Dimensional flow from nonlocality: some results on a cyclic melonic Tensor Field Theory

Joseph Ben Geloun

LIPN, Univ. Sorbonne Paris Nord

A Joint Work in Progress with Andreas G A Pithis (Arnold Sommerfeld Center for TP, Muenchen) and Johannes Thurigen (Mathematisches Institut der WW-Univ., Muenster)

> May 18, 2022 Random Geometry in Heidelberg, Heidelberg Univ., Germany

Outline

Introduction

- 2 The TFT model
- 3 Review of the Functional Renormalization Group formalism
- FRG for the cyclic melonic TFT

5 Conclusion

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

4 FRG for the cyclic melonic TFT

5 Conclusion

The concept of dimensionality change

• In theoretical physics: some occurrences of dimensional change

The concept of dimensionality change

• In theoretical physics: some occurrences of dimensional change \rightarrow Kaluza-Klein Theory [1921-1926]

 \rightarrow String compactification (extending KK-theory) Compactify some directions (periodic direction): expand the fields in modes along these directions, then let the radius \rightarrow 0. Select the modes independent of the directions so that they are not blowing up with the energy;

 \sim The extra modes are understood as various massive particles.

The concept of dimensionality change

• In theoretical physics: some occurrences of dimensional change \rightarrow Kaluza-Klein Theory [1921-1926]

 \rightarrow String compactification (extending KK-theory) Compactify some directions (periodic direction): expand the fields in modes along these directions, then let the radius \rightarrow 0. Select the modes independent of the directions so that they are not blowing up with the energy;

 \sim The extra modes are understood as various massive particles.

→ Dimensionality reduction: phenomenon at criticality [Aharony etal (1976). "Lowering of dimensionality in phase transitions with random fields" PRL 37 (20) 1364-1367] [Parisi, Sourias (1979). "Random Magnetic Fields, Supersymmetry, and Negative Dimensions" PRL 43 (11) 744-745]. "the critical exponents in a *d*-dimensional (4 < d < 6) system with short-range exchange and a random quenched field are the same as those of a (d - 2)-dimensional pure system."

Dimensional reduction \Leftrightarrow Trade

• Higher dimensional data: raw data are often very sparse.

- Higher dimensional data: raw data are often very sparse.
- Question: is there a "meaningful" representative of the same data lying in a lower dimensional subspace?

- Higher dimensional data: raw data are often very sparse.
- Question: is there a "meaningful" representative of the same data lying in a lower dimensional subspace?
- ightarrow PCA and signal detection [refs in talk by Mohamed Ouefelli] via statistical analysis

• Higher dimensional data: raw data are often very sparse.

• Question: is there a "meaningful" representative of the same data lying in a lower dimensional subspace?

 \rightarrow PCA and signal detection [refs in talk by Mohamed Ouefelli] via statistical analysis

 \rightarrow Clustering algorithms via statistical analysis, delivers also a subset of data that "meaningfully" describes the whole data set.

Dimensional reduction \Leftrightarrow Statistical representativity

Is there a way to SEE (literally) the dimension reducing or even flowing?

Is there a way to SEE (literally) the dimension reducing or even flowing?

YES !

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data.

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data.

- Random tensor models [Gurau's book] extend random matrix models.
- Quantum Gravity/Group Field Theory [Ambjorn etal '90, Oriti '06] \rightarrow *T*'s represent geometric/topological/combinatorial degrees of freedom (TM, GFT, TFT, TGFT)

Tensor Models/Tensor Field Theory

• Tensors (including matrices and vectors) are useful for theoretical/statistical physics, for information theory, and data.

- Random tensor models [Gurau's book] extend random matrix models.
- Quantum Gravity/Group Field Theory [Ambjorn etal '90, Oriti '06] \rightarrow *T*'s represent geometric/topological/combinatorial degrees of freedom (TM, GFT, TFT, TGFT)

Today

- \bullet Random tensors in Quantum Gravity, AdS/CFT, Holography, BH, quantum information theory
- \rightarrow Flavors in condensed matter model à la SYK

• Random tensors: represent multidimensional data, random noise in Data Sciences, AI, etc...

 \bullet TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

- \rightarrow The field $T: G^r \rightarrow \mathbb{K} = \mathbb{R}, \mathbb{C}$
- \rightarrow Kinetic term on G^r & interactions as convolutions/contractions of tensors

• TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

- \rightarrow The field $T: G^r \rightarrow \mathbb{K} = \mathbb{R}, \mathbb{C}$
- \rightarrow Kinetic term on G^r & interactions as convolutions/contractions of tensors

• Perturbative and nonperturbative RG flow understood as well safer to quote the present people or those who are online [Benedetti, Delporte, Ferdinand, Gurau, Oriti, Pascalie, Perez-Sanchez, Pithis, Rivasseau, Tanasa, Thuerigen, Toriumi, Wulkenhaar] but they are many more.

