WHAT’S THAT SPECTRAL TRIPLE

PLAN FOR THIS TALK:

@ WHAT IS A SPECTRAL TRIPLE?
o WHAT IS A FUZZY SPACE?
@ PAINT ME A PICTURE
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(GEOMETRY AS A SPECTRAL TRIPLE
(A, H,7D)
-

» faithful action Vi 5¢ 1V
» bimodule H eve- W ayv Va

» first order condition Cq’l Cb,’yl‘s = 0

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))
(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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SPECTRAL TRIPLES AS QUANTUM GEOMETRY?

| prefer my space-time discrete/ finite. Two options:

Fuzzy spaces: Truncations of spectral triples:

covery Symmche (®AP | PHP 75P)
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otdy
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FuzzY SPACE (p, q) (®,1)

> The algebra are matrices:
x-alplre Mo, ¢)

P Acting on a Hilbert space:

Ve Ala¢)  VChljod ~edly
EXTRA INGREDIENTS FOR A REAL SPECTRAL TRIPLE
» KO-dimension; S = (q- e);g g

» Chirality; V(veém) = yve m
» Real structure; BCV @m) = Cva ok

(s,H,A,T,J,D)

(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015))

{IHTE> = <v¢> f‘«vzv
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DIRAC OPERATOR : FORM

Conditions on D for a real spectral triple

D= 'y"' D= D
2320 [y <0 righ
Can be translated for a fuzzy space to: FQ" d
rem- Z v & (kgmee o K
(3 ‘
oL 5t @0l Tx ¥y elle3

<k .
+ g"“@?"q’) -(-'.:Z( ' V@CL(‘(‘:S

(J.W. Barrett, J.Math.Phys. 56, 082301 (2015).)
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FUZZY SPHERE ( l,3)

(A=8t0) 3 =T5})s) D=0, +4,))

with o# the Pauli matrices and w;, a spin connection.

The fuzzy sphere is a finite spectral triple that approximates this.
> A= M (n, C) h-rel_ l'ec). Se®) \i: %_(n‘l)
> H= ¢t & N, ¢)

> D — o 6 sl ., .
Ve + :_z‘k”ye(ék(}
Lé(( 50(3)
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EXPLORE PATH INTEGRAL OVER FUZZY SPACES

f.&@) < SLD)«\'D
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THE SIMPLEST ACTION S= 7 ( S(%))

A &
S = gTr (D?) + Tr (D*) :
(J. Barrett, LG J.Phys. A49, 245001 (2016)) v . )
-A +A n,

WHAT DO WE WANT FROM AN ACTION?

» physical motivation

orde- e,,_(,,.l,({.r et Kerned

» bounded from below

» rises fast to infinity Wf
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THE SIMPLEST ACTION

S = gTr (D?) + Tr (D*)
(J. Barrett, LG J.Phys. A49, 245001 (2016))

(2,0) GEOMETRY
pebeix
D=9'®{H,}+7 ®{H,} ﬂ Mb'Q“Q

tr D? = 4n(tr H; 4 tr H3) + 4 ((tr H)? 4 (tr H2)2)

trD* = 4n<trH;‘ +trHy + 4tr H2H? — 2tr H1H2H1H2)
+ 16<tr Hy (tr Hy +tr H3 Hh) + tr Ha (tr HEHp + tr H3) + (tr H1H2)2) de

12 ((tr HP)? + (tr H22)2) +8trHi tr H3
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LOOK FOR PHASE TRANSITIONS

PHASE TRANSITION

» qualitative change in behavior
» Phase transition marked by peak in Variance

Var(S) = (8% — (S)?)

» Gets sharper in larger systems
» Higher order phase transitions show signs of correlation

(LG J.Phys.A50, 275201 (2017))
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LOOK FOR PHASE TRANSITIONS
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g% = 2781+ 0.289
(LG J.Phys.A50, 275201 (2017))
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Cov(A7, A7) TYPE (2,0)

1

N =10

(LG J.Phys.A50, 275201 (2017))
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THE PLAN

@ What is a spectral triple?

@ What is a fuzzy space?

@ Paint me a picture
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A DISTANCE MEASURE FOR SPECTRAL TRIPLES

A C_w, ‘w,z) = :’:& [( C;(’l(!)~ cot(«)] ” '[?\I,;S\é'\\

n

coheat  chie
d, dip diy -

Distance:
(A. Connes, Noncommutative Geometry. (Academic Press, 1994))
Coherent states:

(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301) 11/ 26



IMPLEMENTING THE DISTANCE CALCULATION

d(wi,w2) = sup {|wi(a) —w2(a)| - [[[D; &[] < 1}

acA

» Parametrise algebra elements

» Minimize dispersion w constraint

12/ 26



WHAT IS THE DISPERSION?

Using the algebraic data we could estimate the dispersion as

n(w) =

PROBLEMS:
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How DO WE DEFINE STATES?

SOLUTIONS

» Use embedding maps
» Add repulsive potential

n(we) = (W Yiw) = (w|Yilw)? + 3 ———

i j<k wf’wk)

Now find a set of coherent states w that minimizes this and plug them
into distance equation.
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EFFECT OF THE REPULSIVE POTENTIAL

c =0.001

100

~100

c = 1000
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SKETCH THE PROOF

slokes <> @ oint

detailed version
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How DOES THE DISPERSION CHANGE WITH A?

