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The concept of dimensionality change

e In theoretical physics: some occurrences of dimensional change

Joseph Ben Geloun (LIPN, USPN) al flow from nonloc:



The concept of dimensionality change
e In theoretical physics: some occurrences of dimensional change
— Kaluza-Klein Theory [1921-1926]

— String compactification (extending KK-theory) Compactify some directions (periodic
direction): expand the fields in modes along these directions, then let the radius — 0.
Select the modes independent of the directions so that they are not blowing up with the
energy;

~» The extra modes are understood as various massive particles.
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The concept of dimensionality change

e In theoretical physics: some occurrences of dimensional change
— Kaluza-Klein Theory [1921-1926]

— String compactification (extending KK-theory) Compactify some directions (periodic
direction): expand the fields in modes along these directions, then let the radius — 0.
Select the modes independent of the directions so that they are not blowing up with the
energy;

~» The extra modes are understood as various massive particles.

— Dimensionality reduction: phenomenon at criticality

[Aharony etal (1976). “Lowering of dimensionality in phase transitions with random
fields” PRL 37 (20) 1364-1367]

[Parisi, Sourias (1979). “Random Magnetic Fields, Supersymmetry, and Negative
Dimensions” PRL 43 (11) 744-745].

“the critical exponents in a d-dimensional (4 < d < 6) system with short-range exchange
and a random quenched field are the same as those of a (d — 2)-dimensional pure
system.”

Dimensional reduction < Trade
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Dimensionality reduction: data science
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Dimensionality reduction: data science

e Higher dimensional data: raw data are often very sparse.
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e Question: is there a “meaningful” representative of the same data lying in a lower
dimensional subspace?
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— PCA and signal detection [refs in talk by Mohamed Ouefelli] via statistical analysis
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Dimensionality reduction: data science

e Higher dimensional data: raw data are often very sparse.

e Question: is there a “meaningful” representative of the same data lying in a lower
dimensional subspace?

— PCA and signal detection [refs in talk by Mohamed Ouefelli] via statistical analysis

— Clustering algorithms via statistical analysis, delivers also a subset of data that
“meaningfully” describes the whole data set.

Dimensional reduction < Statistical representativity
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Is there a way to SEE (literally) the dimension reducing or even flowing?
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Is there a way to SEE (literally) the dimension reducing or even flowing?

YES !
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Tensor Models/Tensor Field Theory

e Tensors (including matrices and vectors) are useful for theoretical/statistical physics,
for information theory, and data.
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Tensor Models/Tensor Field Theory

e Tensors (including matrices and vectors) are useful for theoretical/statistical physics,
for information theory, and data.

e Random tensor models [Gurau’s book] extend random matrix models.
e Quantum Gravity/Group Field Theory [Ambjorn etal ‘90, Oriti ‘06]

— T's represent geometric/topological /combinatorial degrees of freedom (TM, GFT,
TFT, TGFT)
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Tensor Models/Tensor Field Theory

e Tensors (including matrices and vectors) are useful for theoretical/statistical physics,
for information theory, and data.

e Random tensor models [Gurau's book] extend random matrix models.

e Quantum Gravity/Group Field Theory [Ambjorn etal ‘90, Oriti ‘06]

— T's represent geometric/topological /combinatorial degrees of freedom (TM, GFT,
TFT, TGFT)

Today

e Random tensors in Quantum Gravity, AdS/CFT, Holography, BH, quantum information
theory

— Flavors in condensed matter model a la SYK

o Random tensors: represent multidimensional data, random noise in Data Sciences, Al,
etc...
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TFT/TGFT Renormalisation group (RG) analysis

e TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau
2011]

T ay...a, the indices are propagating themselves.

— The field T: G" - K=R,C
— Kinetic term on G" & interactions as convolutions/contractions of tensors
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TFT/TGFT Renormalisation group (RG) analysis

e TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau
2011]

T ay...a, the indices are propagating themselves.

— The field T: G" - K=R,C
— Kinetic term on G" & interactions as convolutions/contractions of tensors

e Perturbative and nonperturbative RG flow understood as well

safer to quote the present people or those who are online [Benedetti, Delporte,
Ferdinand, Gurau, Oriti, Pascalie, Perez-Sanchez, Pithis, Rivasseau, Tanasa, Thuerigen,
Toriumi, Wulkenhaar] but they are many more.
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e Nonperturbatve FRG analysis was launched to understand the phase diagram of TFT
[Benedetti, BG, Oriti, 2014].
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TFT/TGFT Renormalisation group (RG) analysis

e TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau
2011]

T ay...a, the indices are propagating themselves.