 \bullet TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

- \rightarrow The field $T: G^r \rightarrow \mathbb{K} = \mathbb{R}, \mathbb{C}$
- \rightarrow Kinetic term on G^r & interactions as convolutions/contractions of tensors

• Perturbative and nonperturbative RG flow understood as well safer to quote the present people or those who are online [Benedetti, Delporte, Ferdinand, Gurau, Oriti, Pascalie, Perez-Sanchez, Pithis, Rivasseau, Tanasa, Thuerigen, Toriumi, Wulkenhaar] but they are many more.

• Nonperturbatve FRG analysis was launched to understand the phase diagram of TFT [Benedetti, BG, Oriti, 2014].

 \bullet TFT renormalization perturbative have been worked out since 2011 [BG & Rivasseau 2011]

 $T_{a_1a_2...a_r}$ the indices are propagating themselves.

- \rightarrow The field $T: G^r \rightarrow \mathbb{K} = \mathbb{R}, \mathbb{C}$
- \rightarrow Kinetic term on G^r & interactions as convolutions/contractions of tensors

• Perturbative and nonperturbative RG flow understood as well safer to quote the present people or those who are online [Benedetti, Delporte, Ferdinand, Gurau, Oriti, Pascalie, Perez-Sanchez, Pithis, Rivasseau, Tanasa, Thuerigen, Toriumi, Wulkenhaar] but they are many more.

• Nonperturbatve FRG analysis was launched to understand the phase diagram of TFT [Benedetti, BG, Oriti, 2014].

• The Tensor Track for QG and random geometry CRivasseau.

Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and $T : G^r \to \mathbb{K}$

• No possible phase transition as long as G is compact [Benedetti 2014]; in the limit of infinite radius yes.

- 2014: FRG for TFTs and first application with $T: U(1)^3 \to \mathbb{R}$
- \rightarrow The system of β -functions was non-autonomous: explicit k in the eq.
- \rightarrow due to the radius of the compact manifold
- \rightarrow due to the nonlocal interaction

 \rightarrow resort in large (integer momentum) mode limit (UV): good notion of scaling dimension of coupling constants;

 \rightarrow small mode limit (IR): another notion of scaling dimension of coupling constants;

 \rightarrow in each limit you can draw phase diagram: strong evidence of fixed points but the meaning of picture was not clear;

What is small *k* limit?

Functional Renormalisation Group analysis of TFT/TGFT

• Consider G a compact group and $T : G^r \to \mathbb{K}$

• No possible phase transition as long as G is compact [Benedetti 2014]; in the limit of infinite radius yes.

- 2014: FRG for TFTs and first application with $T: U(1)^3 \to \mathbb{R}$
- \rightarrow The system of β -functions was non-autonomous: explicit k in the eq.
- \rightarrow due to the radius of the compact manifold
- \rightarrow due to the nonlocal interaction

 \rightarrow resort in large (integer momentum) mode limit (UV): good notion of scaling dimension of coupling constants;

 \rightarrow small mode limit (IR): another notion of scaling dimension of coupling constants;

 \rightarrow in each limit you can draw phase diagram: strong evidence of fixed points but the meaning of picture was not clear;

What is small *k* limit?

T_{000} ? T_{010} ?

• Computation at an intermediate/interpolation regime.

• 2020: Pithis and Thuerigen [2009.13588] "Ok, we take it from here !"

• 2020: Pithis and Thuerigen [2009.13588] "Ok, we take it from here !"

 \rightarrow Perform a computation of the FRG flow without resorting in any large/small *k*-limit Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

→ Equivalence between rank *r* TFT with O(2)-model in the IR → Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r - 1 \rightarrow 0$

• 2020: Pithis and Thuerigen [2009.13588] "Ok, we take it from here !"

 \rightarrow Perform a computation of the FRG flow without resorting in any large/small *k*-limit Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

→ Equivalence between rank *r* TFT with O(2)-model in the IR → Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r - 1 \rightarrow 0$

• 2020: Pithis and Thuerigen [2009.13588] "Ok, we take it from here !"

 \rightarrow Perform a computation of the FRG flow without resorting in any large/small *k*-limit Interaction: arbitrary valence of cyclic melonic interactions (nonlocal);

→ Equivalence between rank *r* TFT with O(2)-model in the IR → Effective dimension $d_{\text{eff}}(k)$: flow from UV to the IR, $r - 1 \rightarrow 0$

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

4 FRG for the cyclic melonic TFT

5 Conclusion

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R}$$
(1)

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\mathbf{x}, \mathbf{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}} \sum_{j_1, \dots, j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\mathbf{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R}$$
(1)

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\mathbf{x}, \mathbf{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}} \sum_{j_1, \dots, j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\mathbf{p}) \bigotimes_{c=1}^r D^{j_c}(\mathbf{g}_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

• Different motivations for that:

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G' \to \mathbb{K} = \mathbb{C}, \mathbb{R}$$
(1)

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\mathbf{x}, \mathbf{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}} \sum_{j_1, \dots, j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_{\mathbf{j}} \left[\Phi_{j_1 j_2 \dots j_r}(\mathbf{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R}$$
(1)

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

 \bullet G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\mathbf{x}, \mathbf{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}} \sum_{j_1, \dots, j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_j \left[\Phi_{j_1 j_2 \dots j_r}(\mathbf{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- Tensor-like SYK models: computable toy models for AdS/CFT correspondence. [Talk by Benedetti and Lettera.]

