WHAT'S THAT SPECTRAL TRIPLE

PLAN FOR THIS TALK:

- What is a spectral triple?
- What is a fuzzy space?
- PAINT ME A PICTURE

L GLASER 19th May 2022

Geometry as a spectral triple

$$(\Lambda, \mathcal{H}, \mathcal{D})$$

AXIOMS OF SPECTRAL TRIPLES			
► faithful action	on flan	۹.	1
► bimodule 🧏 over	4	٩٧	va
First order condition $[a, [b, \Im]] = 0$			

(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008)) (more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))

Spectral triples as quantum geometry?

I prefer my space-time discrete/ finite. Two options:

Fuzzy spaces: • very symmetric • use finite A • D respects first order Truncations of spectral triples: (PAP , PHP, PDP) Operator system spectral triple breaks first or lar

Fuzzy space (p, q)

(P.9)

EXTRA INGREDIENTS FOR A REAL SPECTRAL TRIPLE

- KO-dimension; S = (q p) % 8
- $\blacktriangleright \text{ Chirality;} \qquad \Gamma(v \otimes m) = \gamma v \otimes m$
- ► Real structure; $\zeta(v \otimes m) = Cv \otimes m^*$

(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015))

< 39, 39 = < 7, 4>av I⁻¹a (v

DIRAC OPERATOR : FORM

Conditions on \mathcal{D} for a real spectral triple 77== TD D= PK [[]10], b7 = 0 GI = IC $\mathcal{D}(v \otimes m) = \sum_{i}^{j} \omega^{i} V \otimes \left(\begin{array}{c} k_{j} m + \varepsilon \\ k_{j} m \end{array} \right)$ Can be translated for a fuzzy space to: $\begin{array}{c} (1_{1}^{3}) \\ \mathcal{D} = \sum_{j < k} y^{3} y^{3} y^{k} v \otimes \begin{bmatrix} \mathcal{L}_{jk}, \cdot \end{bmatrix} + y^{i} y^{3} v \otimes \begin{bmatrix} \mathcal{H}_{n_{3}}, \cdot \end{bmatrix} \\ \frac{1}{2} y^{2} v \otimes \begin{bmatrix} \mathcal{H}_{n_{3}}, \cdot \end{bmatrix} + y^{i} y^{3} v \otimes \begin{bmatrix} \mathcal{H}_{n_{3}}, \cdot \end{bmatrix} \\ + y^{2} v \otimes \widehat{\mathcal{H}}_{u}, \cdot \end{bmatrix} + \sum_{i=1}^{3} y^{i} v \otimes \mathbb{C} \mathcal{L}_{i_{i_{1}}}, \cdot \end{bmatrix}$

FUZZY SPHERE

(1,3)

The continuum sphere

$$\left(\mathcal{A} = \mathcal{S}(\mathcal{O}), \mathcal{H} = \mathcal{L}\left(\mathcal{S}^{\mathbf{c}}_{\mathbf{j}}\mathcal{S}\right), D = \sigma^{\mathbf{p}}\left(\partial_{\mathbf{p}} + \omega_{\mathbf{p}}\right)\right)$$

with σ^{μ} the Pauli matrices and ω_{μ} a spin connection.

The fuzzy sphere is a finite spectral triple that approximates this.

$$\mathcal{A} = \mathcal{M}(n_{1} \mathbb{C}) \quad \text{irred. regs. Solo:} \quad j = \frac{1}{2}(n-1)$$

$$\mathcal{H} = \mathbb{C}^{4} \otimes \mathcal{M}(n_{1} \mathbb{C})$$

$$\mathcal{D} = \int_{0}^{0} \mathbf{v} \otimes m_{1} + \sum_{j \leq k}^{2} \sqrt[3]{j} \sqrt[3]{k} \otimes [j_{j}]_{i_{1}} \cdot \overline{j}$$

$$L_{j_{1}} = so(3)$$

EXPLORE PATH INTEGRAL OVER FUZZY SPACES

$$\langle \xi \rangle = \frac{\int f(y) e^{-S(D)} dD}{\int e^{-S(D)} dD}$$
$$= \frac{\int f(y(u_i)) e^{-S(D(u_i))} T du_i}{Z}$$

