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1	–	Mo/va/ons	and	background	



Mo/va/ons	

1	

Within	the	asympto/c	safety	scenario,	the	non-perturba/ve	renormaliza/on	of	gravity	
formulated	as	a	field	theory	would	end	up	on	a	UV	fixed	point	at	short	scales,	which	
would	correspond	to	a	scale-invariant	probability	distribu/on	for	the	space/me	metric.		
	
Results	from	many	other	approaches	to	quantum	gravity	agree	that	at	short	scales,	
space-/me	should	develop	fractal	proper/es.	
	
The	random	geometry	approach	to	quantum	gravity	aims	at	building	scale-invariant,	
fractal,	random	geometries,	that	could	serve	as	models	for	quantum	space-/mes.		
	
à Search	such	random	geometries	as	con/nuum	scaling	limits	of	sequences	of	

random	triangula/ons,	or	more	general	random	graphs.		

à Want	background	independence	and	intrinsec	geometry	(unlike	e.g.	Brownian	
mo/on),		

	
à Also	want	a	universality	classes	(sequences	of	random	graphs	that	differ	only	by	

small	changes	in	the	local	proper/es	should	converge	to	the	same	limit).	



Mo/va/ons	

2	

N.B:	as	far	as	I	understand,	we	don’t	really	know	what	topological	or	geometrical	
proper/es	to	expect	for	a	random	geometry	to	describe	the	UV	fixed	point	of	the	
renormaliza/on	flow.		
	
What	we	know,	is	what	we	should	recover	locally	at	our	scales,	a]er	some	coarse	
graining	procedure,	yet	to	be	defined… 	
	
	
For	instance:		
Must	this	random	geometry	have	a	well-defined	topological	dimension??		
Or	could	the	locally	flat	topology	emerge	at	large	scales?	Please	let	me	know	your	
insights	on	the	maber.		
	
	
Well-defined	topology	or	not	for	the	applica/on	to	quantum	gravity,	knowing	how	to	
build	Brownian	manifolds	in	topological	dimensions	3,	4,	would	definitely	help,	star/ng	
with	the	n-sphere.		



Scale-invariant,	background	independent,	fractal	random	
geometries…?	>>	Dimension	1	

3	

Brownian	mo*on:	
		
Scale	invariant	con/nuum	limit	but	background	dependent,	and	distances	are	
infinite…	But	we	know	very	well	the	asymptoAc	properAes	of	walks	and	their	limits	
	
	
	
	
	
	
	
	
	
	
	
	

Brownian	trees:		
	
Simplest	such	object	which	is	background	
independent	and	has	intrinsec	geometry	
is	the	con/nuum	random	tree	(CRT)	
[Aldous…],	which	can	be	obtained	as	a	
limit	of	random	trees	with	a	uniform	
distribu/on	(but	many	others… 
universality	class)	

Picture:	L.	Ménard		100000	edges	
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4	

Other	universality	classes	of	Brownian	trees	exist,	such	as	stable	trees,	but	plenty	of	
others	(e.g.	stable	trees)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Brownian	trees	of	all	kinds	have	been	studied	a	LOT,	and	we	have	access	to	their	
geometric	proper/es	through	encoding	by	walks	in	the	plane.		

Pictures:	Kortchemski.	



Scale-invariant,	background	independent,	fractal	random	
geometries…?	>>	Dimension	2	
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Our	aim	is	now	to	build	Brownian	surfaces	
	
u Any	metric	on	the	2-sphere	can	be	wriben	as	eρ(z)(dx2+dy2)	
	
à Make	it	random	by	taking	ρ(z)	=γ	h(z),	where	h(z)	:	Gaussian	free	field	
à Get	Liouville	quantum	gravity	with	parameter	γ	(=	γ-LQG),	a		
random	area	measure	on	a	fixed	background.	
	
