Algebraic Structures in Renormalization of Tensorial Fields

based on arXiv:2102.12453 (MPAG24(2)19), 2103.01136 (SIGMA17(2021)094) and w.i.p.

Random Geometry in Heidelberg, 17 May 2022

Gefördert durch

DFG Deutsche Forschungsgemeinschaft

Tensorial Field Theory

Propagating tensorial field d.o.f. provide an interesting class of field theories!

- generating random geometry
- renormalizability fairly well understood
- cases of UV asymptotic free field theories
- RG flow: non-autonomous equations \rightarrow dimensional flow [see talk Ben Geloun!]

Still many aspects poorly understood:

- Phase space: UV asymptotics in general, fixed points
- Relation to (non-dynamic) Tensor Models, Tensor fields on space(time)?
- Universality classes beyond trees and planar from propagating d.o.f.?
- Solvable/integrable structure (like Grosse-Wulkenhaar model)??

Here: Exploit algebraic structure of perturbative renormalization [as started by Tanasa et. al. 0907, 1306, 1507]

2-graphs

- From 1-graphs to 2-graphs
- Contraction and boundary

Participation 2 Hopf algebra of 2-graphs

- Algebra
- Renormalizable field theories

3 Application: Amplitudes & Green's functions

- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Half-edge graphs + strands

A 1-graph is a tuple $g = (\mathcal{V}, \mathcal{H}, \nu, \iota)$ with

- \bullet a set of vertices ${\cal V}$
- \bullet a set of half-edges ${\cal H}$
- an adjacency map $\nu: \mathcal{H} \to \mathcal{V}$

• an involution $\iota : \mathcal{H} \to \mathcal{H}$ pairing *edges* (fixed points are external edges)

A 2-graph
$$G = (\mathcal{V}, \mathcal{H}, \nu, \iota; \mathcal{S}, \mu, \sigma_1, \sigma_2)$$
:

- \bullet a set of strand sections ${\cal S}$
- an adjacency map $\mu: S \to \mathcal{H}$
- fixed-point free involution $\sigma_1 : S \to S$ with $\forall s \in S: \nu \circ \mu \circ \sigma_1(s) = \nu \circ \mu(s)$

• an involution $\sigma_2 : S \to S$ pairing strands at edges: $\forall s \in S : \iota \circ \mu(s) = \mu \circ \sigma_2(s)$ and s is fixed point of σ_2 iff $\mu(s)$ is fixed point of ι .

Involutions $\iota, \sigma_1, \sigma_2$ are equivalent to edge sets $\mathcal{E} \subset \mathbf{2}^{\mathcal{H}}$ and $\mathcal{S}^v, \mathcal{S}^e \in \mathbf{2}^{\mathcal{S}}$

Vertex-graph representation

 $\text{Vertex graph } g_v = \left(\mathcal{V}_v, \mathcal{H}_v, \nu_v, \iota_v \right) := \left(\nu^{-1}(v), (\nu \circ \mu)^{-1}(v), \mu|_{\mathcal{H}_v}, \sigma_1|_{\mathcal{H}_v} \right)$

Represent 2-graphs via vertex graphs: first try

$$\pi_{\mathrm{vg}}: (\mathcal{V}, \mathcal{H}, \nu, \iota; \mathcal{S}, \mu, \sigma_1, \sigma_2) \mapsto \big(\bigsqcup_{v \in \mathcal{V}} g_v, \iota, \sigma_2\big)$$

Not bijective! In general $g_v = \sqcup_i g_v^{(i)}$ (e.g. $\bigoplus \bigoplus \bigoplus$), vertex belonging information lost...

$$\beta_{\mathrm{vg}} : (\mathcal{V}, \mathcal{H}, \nu, \iota; \mathcal{S}, \mu, \sigma_1, \sigma_2) \mapsto (\{g_v\}_{v \in \mathcal{V}}, \iota, \sigma_2)$$
 is bijection

Example: edge-coloured graphs

Feynman diagrams of rank-r tensor theories: regular edge-coloured graphs

(r+1)-coloured graphs are 2-graphs with r strands per edge

- colour c = 0 edges \rightarrow 2-graph edges
- colour $c \neq 0$ subgraph components \rightarrow vertex graphs
- stranding of edges σ_2 fixed by colour preservation

Bijective only for connected vertex graphs!!