THE SIMPLEST ACTION

$$\mathcal{S} = g_2 \operatorname{Tr} \left(\mathcal{D}^2
ight) + \operatorname{Tr} \left(\mathcal{D}^4
ight)$$

(J. Barrett, LG J.Phys. A49, 245001 (2016))

$$S = T_{F} \left(g\left(\frac{P}{A}\right) \right)$$

WHAT DO WE WANT FROM AN ACTION?

expending Heat Kernel

bounded from below

rises fast to infinity

THE SIMPLEST ACTION

$$\mathcal{S} = g_2 \operatorname{Tr} \left(\mathcal{D}^2 \right) + \operatorname{Tr} \left(\mathcal{D}^4 \right)$$

(J. Barrett, LG J.Phys. A49, 245001 (2016))

(2,0) GEOMETRY

$$\mathcal{D} = \gamma^{1} \otimes \{H_{1}, \cdot\} + \gamma^{2} \otimes \{H_{2}, \cdot\}$$

$$\operatorname{tr} \mathcal{D}^{2} = 4n(\operatorname{tr} H_{1}^{2} + \operatorname{tr} H_{2}^{2}) + 4((\operatorname{tr} H_{1})^{2} + (\operatorname{tr} H_{2})^{2})$$

$$\operatorname{tr} \mathcal{D}^{4} = 4n\left(\operatorname{tr} H_{1}^{4} + \operatorname{tr} H_{2}^{4} + 4\operatorname{tr} H_{1}^{2}H_{2}^{2} - 2\operatorname{tr} H_{1}H_{2}H_{1}H_{2}\right)$$

$$+ 16\left(\operatorname{tr} H_{1}\left(\operatorname{tr} H_{1}^{3} + \operatorname{tr} H_{2}^{2}H_{1}\right) + \operatorname{tr} H_{2}\left(\operatorname{tr} H_{1}^{2}H_{2} + \operatorname{tr} H_{2}^{3}\right) + (\operatorname{tr} H_{1}H_{2})^{2}\right) + 12\left(\left(\operatorname{tr} H_{1}^{2}\right)^{2} + (\operatorname{tr} H_{2}^{2})^{2}\right) + 8\operatorname{tr} H_{1}^{2}\operatorname{tr} H_{2}^{2}$$

LOOK FOR PHASE TRANSITIONS

PHASE TRANSITION

- qualitative change in behavior
- Phase transition marked by peak in Variance

$$Var(\mathcal{S}) = \left\langle \mathcal{S}^2 - \left\langle \mathcal{S} \right\rangle^2 \right\rangle$$

- Gets sharper in larger systems
- Higher order phase transitions show signs of correlation

(LG J.Phys.A50, 275201 (2017))

LOOK FOR PHASE TRANSITIONS

 $\operatorname{Cov}(\lambda_i^2,\lambda_j^2)$ Type (2,0)

(LG J.Phys.A50, 275201 (2017))

The plan

• What is a spectral triple?

• What is a fuzzy space?

• Paint me a picture

A DISTANCE MEASURE FOR SPECTRAL TRIPLES

$$d(\omega_{11}\omega_{2}) = \sup_{\substack{a \in A \\ P}} \left\{ \begin{array}{c} |\omega_{1}(a) - \omega_{2}(a)| \| \\ ||D,a|| \leq r \\ P \\ \end{array} \right\}$$

$$cohorat \quad states \\ \left(\begin{array}{c} d_{11} & d_{12} & d_{13} \\ \vdots \\ \vdots \\ \end{array} \right)$$

Distance:

(A. Connes, Noncommutative Geometry. (Academic Press, 1994)) Coherent states:

(L. Schneiderbauer, H. Steinacker 2016, J.Phys. A49 285301)

IMPLEMENTING THE DISTANCE CALCULATION

$$d(\omega_1,\omega_2) = \sup_{oldsymbol{a}\in\mathcal{A}} \left\{ |\omega_1(oldsymbol{a}) - \omega_2(oldsymbol{a})| : ||[D,oldsymbol{a}]|| \leq 1
ight\}$$

Minimize dispersion w constraint

WHAT IS THE DISPERSION?

