What's that spectral triple

Plan for this talk:

- What is a spectral triple?
- What is a fuzzy space?
- Paint me a picture

L Glaser
19th May 2022
universität wien

Geometry as a spectral triple

(A, H, D)

AXIOMS OF SPECTRAL TRIPLES

- faithful action
a
- bimodule H over
A av

$$
v a
$$

- first order condition

$$
[a,[b, 0]]=0
$$

```
(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))
(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
```

Spectral triples as quantum geometry?

I prefer my space-time discrete/ finite. Two options:

Fuzzy spaces:

- very symmetric
- use finite A
- D respects first order

Truncations of spectral triples:
(PAP, PHP, PDF)

Operator system spectral triple breaks first orle
$\operatorname{FUZZY~SPACE~}(p, q) \quad(p, q)$

- The algebra are matrices:

$$
(s, \mathcal{H}, \mathcal{A},\ulcorner, J, \mathcal{D})
$$

$$
\text { *-alyble } M(n, \mathbb{C})
$$

- Acting on a Hilbert space:
$V \otimes M(n, \mathbb{C}) \quad K$ Clifford nodule
Extra ingredients for a real spectral triple
- KO-dimension; $\quad S=(q-p) \% 8$
- Chirality; $\quad \Gamma(v \otimes m)=\gamma v \otimes m$
- Real structure; $J(v \otimes n)=C V \otimes m^{*}$
(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015))

$$
\left\langle J \psi_{1} \zeta \phi\right\rangle=\left\langle\psi_{1} \phi\right\rangle \quad \zeta^{-1} a \zeta v
$$

Dirac operator : Form

Conditions on \mathcal{D} for a real spectral triple

$$
\begin{align*}
& D=D^{x} \\
& כ J= \pm \zeta D \tag{right}
\end{align*}
$$

$$
D \Gamma= \pm \Gamma D
$$

$$
[[D, a], b]=0
$$

Can be translated for a fuzzy space to:

$$
c^{\mathrm{ddt}}
$$

$$
\downarrow
$$

$(1,3)$

$$
\mathcal{D}(v \otimes m)=\sum_{i} \omega^{j} v \otimes\left(k_{j} m+\varepsilon m k_{j}^{*}\right)
$$

$$
\begin{aligned}
& (1,3) \\
& D=\sum_{j<k}^{3} \gamma^{0} \gamma^{j} \gamma^{k} v \otimes\left[L_{j k}, \cdot\right]+\gamma^{\prime} \gamma^{2} \gamma^{3} v \otimes\left\{H_{n 3},\right\}
\end{aligned}
$$

$$
\text { J<k } \left.\gamma^{0} \forall \otimes\left\{A_{G i}\right\}+\sum_{i=1}^{3} \gamma^{i} v \otimes C L_{i} \cdot\right]
$$

(J.W. Barrett, J.Math.Phys. 56, 082301 (2015).)

FUZZY SPHERE $\quad(1,3)$

THE CONTINUUM SPHERE

$$
\left(\mathcal{A}=\operatorname{Su}(2), \mathcal{H}=L^{2}\left(s^{2}, s\right), D=\sigma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)\right)
$$

with σ^{μ} the Pauli matrices and ω_{μ} a spin connection.
The fuzzy sphere is a finite spectral triple that approximates this.
$-\mathcal{A}=M(n, \mathbb{C}) \quad$ irred. reps. Su(2) $j=\frac{1}{2}(n-1)$

- $\mathcal{H}=\mathbb{C}^{4} \otimes M(n, \mathbb{C})$
$-\mathcal{D}=\gamma^{0} \vee \otimes m+\sum_{j<4}^{3} \gamma^{0} \gamma^{j} \gamma^{4} \otimes\left[C_{j 4 i} \cdot\right]$
$L_{j 4}$ so (3)

Explore path integral over fuzzy spaces

$$
\begin{aligned}
\langle f\rangle & =\frac{\int f(D) e^{-s(D)} d D}{\int e^{-s(D)} d D} \\
& =\frac{\int f\left(D\left(u_{i}\right)\right) e^{-s\left(D\left(u_{i}\right)\right)} \pi_{i} d k_{i}}{z}
\end{aligned}
$$

