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Tensorial Field Theory

Propagating tensorial field d.o.f. provide an interesting class of field theories!
@ generating random geometry

@ renormalizability fairly well understood ) /
@ cases of UV asymptotic free field theories

@ RG flow: non-autonomous equations /
— dimensional flow [see talk Ben Geloun!] 30 =

Still many aspects poorly understood:

@ Phase space: UV asymptotics in general, fixed points

@ Relation to (non-dynamic) Tensor Models, Tensor fields on space(time)?
@ Universality classes beyond trees and planar from propagating d.o.f.?

@ Solvable/integrable structure (like Grosse-Wulkenhaar model)??

Here: Exploit algebraic structure of perturbative renormalization
[as started by Tanasa et. al. 0907, 1306, 1507]
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Half-edge graphs + strands

A I-graphis a tuple g = (V, H,v,¢) with
@ a set of vertices V L
@ a set of half-edges H
@ an adjacency mapv:H —V

A 2-graph G = (V, H,v,1; S, p,01,02):

@ an involution ¢ : H — H pairing edges (fixed points are external edges)
@ a set of strand sections S

@ an adjacency map pu: S = H 5

o fixed-point free involution o1 : & — S

with Vs € S: vopooi(s) =vopu(s) :

@ an involution o5 : § — &S pairing strands at edges: Vs € S :
tou(s) = pooa(s) and s is fixed point of oy iff u(s) is fixed point of ¢.

m Q

Involutions ¢, o1, 09 are equivalent to edge sets £ C 27 and SV, S¢ € 2°
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Vertex-graph representation

Vertex graph g, = (Vy, Hos Vo, 1) := (171 (0), (v o 1) 7H(0), ptl3e,, o120,

Represent 2-graphs via vertex graphs: first try

Tyg * (V7 Hu vV, L S» M, 01, 02) = ( |_| Gu,y Ly 02)
veY
Not bijective! In general g, = Lligz(;i) (e-g. @ @) vertex belonging information

lost...

ng : (V7 H? 252 Sa K01, 02) = ({gv}v€V7 Ly 02) is bijeCtiOﬂ
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Example: edge-coloured graphs

Feynman diagrams of rank-r tensor theories: regular edge-coloured graphs

(r 4 1)-coloured graphs are 2-graphs with r strands per edge
o colour ¢ = 0 edges — 2-graph edges
@ colour ¢ # 0 subgraph components — vertex graphs
@ stranding of edges o5 fixed by colour preservation

~

. a Cco ’ c1 c2

O X

IR

Bijective only for connected vertex graphs!!
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Subgraphs H C G

For a 2-graph G, a subgraph H is a 2-graph differing from G only

in &g C Eg and 8§ C S&. Then one writes H C G.

2F¢ subgraphs per 2-graph G,
for example for

G:

lec 4

5¢co 8

Hy
H,
H,

Hj
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Contraction G/H

Contraction of H C G: shrinking all stranded edges of H:
° Vg = K the set of connected components of H

o Hoyuw =HY' Sayu = S§*, only external half-edges of H remain
o Cgmw=Ec\Em, Sem =5a \ S5, (deleting stranded edges of H)

° SZ?/H = {{s1, 520 }|(51...52n) € F5r'}, external faces are shrunken to the
strands at the new contracted vertices

Example:
G/H for H =

0.0

1.4 5.8 1.8 1.8

c1=cCy=2cC: 1@8 2@7
2 3 6 7 rc7 3¥F0 2 7
leci 4 5¢ 8 c1 4 c2 c1 3 c2 1 8
e | DO 0G| W | | 00
2 3-6 7 5 6 2 7
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Labelled vs. Unlabelled

Unlabelled 2-graphs
Isomorphism j : G1 — G4 is a triple of bijections j = (jy, ju,Js) s-t.:
® vg, = jyovg, oju ' and g, = ju o pa, © js~
© La, = JH OLG, Ogu
® 01, =jso01c, °Js ' and o2, = jso02g, ©js ™
Then equivalence G1 = Ga, unlabelled 2-graph, T' = [G1]~ = [Ga2)]~.
Compatible with contractions.