• The fields: G a Lie group

$$\Phi: \mathbb{R}^d \times G^r \to \mathbb{K} = \mathbb{C}, \mathbb{R}$$
(1)

$$(\boldsymbol{x}, \boldsymbol{g}) \mapsto \Phi(\boldsymbol{x}, \boldsymbol{g})$$
 (2)

• G is chosen compact \rightarrow Peter-Weyl transform of the field

$$\Phi(\mathbf{x}, \mathbf{g}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{p}}{(2\pi)^{d/2}} \mathrm{e}^{i\mathbf{p}\cdot\mathbf{x}} \sum_{j_1, \dots, j_r} \left(\prod_{c=1}^r d_{j_c} \right) \mathrm{tr}_{\mathbf{j}} \left[\Phi_{j_1 j_2 \dots j_r}(\mathbf{p}) \bigotimes_{c=1}^r D^{j_c}(g_c) \right]$$
(3)

• The tensor field:

$$\Phi_{j_1 j_2 \dots j_r}(\boldsymbol{p}) \tag{4}$$

- Different motivations for that:
- Adding matter-like degrees of freedom [Oriti, Sindoni, Wilson-Ewing 2016]
- Tensor-like SYK models: computable toy models for AdS/CFT correspondence. [Talk by Benedetti and Lettera.]

+ 1 new motivation: it will allow a nontrivial dimensional flow towards the IR !

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• Represented by (bi-partite, if complex tensors) *d*-regular colored graphs: the rank *d* tensor field is a vertex of valence *d*, index contraction by a colored edge;

- TFT interactions/observables: contractions of tensors (wth trivial metric)
- Represented by (bi-partite, if complex tensors) *d*-regular colored graphs: the rank *d* tensor field is a vertex of valence *d*, index contraction by a colored edge;
- Interest in particular contractions: cyclic melonic (Conjecture: many features of our analysis will extend beyond this class).
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}, j_1, j_2, j_3, j_4 \in I$, with distinguished indices

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• Represented by (bi-partite, if complex tensors) *d*-regular colored graphs: the rank *d* tensor field is a vertex of valence *d*, index contraction by a colored edge;

- Interest in particular contractions: cyclic melonic (Conjecture: many features of our analysis will extend beyond this class).
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.
TFT model: cyclic melonic interaction, finite but arbitrary valence

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• Represented by (bi-partite, if complex tensors) *d*-regular colored graphs: the rank *d* tensor field is a vertex of valence *d*, index contraction by a colored edge;

- Interest in particular contractions: cyclic melonic (Conjecture: many features of our analysis will extend beyond this class).
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_3j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

• Nonlocal and a tractable combinatorics: computable at arbitrary valence.

TFT model: cyclic melonic interaction, finite but arbitrary valence

• TFT interactions/observables: contractions of tensors (wth trivial metric)

• Represented by (bi-partite, if complex tensors) *d*-regular colored graphs: the rank *d* tensor field is a vertex of valence *d*, index contraction by a colored edge;

- Interest in particular contractions: cyclic melonic (Conjecture: many features of our analysis will extend beyond this class).
- Illustration in rank 4: complex tensors $\Phi_{j_1j_2j_4j_4}$, $j_1, j_2, j_3, j_4 \in I$, with distinguished indices

Figure: Rank d = 4 cyclic-melonic interactions diagrammatically described by colored graphs.

• Nonlocal and a tractable combinatorics: computable at arbitrary valence.

•
$$S_{int}(\phi, \bar{\phi}) = \int_{\mathbb{R}^d} \mathrm{d} \mathbf{x} \left[\sum_{n=2}^{n_{\max}} \sum_{c=1}^r \lambda_n^c \operatorname{Tr}_{n;c}(\phi, \bar{\phi})(\mathbf{x}) \right]$$

TFT model: action

• The action

$$S(\phi, \bar{\phi}) = S_{kin}(\phi, \bar{\phi}) + S_{int}(\phi, \bar{\phi})$$

$$S_{kin}(\phi, \bar{\phi}) = (\bar{\phi}, K\phi) = \int_{\mathbb{R}^d \times \mathbb{R}^d} d\mathbf{x} d\mathbf{x}' \int_{G^r \times G^r} d\mathbf{g} d\mathbf{g}' \quad \bar{\phi}(\mathbf{x}, \mathbf{g}) K(\mathbf{x}, \mathbf{g}; \mathbf{x}', \mathbf{g}')) \phi(\mathbf{x}', \mathbf{g}')$$

$$K(\mathbf{x}, \mathbf{g}; \mathbf{x}', \mathbf{g}') = \delta(\mathbf{x} - \mathbf{x}') \delta(\mathbf{g}\mathbf{g}'^{-1}) \Big[\Big(-\Delta_x - \kappa^2 \sum_{c=1}^r (\Delta_g^{(c)})^{\zeta} \Big) + \mu_k \Big]$$
(5)

where Δ_{x} is the Laplacian on \mathbb{R}^{d} , $\Delta_g^{(c)}$) the (colored) Laplacian on G, $\zeta \in]0,1]$

 κ restores the dimension balance.