The simplest Action

$$
\mathcal{S}=g_{2} \operatorname{Tr}\left(\mathcal{D}^{2}\right)+\operatorname{Tr}\left(\mathcal{D}^{4}\right)
$$

(J. Barrett, LG J.Phys. A49, 245001 (2016))

$$
S=\operatorname{Tr}\left(\rho\left(\frac{D}{\lambda}\right)\right)
$$

What do we want from an action?

- physical motivation
\Rightarrow lowest order expending Heat Kerne
- bounded from below
rises fast to infinity

The simplest action

$$
\begin{aligned}
& \mathcal{S}=g_{2} \operatorname{Tr}\left(\mathcal{D}^{2}\right)+\operatorname{Tr}\left(\mathcal{D}^{4}\right) \\
& (\mathrm{J} . \text { Barrett, LG J.Phys. A49, } 245001 \text { (2016)) }
\end{aligned}
$$

$(2,0)$ GEOMETRY

$$
\begin{aligned}
\mathcal{D} & =\gamma^{1} \otimes\left\{H_{1}, \cdot\right\}+\gamma^{2} \otimes\left\{H_{2}, \cdot\right\} \\
\operatorname{tr} \mathcal{D}^{2} & =4 n\left(\operatorname{tr} H_{1}^{2}+\operatorname{tr} H_{2}^{2}\right)+4\left(\left(\operatorname{tr} H_{1}\right)^{2}+\left(\operatorname{tr} H_{2}\right)^{2}\right) \\
\operatorname{tr} \mathcal{D}^{4} & =4 n\left(\operatorname{tr} H_{1}^{4}+\operatorname{tr} H_{2}^{4}+4 \operatorname{tr} H_{1}^{2} H_{2}^{2}-2 \operatorname{tr} H_{1} H_{2} H_{1} H_{2}\right) \\
& +16\left(\operatorname{tr} H_{1}\left(\operatorname{tr} H_{1}^{3}+\operatorname{tr} H_{2}^{2} H_{1}\right)+\operatorname{tr} H_{2}\left(\operatorname{tr} H_{1}^{2} H_{2}+\operatorname{tr} H_{2}^{3}\right)+\left(\operatorname{tr} H_{1} H_{2}\right)^{2}\right)+ \\
& 12\left(\left(\operatorname{tr} H_{1}^{2}\right)^{2}+\left(\operatorname{tr} H_{2}^{2}\right)^{2}\right)+8 \operatorname{tr} H_{1}^{2} \operatorname{tr} H_{2}^{2}
\end{aligned}
$$

LOOK FOR PHASE TRANSITIONS

Phase Transition

- qualitative change in behavior
- Phase transition marked by peak in Variance

$$
\operatorname{Var}(\mathcal{S})=\left\langle\mathcal{S}^{2}-\langle\mathcal{S}\rangle^{2}\right\rangle
$$

- Gets sharper in larger systems
- Higher order phase transitions show signs of correlation
(LG J.Phys.A50, 275201 (2017))

Look for phase transitions

$\operatorname{Cov}\left(\lambda_{i}^{2}, \lambda_{j}^{2}\right) \operatorname{Type}(2,0)$

$$
N=10
$$

(LG J.Phys.A50, 275201 (2017))

The Plan

- What is a spectral triple?
- What is a fuzzy space?
- Paint me a picture

A distance measure for spectral triples
coherat stetes

$$
\left(\begin{array}{cccc}
d_{11} & d_{12} & d_{13} & \cdots \\
\vdots & & & \\
\vdots & & &
\end{array}\right)
$$

Distance:
(A. Connes, Noncommutative Geometry. (Academic Press, 1994)) Coherent states:
(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

Implementing The distance calculation

$$
d\left(\omega_{1}, \omega_{2}\right)=\sup _{a \in \mathcal{A}}\left\{\left|\omega_{1}(a)-\omega_{2}(a)\right|:\|[D, a]\| \leq 1\right\}
$$

- Parametrise algebra elements
- Minimize dispersion w constraint

What is the dispersion?