2-graphs
 From 1-graphs to 2-graphs
 Contraction and boundary

Participation of 2-graphs

- Algebra
- Renormalizable field theories

3 Application: Amplitudes & Green's functions

- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Subgraphs $H \subset G$

For a 2-graph G, a subgraph H is a 2-graph differing from G only in $\mathcal{E}_H \subset \mathcal{E}_G$ and $\mathcal{S}_H^e \subset \mathcal{S}_G^e$. Then one writes $H \subset G$.

:

 $2^{E_{G}}$ subgraphs per 2-graph G, for example for

Contraction G/H

Contraction of $H \subset G$: shrinking all stranded edges of H:

- $\mathcal{V}_{G/H} = \mathcal{K}_H$ the set of connected components of H
- $\mathcal{H}_{G/H} = \mathcal{H}_{H}^{\text{ext}}$, $\mathcal{S}_{G/H} = \mathcal{S}_{H}^{\text{ext}}$, only external half-edges of H remain
- $\mathcal{E}_{G/H} = \mathcal{E}_G \setminus \mathcal{E}_H$, $\mathcal{S}_{G/H}^e = \mathcal{S}_G^e \setminus \mathcal{S}_H^e$ (deleting stranded edges of H)
- $S^v_{G/H} = \{\{s_1, s_{2n}\} | (s_1...s_{2n}) \in \mathcal{F}_H^{ext}\}$, external faces are shrunken to the strands at the new contracted vertices

Example:

G/H for $H =$				
$c_1 = c_2 = c$:	$ \begin{array}{c} 1 & c & 4 \\ 2 & 3 & - & 5 & c & 8 \\ \hline 2 & 3 & - & 6 & 7 \end{array} $	$1 \underbrace{4}_{2^{c}7}^{4} \underbrace{5}_{8}_{8}$	$2 \underbrace{4}_{3} \underbrace{4}_{6} \frac{1}{6} \frac{1}{6} 7$	$ \begin{array}{c} 1 & c & 8 \\ \hline 2 & 7 \end{array} $
$c_1 \neq c_2$:	$ \begin{array}{c} 1 c_1 4 \\ 2 3 \\ \hline 6 7 \end{array} $	$\begin{array}{c} c_1 & 4 & c_2 \\ 1 & 7 & 7 \\ 2 & 5 & 8 \end{array}$	$\begin{array}{c} c_1 & 3 & c_2 \\ 1 & 7 & 7 \\ 2 & 6 & 8 \end{array}$	

Labelled vs. Unlabelled

Unlabelled 2-graphs

Isomorphism $j: G_1 \to G_2$ is a triple of bijections $j = (j_{\mathcal{V}}, j_{\mathcal{H}}, j_{\mathcal{S}})$ s.t.:

•
$$\nu_{G_2} = j_{\mathcal{V}} \circ \nu_{G_1} \circ j_{\mathcal{H}}^{-1}$$
 and $\mu_{G_2} = j_{\mathcal{H}} \circ \mu_{G_1} \circ j_{\mathcal{S}}^{-1}$

•
$$\iota_{G_2} = j_{\mathcal{H}} \circ \iota_{G_1} \circ j_{\mathcal{H}}^{-1}$$

•
$$\sigma_{1G_2} = j_S \circ \sigma_{1G_1} \circ j_S^{-1}$$
 and $\sigma_{2G_2} = j_S \circ \sigma_{2G_1} \circ j_S^{-1}$

Then equivalence $G_1 \cong G_2$, unlabelled 2-graph, $\Gamma = [G_1]_{\cong} = [G_2]_{\cong}$. Compatible with contractions.