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

4 FRG for the cyclic melonic TFT

5 Conclusion

[Wetterich 92, Morris 93]

[Wetterich 92, Morris 93]

• The generating function all all correlators

$$Z[J,\bar{J}] = e^{W[J,\bar{J}]} = \int \mathcal{D}\Phi \mathcal{D}\bar{\Phi} \ e^{-S[\Phi,\bar{\Phi}] + (J,\Phi) + (\Phi,J)}$$
(6)

[Wetterich 92, Morris 93]

• The generating function all all correlators

$$Z[J,\bar{J}] = e^{W[J,\bar{J}]} = \int \mathcal{D}\Phi \mathcal{D}\bar{\Phi} \ e^{-S[\Phi,\bar{\Phi}] + (J,\Phi) + (\Phi,J)}$$
(6)

$$\varphi(\mathbf{x},\mathbf{g}) := \langle \Phi(\mathbf{x},\mathbf{g}) \rangle = \frac{\delta W[J,\bar{J}]}{\delta \bar{J}(\mathbf{x},\mathbf{g})} \quad , \quad \bar{\varphi}(\mathbf{x},\mathbf{g}) := \langle \bar{\Phi}(\mathbf{x},\mathbf{g}) \rangle = \frac{\delta W[J,\bar{J}]}{\delta J(\mathbf{x},\mathbf{g})}. \tag{7}$$

[Wetterich 92, Morris 93]

• The generating function all all correlators

$$Z[J,\bar{J}] = e^{W[J,\bar{J}]} = \int \mathcal{D}\Phi \mathcal{D}\bar{\Phi} \ e^{-S[\Phi,\bar{\Phi}] + (J,\Phi) + (\Phi,J)}$$
(6)

$$\varphi(\mathbf{x},\mathbf{g}) := \langle \Phi(\mathbf{x},\mathbf{g}) \rangle = \frac{\delta W[J,\bar{J}]}{\delta \bar{J}(\mathbf{x},\mathbf{g})} \quad , \quad \bar{\varphi}(\mathbf{x},\mathbf{g}) := \langle \bar{\Phi}(\mathbf{x},\mathbf{g}) \rangle = \frac{\delta W[J,\bar{J}]}{\delta J(\mathbf{x},\mathbf{g})}. \tag{7}$$

• Effective average action: Legendre transform of $W[J, \overline{J}]$

$$\Gamma[\varphi,\bar{\varphi}] = \sup_{\bar{J},J} \{(\varphi,J) + (J,\varphi) - W[\bar{J},J]\}$$
(8)

Generating function of all 1PI correlation functions.

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants;

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants; • Introduce a scale k and an IR (cut-off) regulator \mathcal{R}_k that projects only on field modes relevant to that scale

$$Z_{k}[J,\bar{J}] = e^{W_{k}[J,\bar{J}]} = \int \mathcal{D}\varphi \mathcal{D}\bar{\varphi} e^{-S[\varphi,\bar{\varphi}] - (\varphi, \mathcal{R}_{k}\varphi) + (J,\varphi) + (\varphi,J)}.$$
(9)

 \mathcal{R}_k should satisfy specific conditions;

• [Wilson 71] Implementing a renormalization scheme is to regularize all ill-behaved (above) expressions in such a way to generate a flow of the theory coupling constants; • Introduce a scale k and an IR (cut-off) regulator \mathcal{R}_k that projects only on field modes relevant to that scale

$$Z_{k}[J,\bar{J}] = e^{W_{k}[J,\bar{J}]} = \int \mathcal{D}\varphi \mathcal{D}\bar{\varphi} e^{-S[\varphi,\bar{\varphi}] - (\varphi, \mathcal{R}_{k}\varphi) + (J,\varphi) + (\varphi,J)}.$$
(9)

 \mathcal{R}_k should satisfy specific conditions;

• Scale dependent effective action

$$\Gamma_{k}[\varphi,\bar{\varphi}] = \sup_{J,\bar{J}} \left[(\varphi,J) + (J,\varphi) - W_{k}[J,\bar{J}] \right] - (\varphi,\mathcal{R}_{k}\varphi).$$
(10)

• Expansion for TFT:

$$\Gamma_{k}[\varphi,\bar{\varphi}] = (\varphi,\mathcal{K}_{k}\varphi) + \sum_{\gamma} \lambda_{\gamma;k} \operatorname{Tr}_{\gamma}[\varphi,\bar{\varphi}],$$
$$\mathcal{K}_{k} = Z_{k} \Big(-\Delta_{x} - \kappa^{2} \sum_{c=1}^{r} (\Delta_{g}^{(c)})^{\zeta} \Big) + \mu_{k}$$
(11)