HFM_M%HFM-M
(G H e — {I@sL: G/ Ha)s = [2®7L

2¢7

1

Example:
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Boundary and external structure

Residue and skeleton

2-graph has two characteristic 2-graphs without edges R* C Ga:
o res: Gy > R*T'— T/T" , the “external structure”
o skl: Go — R*,T'— Oy , the subgraph without edges

Boundary and vertex graphs
Can be used to define the boundary 1-graph of a 2-graph:
0 0:Gy = Gy, I'i—= O :=my(res(I))

For r-coloured 2-graphs: indeed (r — 1)-dimensional boundary ps. manifolds

External structure must be sensitive to con. comp. (e.g. U M

0 9:Gy—P(Gy), T =], T; a0 := {00}, = Byg(res(I))
0 ¢:Gyg— P(Gl) R == {%}vevp = ﬂvg(SkI(F))
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Coalgebra
Algebra
Let G := (Ga) be the Q-algebra generated by all 2-graphs T' € G2 with
m:GeG—=6G , I'ely—=T1uly

Unital commutative algebra with v : Q — G, ¢ — g1 (1 empty 2-graph)

Coalgebra

A:G5GeG, Tw ) esl/e
ecr

Associative counital coalgebra with counit e = xg~ : G — Q
In fact, also bialgebra (all proofs completely parallel to 1-graphs)

Example: AT = M M © MN
+ ) ® @ + .- ? M
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Subalgebras

Contraction closure

Let P,K C Go.
o P-contraction closure PK := {I =T"/0|6 Cc T' € K, 0O € P}
e contraction closure K := &2K

2-graph subbialgebra
@ 2-graphs of restricted vertex types V: Go(V) :={T' € G2 |<T € P(V)}

@ Prop: (G2(V)) is a subbialgebra of G.
o for field theory with interactions V € G;: “theory space” (G2(V))

Example: Matrix/Tensor field theory
@ 2-graphs characterized by fixed # of strands at edges = tensor rank r
o for all rank-r interactions V,: G5(V,) = G(V,) contraction closed
@ r-coloured diagrams generate subbialgebra (G2(V,.))
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Hopf algebra of 2-graphs

interest: group structure on algebra homomorphisms ¢, : G — A wrt

convolution product: px:=myo(dRY)oAg

Hopf algebra of 2-graphs
@ The bialgebra of 2-graphs G is a Hopf algebra, i.e. there is a coinverse S:

Sxid=id*S =uoe.

® The set @?4 of algebra homomorpisms from G to a unital commutative
algebra A is a group with inverse S = ¢ o S for every ¢ € @i,

S?xp=¢xS?=uyo0eg.
o The subbialgebra (G5 (V)) for specific vertex graphs V C G is a Hopf
subalgebra of G.

12/24



Outline

© 2-graphs

© Hopf algebra of 2-graphs

@ Renormalizable field theories

© Application: Amplitudes & Green's functions



Renormalizability

cNLFT T = (E, V,w, d) given by dimension d € N, E;V C G, weights

w:EUV = Z

Feynman diagrams G1 := G(V) generate a Hopf algebra G := (G

Hopf algebra of divergent Feynman 2-graphs

o Superficial degree of divergence w*d(T) = > w(v,)— Y. w(ve)+d-Fr

@ T is renormalizable iff

vEVr

W) = w(dr) — ép

eefr

for all T with w*4(T") > 0;

psd = {r =| lieTi €GE IPI Vi€ I: T, ¢ R = o™ () > 0}

° ’H?g = (P54} is the Hopf algebra of divergent 2-graphs of T
@ Hopf subalgebra of Gy when contraction closed due to renormalizablity.
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Tensorial field theory

@l . tensorial field theory [BenGeloun'14] (melonic regime):

