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Tensorial Field Theory

Propagating tensorial field d.o.f. provide an interesting class of field theories!

generating random geometry

renormalizability fairly well understood

cases of UV asymptotic free field theories

RG flow: non-autonomous equations
→ dimensional flow [see talk Ben Geloun!]

0.001 0.010 0.100 1 10 100

3.0

3.5

4.0

4.5

5.0

k

deff

Still many aspects poorly understood:

Phase space: UV asymptotics in general, fixed points

Relation to (non-dynamic) Tensor Models, Tensor fields on space(time)?

Universality classes beyond trees and planar from propagating d.o.f.?

Solvable/integrable structure (like Grosse-Wulkenhaar model)??

Here: Exploit algebraic structure of perturbative renormalization
[as started by Tanasa et. al. 0907, 1306, 1507]
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Half-edge graphs + strands

A 1-graph is a tuple g = (V,H, ν, ι) with

a set of vertices V
a set of half-edges H
an adjacency map ν : H → V

ι

an involution ι : H → H pairing edges (fixed points are external edges)

A 2-graph G = (V,H, ν, ι;S, µ, σ1, σ2):

a set of strand sections S
an adjacency map µ : S → H
fixed-point free involution σ1 : S → S
with ∀s ∈ S: ν ◦ µ ◦ σ1(s) = ν ◦ µ(s)

ι, σ2

an involution σ2 : S → S pairing strands at edges: ∀s ∈ S :
ι ◦ µ(s) = µ ◦ σ2(s) and s is fixed point of σ2 iff µ(s) is fixed point of ι.

Involutions ι, σ1, σ2 are equivalent to edge sets E ⊂ 2H and Sv,Se ∈ 2S
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Vertex-graph representation

Vertex graph gv = (Vv,Hv, νv, ιv) :=
(
ν−1(v), (ν ◦ µ)−1(v), µ|Hv , σ1|Hv

)

−→ gv =

Represent 2-graphs via vertex graphs: first try

πvg : (V,H, ν, ι;S, µ, σ1, σ2) 7→
( ⊔
v∈V

gv, ι, σ2

)
Not bijective! In general gv = tig(i)

v (e.g. ), vertex belonging information

lost...

βvg : (V,H, ν, ι;S, µ, σ1, σ2) 7→
(
{gv}v∈V , ι, σ2

)
is bijection
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Example: edge-coloured graphs

Feynman diagrams of rank-r tensor theories: regular edge-coloured graphs

(r + 1)-coloured graphs are 2-graphs with r strands per edge

colour c = 0 edges → 2-graph edges

colour c 6= 0 subgraph components → vertex graphs

stranding of edges σ2 fixed by colour preservation

∼=

c1 c2 c1 c2

Bijective only for connected vertex graphs!!
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Subgraphs H ⊂ G

For a 2-graph G, a subgraph H is a 2-graph differing from G only
in EH ⊂ EG and SeH ⊂ SeG. Then one writes H ⊂ G.

2EG subgraphs per 2-graph G,
for example for

G =

1

2 3

4 5

6 7

8c1 c2

:

H0 =

H1 =

H2 =

H3 =
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Contraction G/H

Contraction of H ⊂ G: shrinking all stranded edges of H:

VG/H = KH the set of connected components of H

HG/H = Hext
H , SG/H = Sext

H , only external half-edges of H remain

EG/H = EG \ EH , SeG/H = SeG \ SeH (deleting stranded edges of H)

SvG/H = {{s1, s2n}|(s1...s2n) ∈ Fext
H }, external faces are shrunken to the

strands at the new contracted vertices

Example:

G/H for H =

c1 = c2 = c :

1

2 3

4 5

6 7

8c c

1

2 7

8

54

c

1

2

3 6

7

8c 1

2 7

8c

c1 6= c2 :

1

2 3

4 5

6 7

8c1 c2
1

2

5

8

7

4c1 c2
1

2

6

8

7

3c1 c2 1

2 7

8
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Labelled vs. Unlabelled

Unlabelled 2-graphs

Isomorphism j : G1 → G2 is a triple of bijections j = (jV , jH, jS) s.t.:

νG2
= jV ◦ νG1

◦ jH−1 and µG2
= jH ◦ µG1

◦ jS−1

ιG2
= jH ◦ ιG1

◦ jH−1

σ1G2
= jS ◦ σ1G1

◦ jS−1 and σ2G2
= jS ◦ σ2G1

◦ jS−1

Then equivalence G1
∼= G2, unlabelled 2-graph, Γ = [G1]∼= = [G2]∼=.

Compatible with contractions.