Using the algebraic data we could estimate the dispersion as

$$
\eta(\omega)=
$$

PROBLEMS:

How do we define states?

Solutions

- Use embedding maps
- Add repulsive potential

$$
\eta\left(\omega_{k}\right)=\sum_{i}\langle\omega| Y_{i}^{2}|\omega\rangle-\langle\omega| Y_{i}|\omega\rangle^{2}+\sum_{j<k} \frac{c}{d\left(\omega_{j}, \omega_{k}\right)}
$$

Now find a set of coherent states ω that minimizes this and plug them into distance equation.

Effect of the repulsive potential

$$
c=0.001
$$

Sketch the proof
states \longleftrightarrow point
detailed version

How does the dispersion change with Λ ?

The algorithm for state generation

1: Find a vector v_{0} (globally) minimizing η. Set $V=\left\{v_{0}\right\}$.
2: while $\sqrt{\eta(v)}+\sqrt{\eta(w)} \leq \alpha d(v, w)$ for $v \neq w \in V$, do
3: \quad Find a vector w (locally) minimizing $e(w ; V)$.
4: \quad Append w to V.
5: \quad for $v \in V$, do
6: \quad Set $d(v, w)=\min \{|\langle v, a v\rangle-\langle w, a w\rangle|:|[D, a]| \leq 1\}$.
7: end for
8: end while

A picture of geometry

\Leftarrow The truncated sphere at $\Lambda=5$

- run algorithm \rightarrow generate states and their distance matrix
- use graph embedding algorithm \rightarrow find a locally isometric embedding
- wonder why the analytic solution is smaller

Deformed Fuzzy sphere

$$
\begin{aligned}
& D=\gamma_{0}+\sum c_{j 4} \gamma_{0} \gamma_{s} \gamma_{k} \otimes\left[L_{j h, i}\right] \\
& c_{j \mu}=\left\{c_{1} 1,1\right\}
\end{aligned}
$$

Eigenvalues of the deformed fuzzy sphere

Eigenvalues of The Deformed fuZZy sphere

Visualisation of the deformed fuzzy sphere

$$
d=2.0
$$

$d=1.1$
$d=1.5$
$d=10.0$

$d=100.0$

co 1 adda QFT On the localizel steter?

Accuracy of the embedding

Spectral dimension of the def. fuzzy Sphere

Spectral action of the def. fuZZy sphere

SUMMARY

TODAYS STORY:

- Exploring spectral triples using computer simulations
- a multi matrix model from finite spectral triples
- a picture of a spectral triple using Connes distance function

Future Plans:

- More visualisations:
fuzzy torus, something about the different topology messes w. my algorithm
- Analytic results on the deformed fuzzy sphere
- Can we create 'bespoke' fuzzy spaces

Advertisement break

Quantum Gravity Across pproaches

- Next talk, next week: 26.5 .22 at 18.00
- Event on: Black Holes and Gravitational Waves
- by Steve Giddings (UC Santa Barbara) and Hal Haggard (Bard College)
- last talk of "Season 2 - Observation", but starting next autumn will be "Season 3 - Measure and topology change" https://sites.google.com/view/qg-aa

TODAYS STORY:

- Exploring spectral triples using computer simulations
- a multi matrix model from finite spectral triples
- a picture of a spectral triple using Connes distance function

Future plans:

- More visualisations:
fuzzy torus, something about the different topology messes w. my algorithm
- Analytic results on the deformed fuzzy sphere
- Can we create 'bespoke' fuzzy spaces

Monte Carlo Simulations

- Simulate a Path integral, use Monte Carlo Markov Chain to calculate averages
- Use Markov Chain to probe space of solutions to find an optimum. Only examine the solution with minimal value of something.