@ similar to d,, = d(r — 1) dimensional local field theory

@ interactions V are r-coloured graphs, w(vy,) = d, — d"';% 1%

Divergence degree (for general propagator w(v.) = 2¢):

d, —2
de(F):dT— T CV@r—d(é%—l—Kap—l) .
reduced degree 0} = Qﬂti?)d,:’r Gurau degree w® =3",gs

2d,
-5

@ just-renormalizable qbfw theories: d, = 4(¢ (e.g. (= 1: ¢35, ¢13)

@ theories renormalizable for interactions up ton = |

@ coproduct preserves §¢ [Raasakka/Tanasa 1309] = renormalizability for 7 > 0

o Kyp > 1 possible: e.g. QS?A theory [BenGeloun/Rivasseau’13] needs @)((o) eV
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Momemtum scheme in cNLFT

algebra homo. A : G — A to the alg. A of integrals with rational integrands

Ar = A) {ps}pezee = Arlpd) =TT M. 11 / dgs [[ P(a)

veVr  perim /R {ij}eer

Momentum subtraction operator: Taylor expansion

RA(ps)) = (Th,,40) (o) = S 4274 0) 11 oy

\k\Sde(F) H ap fej:ext

T

Renormalized amplitude for primitive divergent 2-graphs (no subdivergences):

Ax(D) := (A — Ro A)(D)
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Example: Tadpole diagrams in tensorial theories

(bd 2r2the0ryWIthP(p) W(Ie (J.)"ye _1 —O—N

rq‘z\
1
A =A = dee (1—T! /d - -
R( )(pl) R(pl ) of n) e

= 2magq( (Ipl + log (Ipa| + 1) = [pa )

¢§:17r:3 theory with P(p )= W two tadpoles for each colour

= dg2dgs
A[ p1 =
{< @) o pl // |p1] + |g2] + lga| + 1

gy (<|p1|+1>log<|p1\+1> p11)

rq‘l\

dq1
A ’ = \ 1
R(pQ P3 ) g pzps /|q1|+\p2|+|p3|+1
—22gy log(|p2| + [ps] + 1)
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Subdivergences

In a renormalizable local field theory T
@ BPHZ: VT" with w4 (T") > 0 there is a counter term s.t. Ay(T") converges
@ Zimmermann: forest formula for counter term of nested subdivergences

o Kreimer: counter term S2 : '8 — A from antipode S in Hopf alg. #:

Ay =852 % A
SAIT) = —R[(S)x Ao P)D) = — 3 R[SA A(L/0)
ecH'e
ocr

Renormalization in cNLFT
@ counter term S in the same way on the Hopf algebra of 2-graphs
o if cNLFT T is renormalizable, Ay = S * A on H?g gives ren. amplitudes

@ BPHZ momentum scheme: S} is algebra homomorphism since R is a
Rota-Baxter operator (R[AB] + R[A]R[B] = R[R[A]B + A R[B]]) as in local QFT
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Example: sunrise diagram in ¢§_2 theory

Sunrlse2graphI‘——6— @ $
% '@ +SA

Ax(T)(p1,p2)

q1

csi([%

P2

q2

q1

¢q‘2\

)A(m

Last counter term calculated recursively:

<§iﬁﬁ§i>

S(T)

,R{A(

q1

>]A(p1

D2

p1

q2

q1

¢q‘2\

a1
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Example: sunrise diagram in ¢3, theory

1 1 1
=A\eo (1 -T2} /d /d (
13( pirz) we T o CP\ Ipal F laol + L] + gzl + 1 Jar] + [pa + 1
1 0 1 1
+— (-T
e 71 ) G el e el 1