Example:

H1 = ∼= H2 =

⇒ [G/H1]∼= =

[
1

2 7

8

54

c

]
∼=

= [G/H2]∼= =

[ 1

2

3 6

7

8c ]
∼=
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Boundary and external structure

Residue and skeleton
2-graph has two characteristic 2-graphs without edges R∗ ⊂ G2:

res : G2 → R∗,Γ 7→ Γ/Γ , the “external structure”

skl : G2 → R∗,Γ 7→ Θ0 , the subgraph without edges

Boundary and vertex graphs

Can be used to define the boundary 1-graph of a 2-graph:

∂ : G2 → G1, Γ 7→ ∂Γ := πvg(res(Γ))

For r-coloured 2-graphs: indeed (r − 1)-dimensional boundary ps. manifolds

External structure must be sensitive to con. comp. (e.g. t ):

∂̃ : G2 → P(G1), Γ =
⊔
i Γi 7→ ∂̃Γ := {∂Γi}i = βvg(res(Γ))

ς̃ : G2 → P(G1) , Γ 7→ ς̃Γ := {γv}v∈VΓ = βvg(skl(Γ))
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Coalgebra

Algebra

Let G := 〈G2〉 be the Q-algebra generated by all 2-graphs Γ ∈ G2 with

m : G ⊗ G → G , Γ1 ⊗ Γ2 7→ Γ1 t Γ2

Unital commutative algebra with u : Q→ G, q 7→ q1 (1 empty 2-graph)

Coalgebra

∆ : G → G ⊗ G, Γ 7→
∑
Θ⊂Γ

Θ⊗ Γ/Θ

Associative counital coalgebra with counit ε = χR∗ : G → Q
In fact, also bialgebra (all proofs completely parallel to 1-graphs)

Example: ∆Γ = ⊗

+ ⊗ + ⊗
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Subalgebras

Contraction closure
Let P,K ⊂ G2.

P-contraction closure PK := {Γ = Γ′/Θ|Θ ⊂ Γ′ ∈ K,Θ ∈ P}
contraction closure K := G2K

2-graph subbialgebra

2-graphs of restricted vertex types V: G2(V) := {Γ ∈ G2 | ς̃Γ ∈ P(V)}
Prop: 〈G2(V)〉 is a subbialgebra of G.

for field theory with interactions V ∈ G1: “theory space” 〈G2(V)〉

Example: Matrix/Tensor field theory

2-graphs characterized by fixed # of strands at edges = tensor rank r

for all rank-r interactions Vr: G2(Vr) = G2(Vr) contraction closed

r-coloured diagrams generate subbialgebra 〈G2(Vr)〉
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Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms φ, ψ : G → A wrt

convolution product: φ ∗ ψ := mA ◦ (φ⊗ ψ) ◦∆G

Hopf algebra of 2-graphs

The bialgebra of 2-graphs G is a Hopf algebra, i.e. there is a coinverse S:

S ∗ id = id ∗ S = u ◦ ε .

The set ΦGA of algebra homomorpisms from G to a unital commutative
algebra A is a group with inverse Sφ = φ ◦ S for every φ ∈ ΦGA,

Sφ ∗ φ = φ ∗ Sφ = uA ◦ εG .

The subbialgebra 〈G2(V)〉 for specific vertex graphs V ⊂ G1 is a Hopf
subalgebra of G.
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Renormalizability

cNLFT T = (E,V, ω, d) given by dimension d ∈ N, E,V ⊂ G1, weights

ω : E ∪V→ Z

Feynman diagrams GT
2 := G2(V) generate a Hopf algebra GT := 〈GT

2 〉

Hopf algebra of divergent Feynman 2-graphs

Superficial degree of divergence ωsd(Γ) =
∑
v∈VΓ

ω(γv)−
∑
e∈EΓ

ω(γe) + d ·FΓ

T is renormalizable iff ωsd(Γ) = ω(∂Γ)− δΓ for all Γ with ωsd(Γ) > 0;

Ps.d.
T :=

{
Γ =

⊔
i∈IΓi ∈ GT

2 1PI |∀i ∈ I : Γi 6∈ R⇒ ωsd(Γi) ≥ 0
}

Hf2g
T = 〈Ps.d.

T 〉 is the Hopf algebra of divergent 2-graphs of T

Hopf subalgebra of GT when contraction closed due to renormalizablity.
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Tensorial field theory

φnd,r tensorial field theory [BenGeloun’14] (melonic regime):

similar to dr = d(r − 1) dimensional local field theory

interactions V are r-coloured graphs, ω(γv) = dr − dr−2ζ
2 Vγv

Divergence degree (for general propagator ω(γe) = 2ζ):

