac{1}{\left|p_{1}\right|+\left|q_{1}\right|+1}\left(-T_{q_{2}, p_{2}}^{0}\right) \frac{1}{\left|q_{1}\right|+\left|q_{2}\right|+1} \frac{1}{\left|q_{2}\right|+\left|p_{2}\right|+1}\right) \\
& =\lambda_{\dot{\rho}: ~}^{2} \frac{4 \pi^{2}}{\left|p_{1}\right|+\left|p_{2}\right|+1}\left[\left|p_{1}\right|\left|p_{2}\right| \zeta_{2}+\left(\left|p_{1}\right|+\left|p_{2}\right|+1\right) \sum_{i=1,2}\left(\left(\left|p_{i}\right|+1\right) \log \left(\left|p_{i}\right|+1\right)-\left|p_{i}\right|\right)\right. \\
& \left.-\prod_{i=1,2}\left(\left|p_{i}\right|+1\right) \log \left(\left|p_{i}\right|+1\right)+\sum_{i=1,2}\left|p_{i}\right|\left(\left|p_{i}\right|+1\right) \operatorname{Li}_{2}\left(-\left|p_{i}\right|\right)\right]
\end{aligned}
$$

- in agreement with [Hock2020]
- multiple polylogarithms as in local QFT, but $\zeta_{2}=\pi^{2} / 6$ is peculiar

Example: sunrise diagram in $\phi_{1,3}^{4}$ theory

Sunrise diagram
 ex. of non-melonic divergent diagram:

- only logarithmic divergence $\omega^{\text {sd }}(\Gamma)=3-3=0$
- only one proper divergent 1 PI subgraph

- \Rightarrow no overlapping divergence \Rightarrow factorizing A_{R}

$$
\begin{aligned}
A_{\mathbb{R}}\left(p_{1}, p_{2}, p_{3}\right) & =\lambda_{\mathbb{E}}^{2}\left(1-T_{p_{1}, p_{2}, p_{3}}^{0}\right) \int_{\mathbb{R}} \mathrm{d} q_{1} \frac{1}{\left|q_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right|+1} \\
& \times\left(1-T_{p_{1}, q_{1}}^{0}\right) \int_{\mathbb{R}} \mathrm{d} q_{2} \int_{\mathbb{R}} \mathrm{d} q_{3} \frac{1}{\left|q_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+1} \frac{1}{\left|p_{1}\right|+\left|q_{2}\right|+\left|q_{3}\right|+1}
\end{aligned}
$$

- more restricted set of LO diagrams ("melonic") in tensorial theories
- what's the number theory (class of amplitude functions) of tensorial fields?

Outline

(1) 2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary
(2) Hopf algebra of 2-graphs
- Algebra
- Renormalizable field theories
(3) Application: Amplitudes \& Green's functions
- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Dyson Schwinger Equations

Eventually, one is interested in renormalized Green's functions

$$
G^{\gamma}(\alpha)=A_{\mathrm{R}}\left(X^{\gamma}(\alpha)\right) \quad, \quad X^{\gamma}(\alpha)=\sum_{\substack{\Gamma \in \mathcal{H}_{T}^{\mathrm{fg} \mathrm{~g}} \\ \partial \Gamma=\gamma}} \alpha^{F_{\Gamma}} \frac{\Gamma}{|\operatorname{Aut} \Gamma|}=\sum_{j=1}^{\infty} \alpha^{j} c_{j}^{\gamma}
$$

Insertion op. B_{+}^{Γ} allows for recursive eq's, "combinatorial DSE" [Kreimer 0509]:

$$
X^{\gamma}=\gamma \pm \sum_{k \geq 1} \alpha^{k}\left[\sum_{\substack{\Gamma_{\text {prim. }}^{F \Gamma=k} \\ \partial \Gamma=\gamma}} B_{+}^{\Gamma}\right]\left(X^{\gamma} Q_{\gamma}\right)
$$

If B_{+}is compatible with the coproduct Δ (Hochschild 1-cocycle), then

- $A\left(\sum B_{+}\left(X^{\gamma}\right)\right)=\int A\left(X^{\gamma}\right) \mathrm{d} \mu$ yields analytic, non-perturbative DSE
- Perturbative series X^{γ} at each order n yields subalgebra,

$$
\Delta c_{n}^{\gamma}=\sum_{j} P_{n, j}^{\gamma}(c) \otimes c_{n-j}^{\gamma}
$$

Example: cDSE in $\phi_{1,5}^{4}$ tensorial field theory

$\phi_{d=1, r=5}^{4}$ is combinatorially the simplest just renormalizable theory

$$
\omega^{\mathrm{sd}}(\Gamma)=4-V_{\partial \Gamma}-\left(\delta_{\Gamma}^{\mathrm{G}}+K_{\partial \Gamma}-1\right)
$$

Only melonic diagrams ($\delta^{\mathrm{G}}=0, K_{\partial \Gamma}=1$) need renormaliz. (as $\delta^{\mathrm{G}} \geq r-2$ else)
\rightarrow quartic melonic diagrams can be mapped to planar trees
(intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau '14]):

$\phi_{1,5}^{4}$ renormalization Hopf algebra is one of coloured planar trees

- for (decorated) trees, combinatorial DSE can be solved in many cases [Foissy '02]
- but edges are coloured (not vertices like in Hopf algebra of decorated trees)
- 2 pt graphs are rooted trees, 4 pt graphs are trees with 2 markings!

No subalgebra in tensorial theory?

- only tadpole φ_{c} and fish diagram \oint_{c}^{c} are primitive \rightarrow simple cDSE
- only connected boundary ("unbroken") 4pt function is in $\mathcal{H}^{\mathrm{f} 2 \mathrm{~g}}$

$$
\partial \rho_{c}^{c} \simeq{ }^{c} \text { while } \partial \rho_{c}^{b} \simeq
$$

- sum over colours for 2 pt function, but not for 4 pt function

Due to the asymmetry of color dependence of X^{e} vs. $X^{\mid c}$, no subalgebra:

$$
\Delta c_{2}^{e}=\Delta \sum_{b, c} \oint_{c}^{b}=\sum_{b, c} \hat{Y}_{b} \otimes \mathcal{Y}_{c}+\sum_{c} \oint_{c}^{c} \otimes \hat{Y}_{c}=c_{1}^{e} \otimes c_{1}^{e}+\sum_{c} c_{1}^{c} \otimes \mathcal{Y}_{c}
$$

Property of TFT? or resolved by Ward identities (Hopf ideals)?

Outlook

- Result: algebraic structure of renormalization generalizes to combinatorially non-local field theories in general,
- gives concise algorithm to calculate amplitudes explicitly (classify!)
- Random geometry/quantum gravity occurs at criticality \rightarrow understand non-perturbative regime via combinatorial DSE
- TFTs have tree-ish diagramatics, but cDSE more involved than $\mathcal{H}_{\text {trees }}$
- no subalgebra of loop orders - missing Ward identities?
- find alg. structure underlying solvability of GW model (w.i.p. with A. Hock) and generalize to tensor fields of rank $r>2$

Thanks for your attention!