— The field T: G" - K=R,C
— Kinetic term on G" & interactions as convolutions/contractions of tensors

e Perturbative and nonperturbative RG flow understood as well
safer to quote the present people or those who are online [Benedetti, Delporte,
Ferdinand, Gurau, Oriti, Pascalie, Perez-Sanchez, Pithis, Rivasseau, Tanasa, Thuerigen,

Toriumi, Wulkenhaar] but they are many more.

e Nonperturbatve FRG analysis was launched to understand the phase diagram of TFT
[Benedetti, BG, Oriti, 2014].

e The Tensor Track for QG and random geometry (©Rivasseau.
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Functional Renormalisation Group analysis of TFT/TGFT

e Consider G a compact group and T : G" — K

e No possible phase transition as long as G is compact [Benedetti 2014]; in the limit of
infinite radius yes.

® 2014: FRG for TFTs and first application with T : U(1)® — R

— The system of -functions was non-autonomous: explicit k in the eq.

— due to the radius of the compact manifold

— due to the nonlocal interaction

— resort in large (integer momentum) mode limit (UV): good notion of scaling
dimension of coupling constants;

— small mode limit (IR): another notion of scaling dimension of coupling constants;
— in each limit you can draw phase diagram: strong evidence of fixed points but the
meaning of picture was not clear;

What is small k limit?
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Functional Renormalisation Group analysis of TFT/TGFT

e Consider G a compact group and T : G" — K

e No possible phase transition as long as G is compact [Benedetti 2014]; in the limit of
infinite radius yes.

® 2014: FRG for TFTs and first application with T : U(1)® — R

— The system of -functions was non-autonomous: explicit k in the eq.

— due to the radius of the compact manifold

— due to the nonlocal interaction

— resort in large (integer momentum) mode limit (UV): good notion of scaling
dimension of coupling constants;

— small mode limit (IR): another notion of scaling dimension of coupling constants;
— in each limit you can draw phase diagram: strong evidence of fixed points but the
meaning of picture was not clear;

What is small k limit?

Tooo? To1o?

e Computation at an intermediate/interpolation regime.
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TFT/TGFT Renormalisation group (RG) analysis

e 2020: Pithis and Thuerigen [2009.13588] “Ok, we take it from here !”
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TFT/TGFT Renormalisation group (RG) analysis

e 2020: Pithis and Thuerigen [2009.13588] “Ok, we take it from here !”

— Perform a computation of the FRG flow without resorting in any large/small k-limit
Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

— Equivalence between rank r TFT with O(2)-model in the IR
— Effective dimension deq(k): flow from UV to the IR, r —1 — 0
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TFT/TGFT Renormalisation group (RG) analysis
e 2020: Pithis and Thuerigen [2009.13588] "“Ok, we take it from here !”

— Perform a computation of the FRG flow without resorting in any large/small k-limit
Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

— Equivalence between rank r TFT with O(2)-model in the IR
— Effective dimension deg(k): flow from UV to the IR, r —1 — 0
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Outline

© The TFT model
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TFT model: The fields

e The fields: G a Lie group
®:R'x G -5 K=C,R
(x,8) — ®(x,g)

e G is chosen compact — Peter-Weyl transform of the field

°08)= [, Gy <H"”> [ 1-0P) ) (&)

Jlseensdr
e The tensor field:

ip..ir (P)
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TFT model: The fields

e The fields: G a Lie group
®:R'x G -5 K=C,R (1)
(x,8) = (x,8) (2)

e G is chosen compact — Peter-Weyl transform of the field

¢(X7g):/Rd(2:$ P Z <Hdlc) [ JVA ®Dk &) (3)

Jlseensdr
e The tensor field:

¢J'1J'2--»jr (p) (4)

e Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
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TFT model: The fields

e The fields: G a Lie group
®:R'x G -5 K=C,R (1)
(x,8) = (x,8) )
e G is chosen compact — Peter-Weyl transform of the field