• Flow equation for the effective average action: The Wetterich-Morris equation

$$(k\partial_k)\,\Gamma_k[\varphi,\bar{\varphi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\mathbb{I}_2\right)^{-1}(k\partial_k)\,\mathcal{R}_k\right],\tag{12}$$

where STr is a supertrace (all configuration space variables integrated), $\Gamma_k^{(2)}$ is the Hessian matrix of Γ_k

$$\Gamma_{k}^{(2)}[\varphi,\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) \coloneqq \frac{\delta^{2}\Gamma_{k}[\varphi,\bar{\varphi}]}{\delta\varphi(\mathbf{x},\mathbf{g})\delta\bar{\varphi}(\mathbf{y},\mathbf{h})} \\
\Gamma_{k}^{(2)}[\varphi,\varphi](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) \coloneqq \frac{\delta^{2}\Gamma_{k}[\varphi,\bar{\varphi}]}{\delta\varphi(\mathbf{x},\mathbf{g})\delta\varphi(\mathbf{y},\mathbf{h})} \\
\Gamma_{k}^{(2)}[\bar{\varphi},\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) \coloneqq \dots$$
(13)

• Results are dependent on \mathcal{R}_k and the ansatz for Γ_k ;

 \Rightarrow Prove that the results holds for classes of regulators and an enlarged truncation helps in gaining confidence in the results.

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

FRG for the cyclic melonic TFT

5 Conclusion

- Now for simplicity we will restrict to G = U(1).
- We project on constant and uniform fields

$$\varphi(\mathbf{x}, \mathbf{g}) = \chi \tag{14}$$

$$\Gamma_{k}[\varphi,\bar{\varphi}] = \Gamma_{k}(\rho) = U_{k}(\rho) = a_{\mathbb{R}}^{d} a_{G}^{r} \mu_{k} \chi^{2} + a_{\mathbb{R}}^{d} \sum_{n=2}^{h_{\max}} (\sum_{\gamma \mid V_{\gamma}=2n} \lambda_{\gamma;k}) (a_{G}^{r} \chi^{2})^{n},$$

$$\rho := a_{G}^{r} \chi^{2}$$
(15)

where $a_{\mathbb{R}}$ is the formal volume of \mathbb{R} and a_G the volume of the G (note that we do not use Haar measure);

 \rightarrow For the cyclic melonic potential: $\sum_{\gamma | V_{\gamma} = 2n} = \sum_{c=1}^{r}$

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \Big[$$

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \bigg[\prod_{b \neq c} \delta(g_{b},h_{b}) \bigg] (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{n-1} (g_{c},h_{c})$$

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n,k}^{c} \Big[\prod_{b\neq c} \delta(g_{b},h_{b}) \Big] (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{n-1}(g_{c},h_{c}) + \delta(g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-1} (\hat{\boldsymbol{g}}_{c},\hat{\boldsymbol{h}}_{c})$$

Figure: 2nd order derivative of a rank d = 4 cyclic-melonic interaction 2n = 8.

$$F_{2}[\varphi,\bar{\varphi}](\mathbf{x},\mathbf{g};\mathbf{y},\mathbf{h}) = \sum_{c=1}^{r} \sum_{n=2}^{n_{max}} \frac{n}{n!} \lambda_{n,k}^{c} \Big[\Big[\prod_{b \neq c} \delta(g_{b},h_{b}) \Big] (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{n-1} (g_{c},h_{c}) + \delta(g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-1} (\hat{g}_{c},\hat{h}_{c}) \\ + \sum_{p=1}^{n-2} (\bar{\varphi} \cdot_{\hat{c}} \varphi)^{p} (g_{c},h_{c}) (\bar{\varphi} \cdot_{c} \varphi)^{n-p-1} (\hat{g}_{c},\hat{h}_{c}) \Big].$$
(16)

The cyclic melonic potential approximation: Projection on local fields

• Projection on local fields after derivation:

$$F_{2}[\bar{\chi},\chi](\boldsymbol{x},\boldsymbol{g};\boldsymbol{y},\boldsymbol{h}) = a_{\mathbb{R}}^{d} \sum_{c=1}^{r} \sum_{n=2}^{n_{\max}} \frac{n}{n!} \lambda_{n}^{c} a_{G}^{(n-2)r} \left(\prod_{b \neq c} a_{g} \delta(g_{b},h_{b}) + a_{G} \delta(g_{c},h_{c}) + n - 2 \right) (\bar{\chi}\chi)^{n-1} = a_{\mathbb{R}}^{d} a_{G}^{-r} \sum_{c=1}^{r} \left[\left(a_{G} \prod_{b \neq c} \delta(g_{b},h_{b}) + a_{G} \delta(g_{c},h_{c}) - 1 \right) V_{k}^{c'}(\rho) + \rho V''(\rho) \right] V_{k}^{c}(z) = \sum_{n=2}^{n_{\max}} \frac{1}{n!} \lambda_{n,k}^{c} z^{n}$$
(17)

• Regulator in momentum space

$$\mathcal{R}_{k}(\boldsymbol{p},\boldsymbol{j}) = Z_{k}\left(k^{2} - p^{2} - \kappa^{2} \frac{C_{\boldsymbol{j}}^{(\zeta)}}{a_{G}^{2\zeta}}\right) \theta\left(k^{2} - p^{2} - \kappa^{2} \frac{C_{\boldsymbol{j}}^{(\zeta)}}{a_{G}^{2\zeta}}\right)$$
(18)

where $C_j^{(\zeta)}$ is the fractional Casimir of G^r (think about C_j as $\sum_{j_c} j_c(j_c+1)$ for SU(2) or $\sum_c j_c^2$ for $U(1)^r$).