Example:

$$H_{1} = \underbrace{\operatorname{form}}_{2^{c}} \cong H_{2} = \underbrace{\operatorname{form}}_{1^{c}} \operatorname{form}_{1^{c}} \cong \left[G/H_{1} \right]_{\cong} = \left[1 \underbrace{\operatorname{form}}_{2^{c}} \operatorname{form}_{7^{c}} \right]_{\cong} = \left[G/H_{2} \right]_{\cong} = \left[2 \underbrace{\operatorname{form}}_{3^{c}} \operatorname{form}_{6^{c}} \operatorname{form}_{7^{c}} \right]_{\cong}$$

Boundary and external structure

Residue and skeleton

2-graph has two characteristic 2-graphs without edges $\mathbf{R}^* \subset \mathbf{G}_2$:

- $\mathrm{res}: \mathbf{G}_2 \to \mathbf{R}^*, \Gamma \mapsto \Gamma/\Gamma$, the "external structure"
- $\mathrm{skl}:\mathbf{G}_2\to\mathbf{R}^*,\Gamma\mapsto\Theta_0$, the subgraph without edges

Boundary and vertex graphs

Can be used to define the boundary 1-graph of a 2-graph:

• $\partial : \mathbf{G}_2 \to \mathbf{G}_1, \quad \Gamma \mapsto \partial \Gamma := \pi_{\mathrm{vg}}(\mathrm{res}(\Gamma))$

For r-coloured 2-graphs: indeed (r-1)-dimensional boundary ps. manifolds

External structure must be sensitive to con. comp. (e.g. (e.g.)

•
$$\widetilde{\partial}: \mathbf{G}_2 \to \mathcal{P}(\mathbf{G}_1), \Gamma = \bigsqcup_i \Gamma_i \mapsto \widetilde{\partial}\Gamma := \{\partial\Gamma_i\}_i = \beta_{\mathrm{vg}}(\mathrm{res}(\Gamma))$$

•
$$\widetilde{\varsigma} : \mathbf{G}_2 \to \mathcal{P}(\mathbf{G}_1), \qquad \Gamma \mapsto \widetilde{\varsigma}\Gamma := \{\gamma_v\}_{v \in \mathcal{V}_{\Gamma}} = \beta_{\mathrm{vg}}(\mathrm{skl}(\Gamma))$$

2-graphs

• From 1-graphs to 2-graphs

• Contraction and boundary

Hopf algebra of 2-graphsAlgebra

• Renormalizable field theories

3 Application: Amplitudes & Green's functions

- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Coalgebra

Algebra

Let $\mathcal{G}:=\langle {\bf G}_2\rangle$ be the $\mathbb{Q}\text{-algebra}$ generated by all 2-graphs $\Gamma\in {\bf G}_2$ with

$$m: \mathcal{G} \otimes \mathcal{G} \to \mathcal{G} \quad , \quad \Gamma_1 \otimes \Gamma_2 \mapsto \Gamma_1 \sqcup \Gamma_2$$

Unital commutative algebra with $u:\mathbb{Q}\to\mathcal{G},q\mapsto q\mathbb{1}$ (1 empty 2-graph)

Coalgebra

$$\Delta: \mathcal{G} \to \mathcal{G} \otimes \mathcal{G}, \quad \Gamma \mapsto \sum_{\Theta \subset \Gamma} \Theta \otimes \Gamma / \Theta$$

Associative counital coalgebra with counit $\epsilon = \chi_{\mathbf{R}^*} : \mathcal{G} \to \mathbb{Q}$ In fact, also bialgebra (all proofs completely parallel to 1-graphs)

Subalgebras

Contraction closure

Let $\mathbf{P}, \mathbf{K} \subset \mathbf{G}_2$.

- P-contraction closure ${}^{\mathbf{P}}\overline{\mathbf{K}} := \{\Gamma = \Gamma' / \Theta | \Theta \subset \Gamma' \in \mathbf{K}, \Theta \in \mathbf{P}\}$
- contraction closure $\overline{\mathbf{K}}:={}^{\mathbf{G}_2}\overline{\mathbf{K}}$

2-graph subbialgebra

- 2-graphs of restricted vertex types \mathbf{V} : $\mathbf{G}_2(\mathbf{V}) := \{\Gamma \in \mathbf{G}_2 \,|\, \widetilde{\varsigma} \Gamma \in \mathcal{P}(\mathbf{V})\}$
- Prop: $\langle \overline{G_2(V)} \rangle$ is a subbialgebra of \mathcal{G} .
- for field theory with interactions $\mathbf{V}\in\mathbf{G}_1$: "theory space" $\langle\overline{\mathbf{G}_2(\mathbf{V})}
 angle$

Example: Matrix/Tensor field theory

- $\bullet\,$ 2-graphs characterized by fixed # of strands at edges = tensor rank r
- for all rank-r interactions \mathbf{V}_r : $\overline{\mathbf{G}_2(\mathbf{V}_r)} = \mathbf{G}_2(\mathbf{V}_r)$ contraction closed
- r-coloured diagrams generate subbialgebra $\langle {f G}_2({f V}_r)
 angle$

Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms $\phi,\psi:\mathcal{G}\to\mathcal{A}$ wrt

convolution product: $\phi * \psi := m_{\mathcal{A}} \circ (\phi \otimes \psi) \circ \Delta_{\mathcal{G}}$

Hopf algebra of 2-graphs

• The bialgebra of 2-graphs \mathcal{G} is a Hopf algebra, i.e. there is a *coinverse* S:

$$S * \mathrm{id} = \mathrm{id} * S = u \circ \epsilon$$
.

• The set $\Phi_{\mathcal{A}}^{\mathcal{G}}$ of algebra homomorpisms from \mathcal{G} to a unital commutative algebra \mathcal{A} is a group with inverse $S^{\phi} = \phi \circ S$ for every $\phi \in \Phi_{\mathcal{A}}^{\mathcal{G}}$,

$$S^{\phi} * \phi = \phi * S^{\phi} = u_{\mathcal{A}} \circ \epsilon_{\mathcal{G}}.$$

• The subbialgebra $\langle \overline{G_2(V)} \rangle$ for specific vertex graphs $V \subset G_1$ is a Hopf subalgebra of \mathcal{G} .

2-graphs

• From 1-graphs to 2-graphs

• Contraction and boundary

Hopf algebra of 2-graphsAlgebra

• Renormalizable field theories

3 Application: Amplitudes & Green's functions

- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Renormalizability

cNLFT $T = (\mathbf{E}, \mathbf{V}, \omega, d)$ given by dimension $d \in \mathbb{N}$, $\mathbf{E}, \mathbf{V} \subset \mathbf{G}_1$, weights

$$\omega: \mathbf{E} \cup \mathbf{V} \to \mathbb{Z}$$

Feynman diagrams $\mathbf{G}_2^T := \mathbf{G}_2(\mathbf{V})$ generate a Hopf algebra $\mathcal{G}_T := \langle \overline{\mathbf{G}_2^T} \rangle$

Hopf algebra of divergent Feynman 2-graphs

- Superficial degree of divergence $\omega^{sd}(\Gamma) = \sum_{v \in \mathcal{V}_{\Gamma}} \omega(\gamma_v) \sum_{e \in \mathcal{E}_{\Gamma}} \omega(\gamma_e) + d \cdot F_{\Gamma}$
- T is renormalizable iff $\omega^{sd}(\Gamma) = \omega(\partial\Gamma) \delta_{\Gamma}$ for all Γ with $\omega^{sd}(\Gamma) > 0$;

$$\mathbf{P}_T^{\mathrm{s.d.}} := \left\{ \Gamma = \bigsqcup_{i \in I} \Gamma_i \in \mathbf{G}_2^T \text{ 1PI } | \forall i \in I : \Gamma_i \notin \mathbf{R} \Rightarrow \omega^{\mathrm{sd}}(\Gamma_i) \geq 0 \right\}$$

- $\mathcal{H}_T^{f2g} = \langle \mathbf{P}_T^{s.d.} \rangle$ is the Hopf algebra of divergent 2-graphs of T
- Hopf subalgebra of \mathcal{G}_T when contraction closed due to renormalizablity.

Tensorial field theory

 $\phi_{d,r}^n$ tensorial field theory [BenGeloun'14] (melonic regime):

• similar to $d_r = d(r-1)$ dimensional local field theory

• interactions V are *r*-coloured graphs, $\omega(\gamma_v) = d_r - \frac{d_r - 2\zeta}{2}V_{\gamma_v}$ Divergence degree (for general propagator $\omega(\gamma_e) = 2\zeta$):

$$\omega^{\rm sd}(\Gamma) = d_r - \frac{d_r - 2\zeta}{2} V_{\partial\Gamma} - d\left(\delta_{\Gamma}^{\rm G} + K_{\partial\Gamma} - 1\right) \,.$$

reduced degree $\delta_{\Gamma}^{\rm \scriptscriptstyle G}=\frac{2\omega_{\Gamma}^{\rm \scriptscriptstyle G}-2\omega_{\partial\Gamma}^{\rm \scriptscriptstyle O}}{(r-1)!}$, Gurau degree $\omega^{\rm \scriptscriptstyle G}=\sum_J g_J$