	
	
[Physics	:	Polyakov,	Knizhnik,	Zamolodchikov,	David,	Distler,	H.	Kawai… ]	
[Mathéma/cs	:	Duplan/er,	Sheffield,	Miller,	David,	Rhodes,	Vargas,	Berestycki,	Sun…]	
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Our	aim	is	now	to	build	Brownian	surfaces	
	
u Any	metric	on	the	2-sphere	can	be	wriben	as	eρ(z)(dx2+dy2)	
	
à Make	it	random	by	taking	ρ(z)	=γ	h(z),	where	h(z)	:	Gaussian	free	field	
à Get	Liouville	quantum	gravity	with	parameter	γ	(=	γ-LQG),	a		
random	area	measure	on	a	fixed	background.	
	
u Other	way	to	produce	a	random	‘typical’	surface	is	to	take		
uniform	gluings	of	triangles	and	a	con/nuum	scaling	limit.		
This	limit	– the	Brownian	sphere	-	can	be	constructed	rigorously	and	its		
topological/geometrical	proper/es	can	be	studied	analy/cally:	
	

•  Random	con/nuum	surface	with	a	distance	
•  A.s.	2-spherical	
•  Fractal:	Hausdorff	dimension	4,	self-similar	proper/es	
•  Universality	class	
•  Currently,	study	of	the	proper/es	of	geodesics	e.g.,	etc.	

[Physique	>80:	Weingarten,	David,	Fröhlich,	Kazakov,	Ambjorn,	Durhuus,	…]	
[Mathéma/ques	>	04	:	Marckert,	Mokkadem,	LeGall,	Miermont,	Albenque,	Curien,	Addario-
Berry,	…]	
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Shown	rigorously	that	the	Brownian	map	is	equivalent	to	γ-LQG	for	γ=√8/3	
[Miller,	Sheffield,	Holden,	Sun].	Corresponds	to	‘’pure	gravity’’	(no	maber).	
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Movies	by	Benedikt	Stufler	
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Pic:		
T.	Budd	

Other	values	of	γ	obtained	for	random	triangula/ons	coupled	with	sta/s/cal	models	(e.g.	
Ising	model	γ	=	√3,	number	of	spanning	trees	γ	=	√2…),	and	correspond	to	LQG	‘coupled	to	
maber’,	but	less	strong	convergence	results.		
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Other	values	of	γ	obtained	for	random	triangula/ons	coupled	with	sta/s/cal	models	(e.g.	
Ising	model	γ	=	√3,	number	of	spanning	trees	γ	=	√2…),	and	correspond	to	LQG	‘coupled	to	
maber’,	but	less	strong	convergence	results.		
	
	
	
	
	
	
	
In	general,	we	get	stronger	convergence	results,	and	have	be8er	access	to	analy*cal	
results	(about	e.g.	geometry)	when	there	are	bijec*ve	encodings	with	(pairs	of)	trees.		
	
For	instance:		
“Metric	bijec/ons”:	Cori-Vauquelin-Schaeffer;	Bou}er-Guiber-DiFrancesco…	
“Ma/ng	of	trees	bijec/ons”:	Mullin;	Bernardi;	Li-Sun-Watson,	Kenyon-Miller-Sheffield-Wilson,	Biane…	
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“Ma/ng	of	trees	bijec/ons”:	Mullin;	Bernardi;	Li-Sun-Watson,	Kenyon-Miller-Sheffield-Wilson,	Biane…	
	
There	are	also	non-LQG	Brownian	spheres,	higher	genus	Brownian	surfaces…	

Pic:		
T.	Budd	
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Consider	triangula/ons	of	the	3-sphere	with	n	tetrahedra	and	a	weight	xV,		
where	x	is	a	variable	and	V	is	the	number	of	ver/ces.		
	
[Boulatov,	Krzywicki,	Ambjorn,	Varsted,	Hagura,	Tsuda,	Yukawa,	Thorleifson…]	
	



11	

With	Timothy	Budd	[ongoing	work],	we	consider	new	models	of	random	
triangula,ons	of	the	3-sphere	(that	admit	a	discrete	Morse	gradient).		
	
We	find	a	new	phase	diagram	with	extended	objects	in	the	‘’low	parameter	phase’’,	
and	a	possibly	con)nuous	transi)on.	