The full non autonomous system

• Scale $t = \log k$ then $\partial_t = k \partial_k$

$$\partial_{t} U_{k}(\rho) =$$

$$\frac{1}{2} \int_{\mathbb{R}^{d}} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^{d/2}} \sum_{\{j_{c}\} \in \mathbb{Z}^{r}} \left[\frac{\partial_{t} \mathcal{R}_{k}(\boldsymbol{p}, \boldsymbol{j})}{P_{\mathrm{R}} + \sum_{c} \mathcal{O}_{j}^{c} V_{k}^{c'}(\rho)} + \frac{\partial_{t} \mathcal{R}_{k}(\boldsymbol{p}, \boldsymbol{j})}{P_{\mathrm{R}} + \sum_{c} \mathcal{O}_{j}^{c} V_{k}^{c'}(\rho) + 2\rho \mathcal{O}_{0j} \sum_{c} V_{k}^{c''}(\rho)} \right],$$
(19)

where the \mathcal{O}_{j}^{c} and \mathcal{O}_{0j} encodes now nonlocality

$$\mathcal{O}_{j}^{c} := \delta_{0j_{c}} + (1 - \delta_{0j_{c}}) \prod_{b \neq c} \delta_{0j_{b}} \quad , \quad \mathcal{O}_{0j} = \prod_{c} \delta_{0j_{c}}$$
(20)

and assuming $\theta\left(k^2 - p^2 - \kappa^2 \frac{C_j^{(\zeta)}}{a_G^{2\zeta}}\right) = 1$ holds:

$$P_{\rm R} = Z_k \left(\boldsymbol{p}^2 + \kappa^2 \frac{C_{\boldsymbol{j}}^{(\zeta)}}{\boldsymbol{a}_{\rm G}^{2\zeta}} \right) + \mu_k + \mathcal{R}_k(\boldsymbol{p}, \boldsymbol{j}) = Z_k k^2 + \mu_k$$
(21)

The cyclic melonic potential approximation: isotropic sector

• We consider the isotropic sector: $\lambda_{n,k}^c = \lambda_{n,k}/r$, $\forall c = 1, \dots, r$.

$$U_{k}(\rho) = \mu_{k} \rho + \sum_{n=2}^{n_{\max}} (\sum_{\gamma \mid V_{\gamma} = 2n} \lambda_{\gamma;k}) \rho^{n} = \mu_{k} \rho + \sum_{n=2}^{n_{\max}} \sum_{c=1}^{r} \lambda_{n,k}^{c} \rho^{n}$$
$$= \mu_{k} \rho + \sum_{n=2}^{\infty} \frac{1}{n!} \lambda_{n,k} \rho^{n}$$
(22)

• The FRG equation becomes:

$$k\partial_{k}U_{k}(\rho) = \frac{I_{\eta_{k}}^{(d,0)}(k)}{k^{2}Z_{k} + U_{k}'(\rho) + 2\rho U_{k}''(\rho)} + \frac{I_{\eta_{k}}^{(d,0)}(k) + 2rI_{\eta_{k}}^{(d,1)}(k)}{k^{2}Z_{k} + U_{k}'(\rho)} + 2\sum_{s=2}^{r} \binom{r}{s} \frac{I_{\eta_{k}}^{(d,s)}(k)}{k^{2}Z_{k} + \mu_{k} + \frac{r-s}{r}V_{k}'(\rho)}$$
(23)

Threshold spectral sums in rank $s \leq r$

• The master: $\eta_k = -\partial_t \log Z_k$

$$I_{\eta_k}^{(d,s)}(k) = k^2 Z_k \left(1 - \frac{\eta_k}{2} \right) I_0^{(d,s)} + Z_k \frac{\eta_k}{2} \left(I_1^{(d,s)} + I_2^{(d,s)} \right)$$
(24)

• The threshold (discrete-volume) functions: setting $\xi = 0, 1$

$$I_{\xi}^{(d,s)}(k) = \int_{\mathbb{R}^{d}} d\mathbf{p} \, p^{2\xi} \sum_{j \in (\mathbb{Z} \setminus \{0\})^{s}} \theta\left(k^{2} - p^{2} - \frac{\kappa^{2}}{a_{G}^{2\zeta}}C_{j}^{(\zeta)}\right)$$
(25)
$$I_{\xi}^{(d,0)}(k) = \int_{\mathbb{R}^{d}} d\mathbf{p} \, p^{2\xi} \, \theta\left(k^{2} - p^{2}\right) = \frac{1}{d + 2\xi} v_{d} k^{d + 2\xi}$$
(26)
$$I_{2}^{(d,s)}(k) = \int_{\mathbb{R}^{d}} d\mathbf{p} \sum_{j \in (\mathbb{Z} \setminus \{0\})^{s}} \sum_{c=1}^{s} \frac{\kappa^{2}}{a_{G}^{2\zeta}} (C_{j_{c}})^{\zeta} \, \theta\left(k^{2} - p^{2} - \frac{\kappa^{2}}{a_{G}^{2\zeta}}C_{j}^{(\zeta)}\right)$$
(27)
$$I_{2}^{(d,0)}(k) = 0$$
(28)

 \rightarrow The sums over discrete volumes have a long history [trace back to polytope volumes, combinatorics and asymptotics Birkhoff].