¢(X7g):/Rd(2:$ P Z <dec> [ JVA ®Dk &) (3)

Jiseeesdr

e The tensor field:

ip..ir (P) (4)

e Different motivations for that:

- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]

- Tensor-like SYK models: computable toy models for AdS/CFT correspondence. [Talk
by Benedetti and Lettera.]
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TFT model: The fields

e The fields: G a Lie group
®:R'x G -5 K=C,R (1)
(x,8) = (x,8) (2)
e G is chosen compact — Peter-Weyl transform of the field
& _ dp rp X d: 0 D!c 3
(x,8) = a/2 ¢ Z H ljc Pl ( ® (&) (3)
w @S 2

e The tensor field:

¢J'1J'2»-»jr (p) (4)

e Different motivations for that:

- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]

- Tensor-like SYK models: computable toy models for AdS/CFT correspondence. [Talk
by Benedetti and Lettera.]

+ 1 new motivation: it will allow a nontrivial dimensional flow towards the IR !
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TFT model: cyclic melonic interaction, finite but arbitrary valence

e TFT interactions/observables: contractions of tensors (wth trivial metric)
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TFT model: cyclic melonic interaction, finite but arbitrary valence

e TFT interactions/observables: contractions of tensors (wth trivial metric)
o Represented by (bi-partite, if complex tensors) d-regular colored graphs: the rank d
tensor field is a vertex of valence d, index contraction by a colored edge;
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TFT model: cyclic melonic interaction, finite but arbitrary valence

e TFT interactions/observables: contractions of tensors (wth trivial metric)

o Represented by (bi-partite, if complex tensors) d-regular colored graphs: the rank d
tensor field is a vertex of valence d, index contraction by a colored edge;

e Interest in particular contractions: cyclic melonic (Conjecture: many features of our
analysis will extend beyond this class).

o lllustration in rank 4: complex tensors ®; 5.7, ji,J2,/3,ja € I, with distinguished indices
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TFT model: cyclic melonic interaction, finite but arbitrary valence

e TFT interactions/observables: contractions of tensors (wth trivial metric)

o Represented by (bi-partite, if complex tensors) d-regular colored graphs: the rank d
tensor field is a vertex of valence d, index contraction by a colored edge;

e Interest in particular contractions: cyclic melonic (Conjecture: many features of our
analysis will extend beyond this class).

o lllustration in rank 4: complex tensors ®; .55, ji,J2,/3,ja € I, with distinguished ind

ices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.
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Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

e Nonlocal and a tractable combinatorics: computable at arbitrary valence.
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TFT model: cyclic melonic interaction, finite but arbitrary valence

e TFT interactions/observables: contractions of tensors (wth trivial metric)
o Represented by (bi-partite, if complex tensors) d-regular colored graphs: the rank d
tensor field is a vertex of valence d, index contraction by a colored edge;

e Interest in particular contractions: cyclic melonic (Conjecture: many features of our
analysis will extend beyond this class).

o lllustration in rank 4: complex tensors ®; 5.7, ji,J2,/3,ja € I, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

e Nonlocal and a tractable combinatorics: computable at arbitrary valence.

b Siﬂf(¢7 a’) = fRd dx |:ZZT2X Z;:l )‘fr Trn;c(¢7 Q;)(x):|
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TFT model: action

e The action

S(¢a &) = Skiﬂ(¢7 Q_S) + 5int(¢, QE)

Sin(.8) = (3. K6) = / axdx' [ dgdg’ Fx.g)K(x.g:x g ))o(x &)

RY xRd G'xXG"

K(x.g:x',8') = (x —x')o(gg’ ) |~ A — im‘;)f) + k] (5)

where

A, is the Laplacian on Rd,

Ag)) the (colored) Laplacian on G,
¢ €]0,1]

K restores the dimension balance.
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© Review of the Functional Renormalization Group formalism
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Functional Renormalization Group formalism: Wetterich-Morris equation

[Wetterich 92, Morris 93]
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Functional Renormalization Group formalism: Wetterich-Morris equation

[Wetterich 92, Morris 93]
e The generating function all all correlators

Z[J,J_] — W /D¢D<T> o= S[®.B1+(J,®)+(®,) (6)
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Functional Renormalization Group formalism: Wetterich-Morris equation