- theories renormalizable for interactions up to $n = \lfloor \frac{2d_r}{d_r 2\zeta} \rfloor$
- just-renormalizable $\phi_{d,r}^4$ theories: $d_r=4\zeta$ (e.g. $\zeta=\frac{1}{2}:~\phi_{2,2}^4,~\phi_{1,3}^4)$
- coproduct preserves $\delta^{
 m G}$ [Raasakka/Tanasa 1309] \Rightarrow renormalizability for $\delta^{
 m G}_{\Gamma}>0$

• $K_{\partial\Gamma}>1$ possible: e.g. $\phi_{1,4}^6$ theory [BenGeloun/Rivasseau'13] needs $M \in \mathbf{V}$

2-graphs

• From 1-graphs to 2-graphs

• Contraction and boundary

Participation 2 Hopf algebra of 2-graphs

- Algebra
- Renormalizable field theories

Application: Amplitudes & Green's functions
 BPHZ momentum scheme

- BFTIZ momentum scheme
- From Perturbative to Non-perturbative

Momemtum scheme in cNLFT

algebra homo. $A:\mathcal{G}\to\mathcal{A}$ to the alg. $\mathcal A$ of integrals with rational integrands

$$A_{\Gamma} = A(\Gamma) : \{p_f\}_{f \in \widetilde{\mathcal{F}}_{\Gamma}^{\text{ext}}, } \mapsto A_{\Gamma}(\{p_f\}) := \prod_{v \in \mathcal{V}_{\Gamma}} \lambda_{\gamma_v} \prod_{f \in \mathcal{F}_{\Gamma}^{\text{int}}} \int_{\mathbb{R}^d} \mathrm{d}q_f \prod_{\{i,j\} \in \mathcal{E}_{\Gamma}} \tilde{P}(\boldsymbol{q}_i)$$

Momentum subtraction operator: Taylor expansion $R[A_{\Gamma}](\{p_f\}) := \left(T^{\omega}_{\{p_f\}}A_{\Gamma}\right)(\{p_f\}) = \sum_{|\vec{k}| \le \omega^{\mathrm{sd}}(\Gamma)} \frac{1}{\vec{k}!} \frac{\partial^{|\vec{k}|}A_{\Gamma}^{\Lambda}}{\prod_{f} \partial p_{f}^{k_{f}}}(0) \prod_{f \in \widetilde{\mathcal{F}}_{\Gamma}^{\mathrm{ext}}} p_{f}^{k_{f}}$

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

$$A_{\rm R}(\Gamma) := (A - R \circ A)(\Gamma)$$

Example: Tadpole diagrams in tensorial theories

$$\begin{split} \phi_{d=1,r=3}^{4} \text{ theory with } \tilde{P}(\mathbf{p}) &= \frac{1}{|p_{1}| + |p_{2}| + |p_{3}| + 1} \text{: two tadpoles for each colour} \\ A_{\mathrm{R}} \left(p_{1} \bigotimes^{2} \right) &= \lambda_{\mathrm{C}} \left(1 - T_{p_{1}}^{1} \right) \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\mathrm{d}q_{2}\mathrm{d}q_{3}}{|p_{1}| + |q_{2}| + |q_{3}| + 1} \\ &= 4\lambda_{\mathrm{C}} \left(\left(|p_{1}| + 1 \right) \log \left(|p_{1}| + 1 \right) - |p_{1}| \right) \\ A_{\mathrm{R}} \left(p_{2}, p_{3} \bigotimes^{4} \right) &= \lambda_{\mathrm{C}} \left(1 - T_{p_{2}, p_{3}}^{0} \right) \int_{\mathbb{R}} \frac{\mathrm{d}q_{1}}{|q_{1}| + |p_{2}| + |p_{3}| + 1} \\ &= -2\lambda_{\mathrm{C}} \log(|p_{2}| + |p_{3}| + 1) \end{split}$$

Subdivergences

In a renormalizable local field theory T:

- BPHZ: $\forall \Gamma$ with $\omega^{sd}(\Gamma) \ge 0$ there is a counter term s.t. $A_{\rm R}(\Gamma)$ converges
- Zimmermann: forest formula for counter term of nested subdivergences
- Kreimer: counter term $S^{\text{A}}_{\text{R}}: \mathcal{H}^{\text{fg}} \to \mathcal{A}$ from antipode S in Hopf alg. \mathcal{H}^{fg} :

$$\begin{split} A_{\mathbf{R}} &= S_{\mathbf{R}}^{\mathbf{A}} \ast A\\ S_{\mathbf{R}}^{\mathbf{A}}(\Gamma) &= -R\left[(S_{\mathbf{R}}^{\mathbf{A}} \ast A \circ P)(\Gamma)\right] = -\sum_{\substack{\Theta \in \mathcal{H}^{\mathrm{fg}}\\\Theta \subsetneq \Gamma}} R\left[S_{\mathbf{R}}^{\mathbf{A}}(\Theta)A(\Gamma/\Theta)\right] \end{split}$$

Renormalization in cNLFT

- ullet counter term $S^{\scriptscriptstyle\rm A}_{\scriptscriptstyle\rm R}$ in the same way on the Hopf algebra of 2-graphs
- if cNLFT T is renormalizable, $A_{\rm R}=S_{\rm R}^{\rm \scriptscriptstyle A}*A$ on ${\cal H}_T^{\rm f2g}$ gives ren. amplitudes
- BPHZ momentum scheme: S_{R}^{A} is algebra homomorphism since R is a Rota-Baxter operator (R[AB] + R[A]R[B] = R[R[A]B + A R[B]]) as in local QFT

Example: sunrise diagram in $\phi_{2,2}^4$ theory

Sunrise 2-graph
$$\Gamma = - - \cong - = -$$

$$A_{\mathrm{R}}(\Gamma)(p_{1},p_{2}) = A\left(\underbrace{p_{1}}_{p_{2}}\underbrace{q_{2}}_{q_{1}}\underbrace{q_{2}}_{q_{1}}\right) + S_{\mathrm{R}}^{\mathrm{A}}\left(\underbrace{p_{1}}_{q_{1}}\underbrace{q_{2}}_{q_{1}}\right)A\left(p_{2}\underbrace{q_{1}}_{q_{2}}\right)$$
$$+ S_{\mathrm{R}}^{\mathrm{A}}\left(\underbrace{p_{2}}_{p_{2}}\underbrace{q_{1}}_{q_{1}}\right)A\left(p_{1}\underbrace{q_{2}}_{p_{2}}\right) + S_{\mathrm{R}}^{\mathrm{A}}\left(\underbrace{p_{2}}_{p_{2}}\underbrace{q_{1}}_{q_{1}}\underbrace{q_{2}}_{q_{1}}\right)$$

Last counter term calculated recursively:

$$S_{\mathbf{R}}^{\mathbf{A}}(\Gamma) = -R \left[A \left(\underbrace{p_{2}}_{p_{2}} \underbrace{q_{1}}_{q_{1}} \underbrace{p_{2}}_{q_{1}} \right) - R \left[A \left(\underbrace{p_{2}}_{q_{1}} \underbrace{q_{2}}_{q_{1}} \right) \right] A \left(\begin{array}{c} p_{2} \underbrace{q_{2}}_{q_{1}} \\ - R \left[A \left(\underbrace{p_{2}}_{p_{2}} \underbrace{q_{1}}_{q_{1}} \underbrace{p_{2}} \right) \right] A \left(\begin{array}{c} p_{1} \underbrace{q_{2}}_{q_{1}} \\ p_{2} \underbrace{q_{2}}_{q_{1}} \end{array} \right) \right] A \left(\begin{array}{c} p_{1} \underbrace{q_{2}}_{q_{2}} \\ p_{2} \underbrace{q_{1}}_{q_{1}} \end{array} \right) \right]$$