- \rightarrow Difficult to handle in full generality.
- \rightarrow Hopefully: no need of an explicit expression, but just their behavior !

Threshold spectral sums in rank $s \leq r$

• We set $\zeta = 1/2$: (Strong constraint)

$$I_{\xi}^{(d,s)}(k) \approx 2^{s} \frac{v_{d}}{s!} k^{d+2\xi} \left(\frac{1}{2\xi + d} + (...) \left(\frac{a_{G}k}{\kappa} \right)^{2} + (...) \left(\frac{a_{G}k}{\kappa} \right)^{4} + \dots + \frac{(-1)^{s}}{2\xi + d + 2s} \left(\frac{a_{G}k}{\kappa} \right)^{2s} \right)$$
$$I_{2}^{(d,s)}(k) \approx 2^{s} \frac{v_{d}}{(s-1)!} k^{d+2} \left(c_{1} + (...) \left(\frac{a_{G}k}{\kappa^{2}} \right)^{2} + \dots + \frac{(-1)^{2s}}{d + 2s + 2} \left(\frac{a_{G}k}{\kappa^{2}} \right)^{2s} \right)$$
(29)

• Coefficients of the polynomials are not relevant for the dimensionless flow equations: eventually as they can be eliminated by rescaling.

- The fact that they are polynomial is what truly matters in the IR: $I_l^{(d,s)}(k) = \sum_{i=0}^{d+s} v_{l,i} k^i$, l = 0, 1, 2, with a particular expansion for i < d.
- $\zeta = 1/2$ a strong constraint: a priviledge model?

The full β -functions

• The dimensionful β -functions

$$\beta_{n,k}(\mu,\lambda_i) = \beta_n^{v1}(\mu_k,\lambda_i) I_{\eta_k}^{(d,0)}(k) + 2\sum_{l=1}^n \beta_{n,l}^{v2}(\mu_k,\lambda_i) F_{\eta_k,l}^{(d,r)}(k)$$
(30)

where $\beta_{n,k} = \partial_t \lambda_{n,k}$, $n \ge 2$ and $\partial_t \mu_k$ for n = 1;

Coeff type 1

$$\beta_0^{\text{V1}}(\mu_k, \lambda_i) = \frac{1}{Z_k k^2 + \mu_k}$$
(31)

$$\beta_n^{\vee 1}(\mu_k,\lambda_i) = \sum_{l=1}^n \frac{(-1)^l l!}{(Z_k k^2 + \mu_k)^{l+1}} B_{n,l}(3\lambda_2,5\lambda_3,...,(2n-2l+3)\lambda_{n-l+2}) .$$
(32)

• Coeff type 2

$$\beta_{n,l}^{\vee 2}(\mu_k,\lambda_i) = \frac{(-1)^l l!}{(Z_k k^2 + \mu_k)^{l+1}} B_{n,l}(\lambda_2,\lambda_3,...,\lambda_{n-l+2})$$

with $B_{n,l}(x_1, \ldots, x_{n-l+1})$ are the so-called Bell polynomials; • and the non-autonomous part:

$$F_{\eta_k,l}^{(d,r)}(k) := \frac{1}{2} I_{\eta_k}^{(d,0)}(k) + r I_{\eta_k}^{(d,1)}(k) + \sum_{s=2}^r \binom{r}{s} \left(\frac{r-s}{r}\right)^l I_{\eta_k}^{(d,s)}(k)$$

The full β -functions

• At the first order $n \leq 2$, i.e. φ^4 truncation:

Proposition

$$\partial_t \mu_k = \frac{(-\lambda_2)}{(Z_k k^2 + \mu_k)^2} \left[3I_{\eta_k}^{(d,0)}(k) + 2F_{\eta_k,1}^{(d,r)}(k) \right]$$
(33)

$$\partial_t \lambda_2 = \frac{2(\lambda_2)^2}{(Z_k k^2 + \mu_k)^3} \left[9 I_{\eta_k}^{(d,0)}(k) + 2 F_{\eta_k,2}^{(d,r)}(k) \right]$$
(34)

• At rank r = 0: No-Nonlocality (usual $\sum_{n=2}^{n_{\max}} |\varphi|^{2n}$ model on \mathbb{R}^d)

$$\beta_{n,k}(\mu,\lambda_i) = \beta_n^{\vee 1}(\mu_k,\lambda_i) I_{\eta_k}^{(d,0)}(k) + 2\sum_{l=1}^n \beta_{n,l}^{\vee 2}(\mu_k,\lambda_i) F_{\eta_k,l}^{(d,r=0)}(k)$$
(35)

$$I_{\eta_{k}}^{(d,0)}(k) = k^{2} Z_{k} \left(1 - \frac{\eta_{k}}{2}\right) I_{0}^{(d,0)} + Z_{k} \frac{\eta_{k}}{2} I_{1}^{(d,0)}$$
$$= Z_{k} k^{2} \frac{v_{d}}{d} k^{d} \left(1 - \frac{\eta_{k}}{d+2}\right)$$
$$= \frac{1}{2} I_{\eta_{k}}^{(d,0)}(k) = \frac{1}{2} I_{\eta_{k}}^{(d,0)}(k)$$
(36)

• $F_{\eta_k,l}^{(d,r)} = Z_k k^2 F_l^{(d,r)} + Z_k \frac{\eta_k}{2} G_l^{(d,r)}$ are dimensionful quantities and encode the scaling dimension of the coupling constants.