[Wetterich 92, Morris 93]
e The generating function all all correlators

Z[J,J_] — W /D¢D<T> o= S[®.B1+(J,®)+(®,) (6)

_SW[J,J]
- oJix.g)

px.g) = (B(xg)) = W g

p(x, &) = (®(x,8)) 5I0cg)"

Joseph Ben Geloun (LIPN, USPN) Dimensional flow from nonlocality 16 /34



Functional Renormalization Group formalism: Wetterich-Morris equation

[Wetterich 92, Morris 93]
e The generating function all all correlators

Z[J,J_] — W /D<DD<T> o= S[®.B1+(J,®)+(®,) (6)
. _SWI[J,J] _ =z W[, J]
o(x,8) = (®(x,8)) = m , o P(x,g) = (P(x,8)) = m (7)

o Effective average action: Legendre transform of W[J, J]

Mo, @] = Syf{(% )+, @) — W, JT} (8)

’

Generating function of all 1Pl correlation functions.
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FRG formalism for TFT: Wetterich-Morris equation
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FRG formalism for TFT: Wetterich-Morris equation

e [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved
(above) expressions in such a way to generate a flow of the theory coupling constants;
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FRG formalism for TFT: Wetterich-Morris equation

e [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved
(above) expressions in such a way to generate a flow of the theory coupling constants;
e Introduce a scale k and an IR (cut-off) regulator R that projects only on field modes
relevant to that scale

ZiJ, J] = M = /DSDD@e*S[%@]7(%Rw)+(law)+(w,J)' 9)

R« should satisfy specific conditions;
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FRG formalism for TFT: Wetterich-Morris equation

e [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved
(above) expressions in such a way to generate a flow of the theory coupling constants;

e Introduce a scale k and an IR (cut-off) regulator R that projects only on field modes
relevant to that scale

ZiJ, J] = M = /Dtppszefs[%@]7(¢7Rw)+(l,w)+(%J). 9)

R« should satisfy specific conditions;
e Scale dependent effective action

Cele, @] = sup [(0; D)+ (J:9) — WilJ, J]] = (0, Rup). (10)

e Expansion for TFT:

rk[‘/’v 95] = (907 ’Ck‘p) + Z )\ykTI"»y[QO, 95]7

-
Ky = Zk( Y N Z(Ag))C) + (11)
c=1
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FRG formalism for TFT: Wetterich-Morris equation

e Flow equation for the effective average action: The Wetterich-Morris equation
- 1 -1
(kO) Tilp, @] = §STT {(r(kz) +Rk]12) (kak)Rk] ; (12)

where STr is a supertrace (all configuration space variables integrated), Ff) is the
Hessian matrix of I,

i 5°Tilp,
Ml flx.giy ) = =0 e

5[, @l
e, ol(x, gy, h) = ———D AL
¢ Lo el gy h) = S Sty h)

rO15, ¢l(x. gy, h) = .. (13)

e Results are dependent on Ry and the ansatz for I'y;
= Prove that the results holds for classes of regulators and an enlarged truncation helps
in gaining confidence in the results.
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Outline

© FRG for the cyclic melonic TFT
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The cyclic melonic potential approximation

e Now for simplicity we will restrict to G = U(1).
e We project on constant and uniform fields

o(x,8) = x (14)

Nmax

T, @] = T(p) = Ue(p) = afacux® +a » (Y Aw)(aex?)",

n=2 ~|V,=2n
pi=agx’ (15)

where ag is the formal volume of R and ag the volume of the G (note that we do not
use Haar measure);

— For the cyclic melonic potential: Z'y\W:?n =3

c=1
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The cyclic melonic potential approximation

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

e Second field derivative of the interacting part: example

Pledgy =3 " [

c=1 n=2
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The cyclic melonic potential approximation

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

e Second field derivative of the interacting part: example

Pledgy =3 " [

c=1 n=2

[H5(gb7 hb)] (@-c0)" '(ge, he)

b#c
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The cyclic melonic potential approximation