Pics:	
Budd	
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Consider	triangula/ons	of	the	3-sphere	with	n	tetrahedra	and	a	weight	xV,		
where	x	is	a	variable	and	V	is	the	number	of	ver/ces.		
By	varying	x,	simula/ons	indicate	two	regimes,	on	both	sides	of	a	phase	transi/on	xC:	
	
	
	
	
	
	
	
•  For	x	>	xc	,	class	of	“branched	polymers”:	large	scale	geometry	reminiscent	of	trees,	

conjectured	con/nuum	scaling	limit	is	the	con/nuum	random	tree	

•  For	x	<	xc	,	‘’crumpled	phase’’:	highly	connected	and	degenerated	triangula/ons,	
diameter	grows	very	slowly	or	might	be	asympto/cally	constant,	con/nuum	scaling	
limit	might	be	trivial.	Includes	the	uniform	triangula/ons	of	the	3-sphere	

•  Phase	transi/on	x=xc	is	where	we	could	then	hope	to	find	the	interes/ng	cri/cal	
behavior	(e.g.	Ising	model),	but	the	transi/on	seems	discon/nuous,	meaning	we	
can’t	find	anything	more	at	the	transi/on.		



Scale-invariant,	background	independent,	fractal	random	
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à Numerically,	seems	like	nothing	interes/ng	by	taking	this	distribu/on	on	the	full	set	
of	triangula/ons	of	the	3-sphere.	

	
	
à But	don’t	know	much	about	this	crumpled	phase	really.	Numerically	not	actually	

possible	to	see	anything	for	a	diameter	growing	this	slow,	can’t	differen/ate	with	a	
trivial	space	with	constant	diameter	for	instance,	for	which	scaling	limit	is	not	
con/nuous.		

	
	
à All	analy*cal	results	completely	out	of	reach,	even	in	the	uniform	case:	no	

polynomial	/me	algorithm	to	recognize	the	3-sphere	topology,	and	the	
enumera/on	of	triangula/ons	of	the	3-sphere	is	completely	out	of	reach	(even	
whether	exponen/ally	bounded),	so	no	hope	for	finer	results	about	the	geometry	
(e.g.	asympto/c	diameter).		



10	

Do	not	know	of	any	con/nuum	background-independent	universality	class	of	random	
geometry	that	cannot	be	obtained	from	random	trees	or	surfaces	(in	contrast	with	the	very	
well	populated	zoo	of	random	trees	and	surfaces…)	
	
I	would	argue	that:	
•  Worrying	about	what	topological	and	geometrical	proper/es	such	a	space	should	have	to	

qualify	as	a	model	of	quantum	space-/me	is	premature.	It	would	require	understanding	
how	to	take	a	classical	limit	(‘coarse	graining’-‘smoothing’)	and	studying	how	this	and	that	
property	evolve	through	this	process.		

	
•  We	need	to	produce	examples	of	such	new	spaces,	for	which	it	is	possible	to	prove	

convergence	and	we	have	analy*cal	access	to	the	geometrical	proper*es	of	the	
con*nuum	limit.	What	makes	a	difference	is	having	bijec*ve	encodings	using	trees.	
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à	Model	with	Budd,	triangula/ons	of	the	3-sphere	encoded	by	3	trees:	rest	of	the	talk.	

à	with	J.F.	Marckert,	we	produced	the	first	
candidates	without	worrying	about	any	
topological	realiza/on.	Existence	of	new	
non-trivial	scaling	limit	expected,	not	trees	
nor	surfaces…		
-  Hausdorff	dim.exp.	8,	Str.susc	–3/2.		
-  Bijec/ve	encoding	using	3	trees.	



2	–	Three	points	of	view	on		
triple-tree	triangula/ons	



2.1	–	Lible	detour	on	planar	triangula/ons		



Lible	detour	on	planar	triangula/ons	
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In	comparison,	verifying	the	topology	of	2-dimensional	triangula/on	is	trivial	(Euler	
characteris/cs)…	
	



Lible	detour	on	planar	triangula/ons	

11	

In	comparison,	verifying	the	topology	of	2-dimensional	triangula/on	is	trivial	(Euler	
characteris/cs)		
	
But	also	some	characteriza/ons:	for	any	spanning	tree	of	triangles,	the	complement	is	a	
plane	spanning	tree	(of	edges):		

N.B.	”spanning	tree	of	edges“	à	reaches	all	the	ver/ces	
	

	“spanning	tree	of	triangles”	à	reaches	all	the	ver/ces	of	the	dual	graph		
	 	 	 	 	 	 	à	visits	all	the	triangles		
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In	comparison,	verifying	the	topology	of	2-dimensional	triangula/on	is	trivial	(Euler	
characteris/cs)		
	
But	also	some	characteriza/ons:	for	any	spanning	tree	of	triangles,	the	complement	is	a	
plane	spanning	tree	(of	edges).		
	