ωsd(Γ) = dr −
dr − 2ζ

2
V∂Γ − d (δgΓ +K∂Γ − 1) .

reduced degree δgΓ =
2ωg

Γ−2ωg
∂Γ

(r−1)!
, Gurau degree ωg =

∑
J gJ

theories renormalizable for interactions up to n = b 2dr
dr−2ζ c

just-renormalizable φ4
d,r theories: dr = 4ζ (e.g. ζ = 1

2
: φ4

2,2, φ4
1,3)

coproduct preserves δg [Raasakka/Tanasa 1309] ⇒ renormalizability for δgΓ > 0

K∂Γ > 1 possible: e.g. φ6
1,4 theory [BenGeloun/Rivasseau’13] needs ∈ V
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Momemtum scheme in cNLFT

algebra homo. A : G → A to the alg. A of integrals with rational integrands

AΓ = A(Γ) : {pf}f∈F̃ext
Γ , 7→ AΓ({pf}) :=

∏
v∈VΓ

λγv
∏

f∈F int
Γ

∫
Rd

dqf
∏

{i,j}∈EΓ

P̃ (qqqi)

Momentum subtraction operator: Taylor expansion

R[AΓ]({pf}) :=
(
Tω{pf}AΓ

)
({pf}) =

∑
|~k|≤ωsd(Γ)

1
~k!

∂|
~k|AΛ

Γ∏
f ∂p

kf
f

(
0
) ∏
f∈F̃ext

Γ

p
kf
f

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

Ar(Γ) := (A−R ◦A)(Γ)
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Example: Tadpole diagrams in tensorial theories

φ4
d=2,r=2 theory with P̃ (ppp) = 1

|p1|+|p2|+1 (i.e. ω(γe) = 1): ∼=

Ar

( )
(p1) ≡ Ar

(
p1

q2 )
= λ

(
1− T 1

p1

) ∫
R2

dq2
1

|p1|+ |q2|+ 1

= 2πλ
(

(|p1|+ 1) log (|p1|+ 1)− |p1|
)

φ4
d=1,r=3 theory with P̃ (ppp) = 1

|p1|+|p2|+|p3|+1 : two tadpoles for each colour

Ar

(
p1

)
= λ

(
1− T 1

p1

) ∫
R

∫
R

dq2dq3
|p1|+ |q2|+ |q3|+ 1

= 4λ
(

(|p1|+ 1) log (|p1|+ 1)− |p1|
)

Ar

( q1

p2, p3

)
= λ

(
1− T 0

p2,p3

) ∫
R

dq1
|q1|+ |p2|+ |p3|+ 1

= −2λ log(|p2|+ |p3|+ 1)
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Subdivergences

In a renormalizable local field theory T :

BPHZ: ∀Γ with ωsd(Γ) ≥ 0 there is a counter term s.t. Ar(Γ) converges

Zimmermann: forest formula for counter term of nested subdivergences

Kreimer: counter term Sa
r : Hfg → A from antipode S in Hopf alg. Hfg:

Ar = Sa
r ∗A

Sa
r(Γ) = −R [(Sa

r ∗A ◦ P )(Γ)] = −
∑

Θ∈Hfg

Θ(Γ

R
[
Sa
r(Θ)A(Γ/Θ)

]

Renormalization in cNLFT

counter term Sa
r in the same way on the Hopf algebra of 2-graphs

if cNLFT T is renormalizable, Ar = Sa
r ∗A on Hf2g

T gives ren. amplitudes

BPHZ momentum scheme: Sa
r is algebra homomorphism since R is a

Rota-Baxter operator (R[AB] +R[A]R[B] = R[R[A]B+AR[B]]) as in local QFT
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Example: sunrise diagram in φ4
2,2 theory

Sunrise 2-graph Γ = ∼=
c c

:

Ar(Γ)(p1, p2) =A

( p1

p2
q1

q2
)

+ Sa
r

( p1

q1

q2

)
A

(
p2

q1

)

+ Sa
r

( q2

p2

q1

)
A

(
p1

q2 )
+ Sa

r

( p1

p2
q1

q2
)

Last counter term calculated recursively:

Sa
r(Γ) = −R

[
A

( p1

p2
q1

q2
)
−R

[
A

( p1

q1

q2

)]
A

(
p2

q1

)

−R
[
A

( q2

p2

q1

)]
A

(
p1

q2 )]
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Example: sunrise diagram in φ4
2,2 theory

Ar

( p1

p2
q1

q2
)

= λ2 (
1− T 1

p1,p2

) ∫
R2

dq1

∫
R2

dq2

(
1

|p1|+ |q2|+ 1

1

|q1|+ |q2|+ 1

1

|q1|+ |p2|+ 1

+
1

|q1|+ |p2|+ 1

(
−T 0

p1,q1

) 1

|p1|+ |q2|+ 1

1

|q1|+ |q2|+ 1

+
1

|p1|+ |q1|+ 1

(
−T 0

q2,p2

) 1

|q1|+ |q2|+ 1

1

|q2|+ |p2|+ 1

)
= λ2 4π2

|p1|+ |p2|+ 1

[
|p1||p2|ζ2 + (|p1|+ |p2|+ 1)