Using the algebraic data we could estimate the dispersion as

$$\eta(\omega) =$$

How do we define states?

Solutions

- Use embedding maps
- Add repulsive potential

$$\eta(\omega_k) = \sum_i \langle \omega | Y_i^2 | \omega
angle - \langle \omega | Y_i | \omega
angle^2 + \sum_{j < k} rac{c}{d(\omega_j, \omega_k)}$$

Now find a set of coherent states ω that minimizes this and plug them into distance equation.

EFFECT OF THE REPULSIVE POTENTIAL

c = 0

c = 0.001

Sketch the proof

detailed version

How does the dispersion change with $\Lambda?$

The algorithm for state generation

- 1: Find a vector v_0 (globally) minimizing η . Set $V = \{v_0\}$.
- 2: while $\sqrt{\eta(v)} + \sqrt{\eta(w)} \le \alpha d(v, w)$ for $v \ne w \in V$, do
- 3: Find a vector w (locally) minimizing e(w; V).
- 4: Append w to V.
- 5: for $v \in V$, do

6: Set
$$d(v,w) = \min\{|\langle v, av \rangle - \langle w, aw \rangle| \colon |[D,a]| \le 1\}.$$

- 7: end for
- 8: end while

A picture of geometry

 \checkmark

 \Leftarrow The truncated sphere at $\Lambda=5$

- ► run algorithm → generate states and their distance matrix
- ► use graph embedding algorithm → find a locally isometric embedding
- wonder why the analytic solution is smaller

Smacox

Deformed Fuzzy sphere

$$D = V_0 + \sum_{ij} V_0 Y_5 Y_4 \otimes [L_{j4}, 7]$$

$$C_{j4} = \sum_{ij} C_{ij} |_{ij} |_{ij}$$

EIGENVALUES OF THE DEFORMED FUZZY SPHERE

EIGENVALUES OF THE DEFORMED FUZZY SPHERE

VISUALISATION OF THE DEFORMED FUZZY SPHERE

con ladda QFT on the localized states?

ACCURACY OF THE EMBEDDING

Spectral dimension of the def. Fuzzy sphere

Spectral action of the def. Fuzzy sphere

SUMMARY

TODAYS STORY:

- Exploring spectral triples using computer simulations
- a multi matrix model from finite spectral triples
- a picture of a spectral triple using Connes distance function

FUTURE PLANS:

- More visualisations:
 - fuzzy torus, something about the different topology messes w. my algorithm
- Analytic results on the deformed fuzzy sphere
- Can we create 'bespoke' fuzzy spaces

Advertisement break

- Next talk, next week: 26.5.22 at 18.00
- Event on: Black Holes and Gravitational Waves
- by Steve Giddings (UC Santa Barbara) and Hal Haggard (Bard College)
- Iast talk of "Season 2 Observation", but starting next autumn will be "Season 3 - Measure and topology change" https://sites.google.com/view/qg-aa

THANK YOU!

CONTACT L.GLASER@UNIVIE.AC.AT OR TWITTER:@GRAVITYWITHHAT

TODAYS STORY:

- Exploring spectral triples using computer simulations
- a multi matrix model from finite spectral triples
- a picture of a spectral triple using Connes distance function

FUTURE PLANS:

- More visualisations:
 - fuzzy torus, something about the different topology messes w. my algorithm
- Analytic results on the deformed fuzzy sphere
- Can we create 'bespoke' fuzzy spaces

Monte Carlo Simulations

- Simulate a Path integral, use Monte Carlo Markov Chain to calculate averages
- Use Markov Chain to probe space of solutions to find an optimum. Only examine the solution with minimal value of something.