A	plane	tree	is	a	non-crossing	pairing	of	the	edges	around	a	circle:	
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In	comparison,	verifying	the	topology	of	2-dimensional	triangula/on	is	trivial	(Euler	
characteris/cs)		
	
But	also	some	characteriza/ons:	for	any	spanning	tree	of	triangles,	the	complement	is	a	
plane	spanning	tree	(of	edges).		
	
A	plane	tree	is	a	non-crossing	pairing	of	the	edges	around	a	circle.	
	
We	see	that	a	tree-decorated	triangula/on	is	encoded	by	two	trees:	

ó		 +	

It’s	a	bijec/on	for	rooted	planar	tree-decorated	triangula/ons,	which	are	therefore	
counted	by	C2nCn+1	for	2n	triangles…	
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In	comparison,	verifying	the	topology	of	2-dimensional	triangula/on	is	trivial	(Euler	
characteris/cs)		
	
But	also	some	characteriza/ons:	for	any	spanning	tree	of	triangles,	the	complement	is	a	
plane	spanning	tree	(of	edges).		
	
A	plane	tree	is	a	non-crossing	pairing	of	the	edges	around	a	circle.	
	
We	see	that	a	tree-decorated	triangula/on	is	encoded	by	two	trees.		
	
Each	dynamical	construc/on	of	the	tree	of	edges	from	the	non-crossing	pairing	gives	a	
local	construc/on	of	the	tree-decorated	triangula/on:		
	
	
	
	



Lible	detour	on	planar	triangula/ons	
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In	par/cular	we	have	seen	that:	
	
	
Triangula/on	is	planar	ó	Complement	of	any	spanning	tree	of	the	dual	graph	is	a	tree	of	

	 	 	 	 				edges	
	

	 	 	 							ó		There	exists	a	local	construc/on	of	the	triangula/on	star/ng	from	
	 	 	 	 					a	plane	tree	of	triangles			

And	also	that	a	rooted	planar	triangula/on	with	a	dis/nguished	spanning	tree	of	edges	(or	
triangles)	is	bijec/vely	encoded	by	a	pair	of	trees.	

	
	
	



2.2	–	Defini/on	of	triple-tree-triangula/ons	



Triple-tree	triangula/ons	
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The	aim	is	to	define	a	subset	of	triangula/ons	of	the	3-sphere,	bijec/vely	
encoded	by	trees,	for	which	we	could	use	such	tree	encodings	to	study	the	
asympto/c	proper/es	analy/cally		



Triple-tree	triangula/ons	
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•  Spanning	tree	of	tetrahedra	T0	:	spanning	tree	of	the	dual	graph		

•  Complement	T\T0	of	T0	in	T:	replace	T0	by	a	3-cell.	
	à	embedded	2-complex			
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•  Spanning	tree	of	tetrahedra	T0	:	spanning	tree	of	the	dual	graph		

•  Complement	T\T0	of	T0	in	T:	replace	T0	by	a	3-cell.	
	à	embedded	2-complex			

	
•  Cu}ng	an	embedded	2-complex	C	along	a	spanning	tree	of	edges	E	:	CE.		
					Cut(E):	set	of	duplicates	of	edges	of	E.	
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•  Spanning	tree	of	tetrahedra	T0	:	spanning	tree	of	the	dual	graph		

•  Complement	T\T0	of	T0	in	T:	replace	T0	by	a	3-cell.	
	à	embedded	2-complex			

	
•  Cu}ng	an	embedded	2-complex	C	along	a	spanning	tree	of	edges	E	:	CE.		
					Cut(E):	set	of	duplicates	of	edges	of	E.	

•  Tree	of	triangles.	
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•  Tree	of	triangles.	

Star/ng	from	(T,	T0	,	E),	where	T0	,	E	spanning	trees	of	tetrahedra	and	edges	of	T,	
consider	(T\T0)E	obtained	by	taking	the	complement	of	T0	and	cu}ng	along	E.	

Defini/on:			T	is	a	triple-tree	triangula/on	if:	
Ø  	(T\T0)E	is	a	tree	of	triangles	
Ø  	Cut(E)	is	a	tree	
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•  Spanning	tree	of	tetrahedra	T0	:	spanning	tree	of	the	dual	graph		

•  Complement	T\T0	of	T0	in	T:	replace	T0	by	a	3-cell.	
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N.B.	To	be	compared	with:	
	

	“2d	triangula/on	is	planar	ó	complement	of	a	tree	of	triangles	is	a	spanning	tree	of	
edges”		



2.3	–	Bijec/ve	encoding	by	plane	trees	
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Actually	encoding	by	three	non-crossing	pairings	(ó	chord	diagrams).	
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Actually	encoding	by	three	non-crossing	pairings	(ó	chord	diagrams).	
	