State for A =4 State for A = 10 State for A = 16
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THE ALGORITHM FOR STATE GENERATION

1. Find a vector vy (globally) minimizing 7. Set V = {w}.

2: while /n(v) +/n(w) < ad(v,w) for v # w € V, do

3: Find a vector w (locally) minimizing e(w; V).

4 Append w to V.

5 for ve V, do

6: Set d(v, w) = min{|(v, av) — (w, aw)|: |[D, a]| < 1}.
7 end for

8: end while
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A PICTURE OF GEOMETRY

® 0 o ° e
0.5 < The truncated sphere at A =5

° " Sailioile
T00 ]
e 205 » run algorithm — generate
states and their distance matrix
(\)rl'() » use graph embedding algorithm
X e} o . .
0 — find a locally isometric
—0.5 . : .
=05 embedding
1.6-1.0 .
» wonder why the analytic
solution is smaller

S 0-90\6
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DEFORMED Fuzzy SPHERE
D= Vo + ZCXo ¥ ® CLyy T
(f:;4 < <§: d \ ’( l jg
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EIGENVALUES OF THE DEFORMED FUZZY SPHERE
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EIGENVALUES OF THE DEFORMED FUZZY SPHERE
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DEFORMED FUZZY SPHERE

VISUALISATION OF THE
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ACCURACY OF THE EMBEDDING
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SPECTRAL DIMENSION OF THE DEF. FUZZY SPHERE
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SPECTRAL ACTION OF THE DEF. FUZZY SPHERE

70F .
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SUMMARY

TODAYS STORY:

» Exploring spectral triples using computer simulations
» a multi matrix model from finite spectral triples

» a picture of a spectral triple using Connes distance function

FUTURE PLANS:

» More visualisations:

fuzzy torus, something about the different topology messes w. my
algorithm

» Analytic results on the deformed fuzzy sphere

» Can we create ‘bespoke’ fuzzy spaces
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ADVERTISEMENT BREAK
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Next talk, next week: 26.5.22 at 18.00

Event on: Black Holes and Gravitational Waves

by Steve Giddings (UC Santa Barbara) and Hal Haggard (Bard
College)

last talk of “Season 2 - Observation", but starting next autumn will
be “Season 3 - Measure and topology change"

https://sites.google.com/view/qg-aa
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https://sites.google.com/view/qg-aa

THANK YOU ' CONTACT L.GLASERQUNIVIE.AC.AT

OR TWITTER: @QGRAVITYWITHHAT

TODAYS STORY:

» Exploring spectral triples using computer simulations
» a multi matrix model from finite spectral triples

» a picture of a spectral triple using Connes distance function

FUTURE PLANS:

» More visualisations:

fuzzy torus, something about the different topology messes w. my
algorithm

» Analytic results on the deformed fuzzy sphere

» Can we create ‘bespoke’ fuzzy spaces
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MONTE CARLO SIMULATIONS

» Simulate a Path integral, use Monte Carlo Markov Chain to
calculate averages

» Use Markov Chain to probe space of solutions to find an optimum.
Only examine the solution with minimal value of something.
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MONTE CARLO SIMULATIONS

» Simulate a Path integral, use Monte Carlo Markov Chain to
calculate averages

» Use Markov Chain to probe space of solutions to find an optimum.
Only examine the solution with minimal value of something.

It is proven that the Metropolis algorithm will find the global optimum if
sampled long enough.
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MARKOV CHAIN METHODS IN ONE SLIDE

THE METROPOLIS HASTINGS ALGORITHM

» propose new operator D’
D — D' = D+ §M with M some small matrix
> if S(D’) < S(D) accept D' and add to the chain
> otherwise calculate exp{—S(D’) + S(D)} & generate random
uniform p € [0,1]
if p < exp{—S(D’')+ S(D)} accept D’
else add D to the chain again
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MARKOV CHAIN METHODS IN ONE SLIDE

THE METROPOLIS HASTINGS ALGORITHM

» propose new operator D’
D — D' = D+ §M with M some small matrix
> if S(D’) < S(D) accept D' and add to the chain
> otherwise calculate exp{—S(D’) + S(D)} & generate random
uniform p € [0,1]
if p < exp{—S(D’')+ S(D)} accept D’
else add D to the chain again

S(D")-S(
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STATES ARE POINTS

An element v of P(Hy) that is considered to be localized should be
localized somewhere, that is, around some ‘barycenter’ b(v) € M.
We can prove:

PROPOSITION

There exists a map b: P(Hp) — M such that

(v, w) — dur(b(v), b(w))| = O/ (1) + y/n(jaw))

as (), n(pw) — 0, uniformly in v, w.
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POINTS ARE STATES

The converse: Each point x in M can be approximated through a state
v with small dispersion and with barycenter b(v) close to x

PROPOSITION

Let M be equipped with a Dirac-type operator D on a Hermitian vector
bundle 7: S — M, and let w: P(S) — M be its projectivized bundle.
Then, there exists a family {®p}a of maps ®p : P(S) — P(Hp) such
that for all ¢ > 0,
> dr(PA(V), Pa(W)) = du(T(v), T(w)) 4+ O (A1) uniformly.
> The dispersion (1) of the measure y associated to ®p(v) is
O (A=2) uniformly.
» The maps & asymptotically invert b, in the sense that
dm(7(v), b(PA(v))) = O (A1) uniformly and
da(Pa(v)),v) = O <\/n(u\,) + /\_2) uniformly whenever
b(v) = w(v).

Abridged version 26/ 26
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