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

e Second field derivative of the interacting part: example

Pledgy =3 " [

c=1 n=2

[ TT 680, h6)] (7 ¢ ©)" " (ge, he) + 0 he) (7 e )" (& o)
b#c

Joseph Ben Geloun (LIPN, USPN) Dimensional flow from nonlocality 21/34



The cyclic melonic potential approximation

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

e Second field derivative of the interacting part: example

Pledgy =3 " [

[T o0 10)] (7 ¢ )" (g he) + 6, ) (7 ) (@)
b#c
+ Z“E Kd @)P(gcv hC)(()5 © So)n_p_l(gcv ilc):| ’ (16)
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The cyclic melonic potential approximation: Projection on local fields

e Projection on local fields after derivation:

F2[>_(7 X](ng;yvh) =

230D Aasal " | [T 2edlen, hs) + acd(ge, he) +n =2 | ()"
c=1 n=2 bs#c

r

=afa. Y || ac [ [ (gb, o) + acd(ge, he) — 1 | Vi'(p) + pV" ()

c=1 b#c
Vi(z) Z RES (17)

e Regulator in momentum space
C_(C) C_(C)
. 2
Ri(p.J) = Z <k2 —p* =K ng) 0 (k —p =K ‘,2() (18)

where CI.(C) is the fractional Casimir of G" (think about G; as >, jc(jc + 1) for SU(2) or
> e for U(1)").
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The full non autonomous system
e Scale t = log k then 0; = ko«

9 Uk(p) =

1 dp
2 /,Rd (2m)d/2 Z

{ictezr

(19)

8tRk(P7j) + atRk(PJ)

PA T OVEG) T Pt OV () + 2006 22 Vi)

where the Of andOy; encodes now nonlocality

Of =605 + (1 = 60i) [ [ 60i > Ooj =[] b0i (20)
b#c c
. 2 2 en
and assuming 0 (k —p?— K24 ) =1 holds:
C, 2
Pi=Zc | p* + K + pk + Re(p,J) = Zikk™ + (21)
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The cyclic melonic potential approximation: isotropic sector

o We consider the isotropic sector: Aj , = Api/r, Ve =1,...,r

p,kp—f—z Z )\'Ykp —NkP+ZZ>\nkp
n=2 ~|Vy=2n n=2 c=1
oo 1 R
= pkp + Z m)\n,kp (22)
n=2
e The FRG equation becomes:
1599 (k 1899 (k) + 271 (k
kakUk(p): 2 /]k ( ) 1" * (2 )+ r/ ( )
k2Z+ Ui(p) + 20 U (p) k*Zi + U (p)
I(ds (k)
+2 Tk 23
Z<>k22k+ﬂk+rsvl() ( )
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Threshold spectral sums in rank s < r

e The master: 1y = —0; log Zx

w=ia (=B e A () e

e The threshold (discrete-volume) functions: setting £ = 0,1

s K
IS )(k):/d dpp* > 0 <k2 —p’— TCC}“) (25)
® je@\{o}ys da
d o) 2 B 1 d+2¢
(k)= /dpp 0( p) PEw Tl (26)

2
K90 = /dp > S ere(e-r-d0) e
G

Z\{O} 5 c=1 (‘,
549 (k)=0 (28)

— The sums over discrete volumes have a long history [trace back to polytope volumes,
combinatorics and asymptotics Birkhoff].

— Difficult to handle in full generality.

— Hopefully: no need of an explicit expression, but just their behavior !
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Threshold spectral sums in rank s < r

e We set ( = 1/2: (Strong constraint)

199 (k) ~ 22 02 (D (K Ky gy S (2o

s 26 +d K K . 26+d+2s" K
(ds) [\ o ns  Vd d+2 agky2 (=1) ragk\2
k) ~ 2 (s—l)!k (q*(“')(?) toet d+25+2(?) ) (29)

e Coefficients of the polynomials are not relevant for the dimensionless flow equations:
eventually as they can be eliminated by rescaling.

e The fact that they are polynomial is what truly matters in the IR:
I,(d’s)(k) = 27:05 vi,i k', 1=0,1,2, with a particular expansion for i < d.

e ( = 1/2 a strong constraint: a priviledge model?
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The full 5-functions
e The dimensionful S-functions

Bk(11 A7) = By (e, WIS (K) +2Zﬂn,uk, )LD (k) (30)