Monte Carlo Simulations

- Simulate a Path integral, use Monte Carlo Markov Chain to calculate averages
- Use Markov Chain to probe space of solutions to find an optimum. Only examine the solution with minimal value of something.

Note:

It is proven that the Metropolis algorithm will find the global optimum if sampled long enough.

Markov Chain Methods in one slide

The Metropolis Hastings algorithm

- propose new operator D^{\prime}
$D \rightarrow D^{\prime}=D+\delta M$ with δM some small matrix
- if $S\left(D^{\prime}\right)<S(D)$ accept D^{\prime} and add to the chain
- otherwise calculate $\exp \left\{-S\left(D^{\prime}\right)+S(D)\right\}$ \& generate random uniform $p \in[0,1]$
if $p<\exp \left\{-S\left(D^{\prime}\right)+S(D)\right\}$ accept D^{\prime}
else add D to the chain again

Markov Chain Methods in one slide

The Metropolis Hastings algorithm

- propose new operator D^{\prime}
$D \rightarrow D^{\prime}=D+\delta M$ with δM some small matrix
- if $S\left(D^{\prime}\right)<S(D)$ accept D^{\prime} and add to the chain
- otherwise calculate $\exp \left\{-S\left(D^{\prime}\right)+S(D)\right\}$ \& generate random uniform $p \in[0,1]$
if $p<\exp \left\{-S\left(D^{\prime}\right)+S(D)\right\}$ accept D^{\prime}
else add D to the chain again

States are points

An element \mathbf{v} of $\mathbb{P}\left(H_{\Lambda}\right)$ that is considered to be localized should be localized somewhere, that is, around some 'barycenter' $b(\mathbf{v}) \in M$. We can prove:

Proposition

There exists a map $b: \mathbb{P}\left(H_{\Lambda}\right) \rightarrow M$ such that

$$
\left|d_{\Lambda}(\mathbf{v}, \mathbf{w})-d_{M}(b(\mathbf{v}), b(\mathbf{w}))\right|=O\left(\sqrt{\eta\left(\mu_{v}\right)}+\sqrt{\eta\left(\mu_{w}\right)}\right)
$$

as $\eta\left(\mu_{v}\right), \eta\left(\mu_{w}\right) \rightarrow 0$, uniformly in \mathbf{v}, \mathbf{w}.

Points are states

The converse: Each point x in M can be approximated through a state \mathbf{v} with small dispersion and with barycenter $b(\mathbf{v})$ close to x

Proposition

Let M be equipped with a Dirac-type operator D on a Hermitian vector bundle $\pi: \mathbf{S} \rightarrow M$, and let $\tilde{\pi}: \mathbb{P}(\mathbf{S}) \rightarrow M$ be its projectivized bundle.
Then, there exists a family $\left\{\Phi_{\Lambda}\right\}_{\wedge}$ of maps $\Phi_{\wedge}: \mathbb{P}(\mathbf{S}) \rightarrow \mathbb{P}\left(H_{\Lambda}\right)$ such
that for all $\epsilon>0$,
$-d_{\Lambda}\left(\Phi_{\Lambda}(v), \Phi_{\Lambda}(w)\right)=d_{M}(\widetilde{\pi}(v), \widetilde{\pi}(w))+\widetilde{O}\left(\Lambda^{-1}\right)$ uniformly.

- The dispersion $\eta(\mu)$ of the measure μ associated to $\Phi_{\Lambda}(v)$ is $\widetilde{O}\left(\Lambda^{-2}\right)$ uniformly.
- The maps Φ_{Λ} asymptotically invert b, in the sense that $d_{M}\left(\widetilde{\pi}(v), b\left(\Phi_{\Lambda}(v)\right)\right)=\widetilde{O}\left(\Lambda^{-1}\right)$ uniformly and $\left.d_{\Lambda}\left(\Phi_{\Lambda}(v)\right), \mathbf{v}\right)=\widetilde{O}\left(\sqrt{\eta\left(\mu_{v}\right)}+\Lambda^{-2}\right)$ uniformly whenever $b(\mathbf{v})=\widetilde{\pi}(v)$.