The matter of dimension and (re-)scaling

• Dimensionless couplings

$$\mu_{k} = Z_{k} k^{2} \tilde{\mu}_{k} \qquad \lambda_{n} = Z_{k}^{n} k^{2n} \left(F_{1}^{(d,r)}(k) \right)^{1-n} \tilde{\lambda}_{n} \quad \text{for } n \ge 2$$
$$Z_{k}^{n} k^{2n} \left(F_{1}^{(d,0)}(k) \right)^{1-n} = Z_{k}^{n} k^{2n} \left(k^{d} \right)^{1-n} = Z_{k}^{n} k^{d-(d-2)n}$$
(37)

• Effective dimension

$$d_{\text{eff}}(k) := \frac{\partial \log F_1^{(d,r)}(k)}{\partial \log k}$$
(38)

• Coupling constant equation: $n \ge 2$

$$\partial_{t}\tilde{\lambda}_{n} = -d_{\text{eff}}(k)\tilde{\lambda}_{n} + n(d_{\text{eff}}(k) - 2 + \eta_{k})\tilde{\lambda}_{n}$$

$$+ \frac{\left(1 - \frac{\eta_{k}}{2}\right)I_{0}^{(d,0)}(k) + \frac{\eta_{k}}{2}\frac{I_{1}^{(d,0)}(k)}{k^{2}}}{F_{1}^{(d,r)}(k)}\beta_{n}^{\vee 1}(\tilde{\lambda}_{i})$$

$$+ 2\sum_{l=1}^{n} \left(\frac{F_{l}^{(d,r)}(k)}{F_{1}^{(d,r)}(k)} - \frac{\eta_{k}}{2}\frac{G_{l}^{(d,r)}(k)}{k^{2}F_{1}^{(d,r)}(k)}\right)\beta_{n,l}^{\vee 2}(\tilde{\lambda}_{i}) .$$
(39)

Flow of dimension

• Limits

$$d_{\text{eff}}(k \gg 1) = d + r - 1 \qquad \qquad d_{\text{eff}}(k \ll 1) = d \qquad (40)$$

• At finite k: $F_1^{(d,r)}(k)$ is a polynomial in k;

Figure: Flow of effective dimension for d = r = 3 for φ^4 -model (with $a_G = 1$) using the integral approximation to the threshold function $I_0^{(3,3)}$.

Fixed points, phase transition and symmetry broken

- Fixed points *to* work in progress: We have hints that we recover the structure of fixed of a ϕ^4 in in the IR; but in the UV?
- Numerics: symmetry may be restored in the IR, for a choice of $\mu_k < 0$

Figure: Symmetry restoration in the IR for d = r = 3 for φ^6 -model.

Fixed points, phase transition and symmetry broken

• Numerics: we see symmetry is still broken in the IR (thus phase transition): for another choice $\mu_k < 0$ (15% off the previous choice)

Figure: Symmetry remains broken in the IR for d = r = 3 for φ^6 -model.

Outline

Introduction

2 The TFT model

3 Review of the Functional Renormalization Group formalism

4 FRG for the cyclic melonic TFT

5 Conclusion

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

• Nonlocality + Compactness/Discrete Rep + $T_I(x)$ produced the flow;

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

- Nonlocality + Compactness/Discrete Rep + $T_I(x)$ produced the flow;
- Flow mechanism is a robust RG-based flow;

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

- Nonlocality + Compactness/Discrete Rep + $T_I(x)$ produced the flow;
- Flow mechanism is a robust RG-based flow;
- Looks different from anything we are aware of.

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

- Nonlocality + Compactness/Discrete Rep + $T_1(x)$ produced the flow;
- Flow mechanism is a robust RG-based flow;
- Looks different from anything we are aware of.

• Rest of the program: find the phase diagram; check the existence of Wilson-Fisher fixed point in (d = 3, r);

- Find phase transition (leading hopefully to some condensate geometry conjectured in GFT [Oriti, '06]).
- Find other applications?
Conclusion

• TFT(x) (with nontrivial local dimension $x \in \mathbb{R}^d$) allows to identify a flow of the dimension;

- Nonlocality + Compactness/Discrete Rep + $T_1(x)$ produced the flow;
- Flow mechanism is a robust RG-based flow;
- Looks different from anything we are aware of.

• Rest of the program: find the phase diagram; check the existence of Wilson-Fisher fixed point in (d = 3, r);

- \bullet Find phase transition (leading hopefully to some condensate geometry conjectured in GFT [Oriti, '06]).
- Find other applications?

Thank you !