∑
i=1,2

(
(|pi|+ 1) log(|pi|+ 1)− |pi|

)
−
∏

i=1,2

(|pi|+ 1) log(|pi|+ 1) +
∑
i=1,2

|pi|(|pi|+ 1)Li2(−|pi|)
]

in agreement with [Hock2020]

multiple polylogarithms as in local QFT, but ζ2 = π2/6 is peculiar
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Example: sunrise diagram in φ4
1,3 theory

Sunrise diagram
p1

p2, p3

q2, q3

q1
, ex. of non-melonic divergent diagram:

only logarithmic divergence ωsd(Γ) = 3− 3 = 0

only one proper divergent 1PI subgraph

p1

q2, q3

q1

⇒ no overlapping divergence ⇒ factorizing Ar

Ar(p1, p2, p3) = λ2 (
1− T 0

p1,p2,p3

) ∫
R

dq1
1

|q1|+ |p2|+ |p3|+ 1

×
(
1− T 0

p1,q1

) ∫
R

dq2

∫
R

dq3
1

|q1|+ |q2|+ |q3|+ 1

1

|p1|+ |q2|+ |q3|+ 1

more restricted set of LO diagrams (“melonic”) in tensorial theories

what’s the number theory (class of amplitude functions) of tensorial fields?
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Dyson Schwinger Equations

Eventually, one is interested in renormalized Green’s functions

Gγ(α) = Ar(Xγ(α)) , Xγ(α) =
∑

Γ∈Hf2g
T

∂Γ=γ

αFΓ
Γ

|Aut Γ|
=

∞∑
j=1

αjcγj

Insertion op. BΓ
+ allows for recursive eq’s, ”combinatorial DSE” [Kreimer 0509]:

Xγ = γ ±
∑
k≥1

αk
[ ∑

Γ prim.
FΓ=k
∂Γ=γ

BΓ
+

]
(XγQγ)

If B+ is compatible with the coproduct ∆ (Hochschild 1-cocycle), then

A(
∑
B+(Xγ)) =

∫
A(Xγ)dµ yields analytic, non-perturbative DSE

Perturbative series Xγ at each order n yields subalgebra,

∆cγn =
∑
j

P γn,j(c)⊗ c
γ
n−j
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Example: cDSE in φ4
1,5 tensorial field theory

φ4
d=1,r=5 is combinatorially the simplest just renormalizable theory

ωsd(Γ) = 4− V∂Γ − (δgΓ +K∂Γ − 1)

Only melonic diagrams (δg = 0,K∂Γ = 1) need renormaliz. (as δg ≥ r − 2 else)

→ quartic melonic diagrams can be mapped to planar trees
(intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau ’14]):

a

b

c

'
a

bc

'
a

bc

φ4
1,5 renormalization Hopf algebra is one of coloured planar trees

for (decorated) trees, combinatorial DSE can be solved in many cases [Foissy ’02]

but edges are coloured (not vertices like in Hopf algebra of decorated trees)

2pt graphs are rooted trees, 4pt graphs are trees with 2 markings!
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No subalgebra in tensorial theory?

only tadpole c and fish diagram
c

c
are primitive → simple cDSE

only connected boundary (“unbroken”) 4pt function is in Hf2g

∂
c

c '
c

while ∂
c

b '

sum over colours for 2pt function, but not for 4pt function

Xe(α) = e− α
r∑
c=1

c − α2
r∑

b,c=1
c

b − α3
r∑

a,b,c=1

(
c

b

a

+
c

ba
)
− ...

X
c

(α) = c + α
c

c
+ α2

(
c

c

c

+

r∑
b=1

(
c

cb
+

c

c b

))
+ ...

Due to the asymmetry of color dependence of Xe vs. X c , no subalgebra:

∆ce2 = ∆
∑
b,c

c

b =
∑
b,c

b ⊗ c +
∑
c

c

c ⊗ c = ce1 ⊗ ce1 +
∑
c

c
c

1 ⊗ c

Property of TFT? or resolved by Ward identities ( Hopf ideals)?
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Outlook

Result: algebraic structure of renormalization generalizes to
combinatorially non-local field theories in general,

gives concise algorithm to calculate amplitudes explicitly (classify!)

Random geometry/quantum gravity occurs at criticality
→ understand non-perturbative regime via combinatorial DSE

TFTs have tree-ish diagramatics, but cDSE more involved than Htrees

no subalgebra of loop orders - missing Ward identities?

find alg. structure underlying solvability of GW model (w.i.p. with A.

Hock) and generalize to tensor fields of rank r > 2

Thanks for your attention!
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