MONTE CARLO SIMULATIONS

- Simulate a Path integral, use Monte Carlo Markov Chain to calculate averages
- Use Markov Chain to probe space of solutions to find an optimum. Only examine the solution with minimal value of something.

Note:

It is proven that the Metropolis algorithm will find the global optimum if sampled long enough.

MARKOV CHAIN METHODS IN ONE SLIDE

The Metropolis Hastings algorithm

- propose new operator D' D → D' = D + δM with δM some small matrix
 if S(D') < S(D) accept D' and add to the chain
 otherwise calculate exp{-S(D') + S(D)} & generate random uniform p ∈ [0, 1]
 - if $p < \exp\{-S(D') + S(D)\}$ accept D'

else add D to the chain again

MARKOV CHAIN METHODS IN ONE SLIDE

The Metropolis Hastings algorithm

propose new operator D' D→D' = D + δM with δM some small matrix
if S(D') < S(D) accept D' and add to the chain
otherwise calculate exp{-S(D') + S(D)} & generate random uniform p ∈ [0, 1]

if
$$p < \exp\{-S(D') + S(D)\}$$
 accept D'

else add D to the chain again

An element \mathbf{v} of $\mathbb{P}(H_{\Lambda})$ that is considered to be localized should be localized *somewhere*, that is, around some 'barycenter' $b(\mathbf{v}) \in M$. We can prove:

PROPOSITION

There exists a map $b \colon \mathbb{P}(H_{\Lambda}) \to M$ such that

$$|d_{\mathsf{A}}(\mathbf{v},\mathbf{w})-d_{\mathcal{M}}(b(\mathbf{v}),b(\mathbf{w}))|=O(\sqrt{\eta(\mu_{\mathbf{v}})}+\sqrt{\eta(\mu_{\mathbf{w}})})$$

as $\eta(\mu_{\mathbf{v}}), \eta(\mu_{\mathbf{w}}) \rightarrow 0$, uniformly in \mathbf{v} , \mathbf{w} .

POINTS ARE STATES

The converse: Each point x in M can be approximated through a state **v** with small dispersion and with barycenter $b(\mathbf{v})$ close to x

PROPOSITION

Let M be equipped with a Dirac-type operator D on a Hermitian vector bundle $\pi: \mathbf{S} \to M$, and let $\tilde{\pi}: \mathbb{P}(\mathbf{S}) \to M$ be its projectivized bundle. Then, there exists a family $\{\Phi_{\Lambda}\}_{\Lambda}$ of maps $\Phi_{\Lambda}: \mathbb{P}(\mathbf{S}) \to \mathbb{P}(H_{\Lambda})$ such that for all $\epsilon > 0$,

- $d_{\Lambda}(\Phi_{\Lambda}(v), \Phi_{\Lambda}(w)) = d_{M}(\widetilde{\pi}(v), \widetilde{\pi}(w)) + \widetilde{O}(\Lambda^{-1})$ uniformly.
- The dispersion $\eta(\mu)$ of the measure μ associated to $\Phi_{\Lambda}(v)$ is $\widetilde{O}(\Lambda^{-2})$ uniformly.

► The maps Φ_{Λ} asymptotically invert *b*, in the sense that $d_{M}(\tilde{\pi}(v), b(\Phi_{\Lambda}(v))) = \tilde{O}(\Lambda^{-1})$ uniformly and $d_{\Lambda}(\Phi_{\Lambda}(v)), \mathbf{v}) = \tilde{O}(\sqrt{\eta(\mu_{v})} + \Lambda^{-2})$ uniformly whenever $b(\mathbf{v}) = \tilde{\pi}(v)$.