Example: sunrise diagram in $\phi_{2,2}^4$ theory

$$\begin{split} A_{\mathrm{R}} \bigg(\bigvee_{p_{2}}^{p_{1}} \bigoplus_{q_{1}}^{q_{2}} \bigg) &= \lambda_{\mathrm{P}}^{2} \left(1 - T_{p_{1},p_{2}}^{1} \right) \int_{\mathbb{R}^{2}} \mathrm{d}q_{1} \int_{\mathbb{R}^{2}} \mathrm{d}q_{2} \bigg(\frac{1}{|p_{1}| + |q_{2}| + 1} \frac{1}{|q_{1}| + |q_{2}| + 1} \frac{1}{|q_{1}| + |p_{2}| + 1} \\ &+ \frac{1}{|q_{1}| + |p_{2}| + 1} \left(-T_{p_{1},q_{1}}^{0} \right) \frac{1}{|p_{1}| + |q_{2}| + 1} \frac{1}{|q_{1}| + |q_{2}| + 1} \\ &+ \frac{1}{|p_{1}| + |q_{1}| + 1} \left(-T_{q_{2},p_{2}}^{0} \right) \frac{1}{|q_{1}| + |q_{2}| + 1} \frac{1}{|q_{2}| + |p_{2}| + 1} \bigg) \\ &= \lambda_{\mathrm{P}}^{2} \underbrace{\frac{4\pi^{2}}{|p_{1}| + |p_{2}| + 1} \bigg[|p_{1}||p_{2}|\zeta_{2} + (|p_{1}| + |p_{2}| + 1) \sum_{i=1,2} \left((|p_{i}| + 1) \log(|p_{i}| + 1) - |p_{i}| \right) \\ &- \prod_{i=1,2} \left(|p_{i}| + 1) \log(|p_{i}| + 1) + \sum_{i=1,2} |p_{i}|(|p_{i}| + 1) \mathrm{Li}_{2}(-|p_{i}|) \bigg] \end{split}$$

- in agreement with [Hock2020]
- multiple polylogarithms as in local QFT, but $\zeta_2=\pi^2/6$ is peculiar

Example: sunrise diagram in $\phi_{1,3}^4$ theory

Sunrise diagram q_1, q_2, q_3 , ex. of non-melonic divergent diagram: • only logarithmic divergence $\omega^{\rm sd}(\Gamma) = 3 - 3 = 0$ • only one proper divergent 1PI subgraph (q_2, q_3) • \Rightarrow no overlapping divergence \Rightarrow factorizing $A_{\rm R}$ $A_{\rm R}(p_1, p_2, p_3) = \lambda_{\rm CP}^2 \left(1 - T_{p_1, p_2, p_3}^0\right) \int_{\mathbb{R}} \mathrm{d}q_1 \frac{1}{|q_1| + |p_2| + |p_3| + 1}$ $\times \left(1 - T_{p_1,q_1}^0\right) \int_{\mathbb{D}} \mathrm{d}q_2 \int_{\mathbb{D}} \mathrm{d}q_3 \frac{1}{|q_1| + |q_2| + |q_3| + 1} \frac{1}{|p_1| + |q_2| + |q_3| + 1}$

- more restricted set of LO diagrams ("melonic") in tensorial theories
- what's the number theory (class of amplitude functions) of tensorial fields?

2-graphs

• From 1-graphs to 2-graphs

• Contraction and boundary

Participation 2 Hopf algebra of 2-graphs

- Algebra
- Renormalizable field theories

3 Application: Amplitudes & Green's functions

- BPHZ momentum scheme
- From Perturbative to Non-perturbative

Dyson Schwinger Equations

Eventually, one is interested in renormalized Green's functions

$$G^{\gamma}(\alpha) = A_{\mathrm{R}}(X^{\gamma}(\alpha)) \quad , \quad X^{\gamma}(\alpha) = \sum_{\substack{\Gamma \in \mathcal{H}_{T}^{f_{2\mathrm{g}}}\\ \partial \Gamma = \gamma}} \alpha^{F_{\Gamma}} \frac{\Gamma}{|\mathrm{Aut}\,\Gamma|} = \sum_{j=1}^{\infty} \alpha^{j} c_{j}^{\gamma}$$

Insertion op. B^{Γ}_{+} allows for recursive eq's, "combinatorial DSE" [Kreimer 0509]:

$$X^{\gamma} = \gamma \pm \sum_{k \ge 1} \alpha^{k} \bigg[\sum_{\substack{\Gamma \text{ prim.} \\ F_{\Gamma} = k \\ \partial \Gamma = \gamma}} B^{\Gamma}_{+} \bigg] (X^{\gamma} Q_{\gamma})$$