P BRI 1 1 )
Ip1] + |q1| +1 PP g 4 2| + 1 [g| + [p2| 4+ 1

[|p1||p2|<2 + (ol + p2l + 1) > ((Ipil + 1) Tog(Ipi] + 1) = [pi])

i=1,2

:)\2 47'('2
8 pi| + [pa| + 1

— T (pil + D1ogtlpil + D) + 3 [pillpi +1>L12<7\pi|>]

i=1,2 i=1,2

@ in agreement with [Hock2020]
e multiple polylogarithms as in local QFT, but ¢» = 72/6 is peculiar
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Example: sunrise diagram in ¢ 5 theory

o EYANCXEY, o ]
Sunrise diagram - , ex. of non-melonic divergent diagram:
q1
P2, P

e only logarithmic divergence w*¢(I') =3 -3 =0

P1
@ only one proper divergent 1P| subgraph M@MR m
a

@ = no overlapping divergence = factorizing Ay

d 1
qQ
lg1| + [p2| + |ps| + 1
1 1
x (1-Ty /d /d
( P1oa1) . 42 e q3|q1|+|qz|+\Q3\+1|P1\+|Q2|+|Q3|+1

Al{(p17p2:p3) = )‘23 (1 - Tl?lvp2»173) /]R

@ more restricted set of LO diagrams (“melonic”) in tensorial theories

@ what's the number theory (class of amplitude functions) of tensorial fields?
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Dyson Schwinger Equations

Eventually, one is interested in renormalized Green's functions

J Y
|AutF| ZO‘

(@) = A(X7(@) ., X'(a)= Y a
Fé)elji'yg

Insertion op. Bi allows for recursive eq's, " combinatorial DSE” [Kreimer 0509]:

X7 = 'inak{ > BJ{] (X7Q,)

k>1 T prim.
Fr=k
o=~

If By is compatible with the coproduct A (Hochschild 1-cocycle), then
o AX"B4(X7)) = [ A(X")dpu yields analytic, non-perturbative DSE
@ Perturbative series X7 at each order n yields subalgebra,

CW_Z ¢)® cp_j
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Example: cDSE in ¢] 5 tensorial field theory

¢§=17r=5 is combinatorially the simplest just renormalizable theory
w(T) =4 — Vor — (6§ + Kor — 1)
Only melonic diagrams (6 = 0, Ksr = 1) need renormaliz. (as 69 > r — 2 else)

— quartic melonic diagrams can be mapped to planar trees
(intermediate field rep./loop-vertex expansion [Delepouve, Gurau, Rivasseau '14]):

T RE s - _
1 - \ c b '\
@ -@ YT e
rb o~ N ~
\g - a

¢1 5 renormalization Hopf algebra is one of coloured planar trees

,0
@ for (decorated) trees, combinatorial DSE can be solved in many cases [Foissy '02]
@ but edges are coloured (not vertices like in Hopf algebra of decorated trees)

@ 2pt graphs are rooted trees, 4pt graphs are trees with 2 markings!

22/24



No subalgebra in tensorial theory?

@ only tadpole T and fish diagram +z are primitive — simple cDSE

e only connected boundary (“unbroken”) 4pt function is in &

o = A while o} g@) @)

@ sum over colours for 2pt function, but not for 4pt function

—e_az? —2 Y& —a P 1@, reto) .

b,c=1

Xl @) =1e + a+z + a2($g+b2_;(oé+i+i+go>)+

Due to the asymmetry of color dependence of X¢ vs. xle , no subalgebra:

Act :AZ% =3 % et +3 4 f. —ced+>d 8
b,c b,c c ¢

Property of TFT? or resolved by Ward identities ( Hopf ideals)?
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Outlook

@ Result: algebraic structure of renormalization generalizes to
combinatorially non-local field theories in general,

@ gives concise algorithm to calculate amplitudes explicitly (classify!)

@ Random geometry/quantum gravity occurs at criticality
— understand non-perturbative regime via combinatorial DSE

@ TFTs have tree-ish diagramatics, but cDSE more involved than Hiees
@ no subalgebra of loop orders - missing Ward identities?

o find alg. structure underlying solvability of GW model (w.i.p. with A,
Hock) and generalize to tensor fields of rank r > 2

Thanks for your attention!
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