ﬂk’

where B,k = O¢Ank, n > 2 and Orpui for n =1;
o Coeff type 1

vl 1
i)= 555 1
/60 (,LI//(7)\) Zkk2+llk (3 )
gy (-1)'n
Ba (s A Z ok sy B (3X2,5s, .., (20 — 2/ + 3)An_142) - (32)
o Coeff type 2
, -1
6;,2/(.““(7 Al) = ¥Bn,l (/\2, )\3, ey )\,,_/+2)

(Zkk2 + ’uk)l+1

with B, j(x1,...,Xn—i+1) are the so-called Bell polynomials;
e and the non-autonomous part:

Fanr (k) := 150 (k) + A k)+Z( ) (%)'/ng@(k)
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The full 5-functions
o At the first order n < 2, i.e. @4 truncation:

Proposition

—i "
B puse = ﬁ [3/73«:70)(;() +2F\1 (k)] (33)

Bda= o202 To /@0y 4 o)k 34
tz—m[m (k) + nk,z()] (34)

e At rank r = 0: No-Nonlocality (usual "% ||*" model on RY)

Bk (1t Ai) = BY (e, MY ( k)+22ﬂ){2, i MY FLT=0) (k)

Nl (35)
1199 (k) =K Z ( - ﬁ) IC) +Zk%/1‘d’°)
-7 kz kd 1— Mk
g ( d+2)
Fi=0) (k)— 150 (k) (36)

Nk !

o FO) = Zuk2FOD 4 Z, 1 Gl

are dimensionful quantities and encode the scaling dimension of the coupling constants

Joseph Ben Geloun (LIPN, USPN) Dimensional flow from nonlocality

28/34



The matter of dimension and (re-)scaling
e Dimensionless couplings
2~ ny2n (d,r) I=n o
= ZiKf A= Z0k (F1 : (k)) X, forn>2
1—n 1—n
Zok (FO0) " = zok (k1) = Zoke e (37)

o Effective dimension

deti(k) := 0 log k (38)
e Coupling constant equation: n > 2
Bedn = — desr(K)An + n(desz(k) — 2+ ) A (39)
+ o8 Iéd,(j(:()k;r # Bat (M)

(dr dr
) Mk , (k) v~
Z( G(k) 2 k2F@ (k )> Bri(%) -
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Flow of dimension

e Limits
deff(k > 1) =d+r—1 deff(k < 1) =d (40)

o At finite k: F{*7(k) is a polynomial in k;

501 .

4.5¢ 1

oy 401 ]

351 1

3.0F B
0.001 0.010 0.100 1 10 100
k

Figure: Flow of effective dimension for d = r = 3 for ¢*-model (with ag = 1) using the integral
approximation to the threshold function lé3’3).
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Fixed points, phase transition and symmetry broken

e Fixed points to work in progress: We have hints that we recover the structure of fixed
of a ¢* inin the IR; but in the UV?
e Numerics: symmetry may be restored in the IR, for a

choice of px <0
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Figure: Symmetry restoration in the IR for d = r = 3 for ©%-model.
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Fixed points, phase transition and symmetry broken

o Numerics: we see symmetry is still broken in the IR (thus phase transition): for another
choice px < 0 (15% off the previous choice)

Uilp)
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Conclusion

e TFT(x) (with nontrivial local dimension x € RY) allows to identify a flow of the
dimension;
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Conclusion

e TFT(x) (with nontrivial local dimension x € R?) allows to identify a flow of the
dimension;

e Nonlocality + Compactness/Discrete Rep 4+ T;(x) produced the flow;
o Flow mechanism is a robust RG-based flow;
e Looks different from anything we are aware of.

e Rest of the program: find the phase diagram; check the existence of Wilson-Fisher
fixed point in (d = 3, r);

e Find phase transition (leading hopefully to some condensate geometry conjectured in
GFT [Oriti, '06]).

e Find other applications?
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Conclusion

e TFT(x) (with nontrivial local dimension x € R?) allows to identify a flow of the
dimension;

e Nonlocality + Compactness/Discrete Rep 4+ T;(x) produced the flow;
o Flow mechanism is a robust RG-based flow;
e Looks different from anything we are aware of.

e Rest of the program: find the phase diagram; check the existence of Wilson-Fisher
fixed point in (d = 3, r);

e Find phase transition (leading hopefully to some condensate geometry conjectured in
GFT [Oriti, '06]).

e Find other applications?

Thank you !
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