If B_+ is compatible with the coproduct Δ (Hochschild 1-cocycle), then

- $A(\sum B_+(X^{\gamma})) = \int A(X^{\gamma}) d\mu$ yields analytic, non-perturbative DSE
- Perturbative series X^{γ} at each order n yields subalgebra,

$$\Delta c_n^{\gamma} = \sum_j P_{n,j}^{\gamma}(c) \otimes c_{n-j}^{\gamma}$$

Example: cDSE in $\phi_{1,5}^4$ tensorial field theory

 $\phi_{d=1,r=5}^4$ is combinatorially the simplest just renormalizable theory

$$\omega^{\rm sd}(\Gamma) = 4 - V_{\partial\Gamma} - (\delta_{\Gamma}^{\rm G} + K_{\partial\Gamma} - 1)$$

Only melonic diagrams ($\delta^{\scriptscriptstyle G}=0, K_{\partial\Gamma}=1$) need renormaliz. (as $\delta^{\scriptscriptstyle G}\geq r-2$ else)

 \rightarrow quartic melonic diagrams can be mapped to planar trees (intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau '14]):

 $\phi_{1,5}^4$ renormalization Hopf algebra is one of coloured planar trees

- for (decorated) trees, combinatorial DSE can be solved in many cases [Foissy '02]
- but edges are coloured (not vertices like in Hopf algebra of decorated trees)
- 2pt graphs are rooted trees, 4pt graphs are trees with 2 markings!

No subalgebra in tensorial theory?

- $\bullet\,$ only tadpole ${}^{\mathsf{O}}_c\,$ and fish diagram ${}^{\mathsf{O}}_c\,$ are primitive $\to\,$ simple cDSE
- ullet only connected boundary ("unbroken") 4pt function is in $\mathcal{H}^{\mathrm{f2g}}$

$$\partial \phi_c^c \simeq \overset{c}{\bigoplus} \quad \text{while} \quad \partial \phi_c^b \simeq \overset{c}{\bigoplus} \quad \textcircled{}$$

• sum over colours for 2pt function, but not for 4pt function

$$X^{e}(\alpha) = e - \alpha \sum_{c=1}^{r} \mathbf{Q}_{c} - \alpha^{2} \sum_{b,c=1}^{r} \mathbf{Q}_{c}^{b} - \alpha^{3} \sum_{a,b,c=1}^{r} \left(\mathbf{Q}_{b}^{a} + \mathbf{Q}_{c}^{a} \mathbf{Q}_{c}^{b} \right) - \dots$$
$$X^{|c}(\alpha) = |c + \alpha \mathbf{Q}_{c}^{c} + \alpha^{2} \left(\mathbf{Q}_{c}^{b} + \sum_{b=1}^{r} \left(\mathbf{Q}_{c}^{b} \mathbf{Q}_{c}^{c} + \mathbf{Q}_{c}^{b} \mathbf{Q}_{c}^{b} \right) \right) + \dots$$

Due to the asymmetry of color dependence of X^e vs. $X^{\mid c}$, no subalgebra:

$$\Delta c_2^e = \Delta \sum_{b,c} \overset{\mathsf{Q}_b}{\mathsf{q}_c} = \sum_{b,c} \overset{\mathsf{Q}_b}{\mathsf{q}_b} \otimes \overset{\mathsf{Q}_c}{\mathsf{q}_c} + \sum_c \overset{\mathsf{Q}_c}{\mathsf{q}_c} \otimes \overset{\mathsf{Q}_c}{\mathsf{q}_c} = c_1^e \otimes c_1^e + \sum_c \overset{\mathsf{Q}_c}{\mathsf{q}_1^c} \otimes \overset{\mathsf{Q}_c}{\mathsf{q}_c}$$

Property of TFT? or resolved by Ward identities (Hopf ideals)?

Outlook

- Result: algebraic structure of renormalization generalizes to combinatorially non-local field theories in general,
- gives concise algorithm to calculate amplitudes explicitly (classify!)
- Random geometry/quantum gravity occurs at criticality
 → understand non-perturbative regime via combinatorial DSE
- $\bullet\,$ TFTs have tree-ish diagramatics, but cDSE more involved than \mathcal{H}_{trees}
- no subalgebra of loop orders missing Ward identities?
- find alg. structure underlying solvability of GW model (w.i.p. with A. Hock) and generalize to tensor fields of rank r>2

Thanks for your attention!