	Take:	
•  τ	a	rooted	plane	tree	of	triangles	(=	outerplanar	triangula/on	of	a	polygon):	
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Actually	encoding	by	three	non-crossing	pairings	(ó	chord	diagrams).	
	
	Take:	
•  τ	a	rooted	plane	tree	of	triangles	(=	outerplanar	triangula/on	of	a	polygon).	

•  Two	non-crossing	pairings	πA,	πH	of	the	boundary	edges	of	τ	
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•  Two	non-crossing	pairings	πA,	πH	of	the	boundary	edges	of	τ	,	such	that:	
	-	The	planar	triangulaAon	obtained	gluing	τ	using	πH	is	Hierarchical	(=	melonic),	

	

	-	The	planar	triangulaAon	obtained	gluing	τ	using	πA	is	Apollonian.	
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Actually	encoding	by	three	non-crossing	pairings	(ó	chord	diagrams).	
	
	Take:	
•  τ	a	rooted	plane	tree	of	triangles	(=	outerplanar	triangula/on	of	a	polygon).	

•  Two	non-crossing	pairings	πA,	πH	of	the	boundary	edges	of	τ	,	such	that:	
	-	The	planar	triangulaAon	obtained	gluing	τ	using	πH	is	Hierarchical	(=	melonic),	

	

	-	The	planar	triangulaAon	obtained	gluing	τ	using	πA	is	Apollonian.	
	

Theorem			There	is	a	bijec/on	between:	
-  The	set	of	non-crossing	pairings	(τ,	πH,	πA)	such	that	τ	has	2n	triangles	
-  The	set	of	rooted	triple-tree	triangula/ons	with	n-1	tetrahedra	

N.B.	To	be	compared	to	the	bijec/on	between	planar	rooted	tree-decorated	
2d	triangula/ons	and	the	set	of	(τ,	π)	
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Actually	encoding	by	three	non-crossing	pairings	(ó	chord	diagrams).	
	
	Take:	
•  τ	a	rooted	plane	tree	of	triangles	(=	outerplanar	triangula/on	of	a	polygon).	

•  Two	non-crossing	pairings	πA,	πH	of	the	boundary	edges	of	τ	,	such	that:	
	-	The	planar	triangulaAon	obtained	gluing	τ	using	πH	is	Hierarchical	(=	melonic),	

	

	-	The	planar	triangulaAon	obtained	gluing	τ	using	πA	is	Apollonian.	
	

Theorem			There	is	a	bijec/on	between:	
-  The	set	of	non-crossing	pairings	(τ,	πH,	πA)	such	that	τ	has	2n	triangles	
-  The	set	of	rooted	triple-tree	triangula/ons	with	n-1	tetrahedra	

The	number	of	ver/ces	of	T	minus	1	is	given	by	the	number	of	loops	of	the	
meander	system	[πH,	πA]		

⇡1

⇡2

�8
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M(z, x) =
1X

n=1
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)2Tn

x

N(⇡
H
,⇡

A
)
,

M(z, x) = 2x2
z

2 + (8x+ 12x3)z4 + (60x+ 40x2)z5 + (336x+ 996x2 + 420x3 + 618x4)z6

+ (5460x+ 10416x2 + 6496x3 + 1652x4)z7

+ (63344x+ 135776x2 + 150544x3 + 75360x4 + 46360x5)z8 + · · · .

Using	this	encoding,	the	par//on	func/on	for	random	triple-tree	triangula/on	distributed	
according	to	xV	can	be	expressed	as:	

Coun/ng	this	triplets	of	trees	is	simpler	than	coun/ng	the	3-dimensional	triangula/ons…	



2.4	–	Topology	
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Topology:		we	show	that	triple-tree	triangula/ons	are	locally	construc/ble,	which	
guarantees	that	they	have	the	topology	of	the	3-sphere.	
	
Locally	construc*ble	triangula*ons	in	dimension	3:	Start	from	a	tree	of	tetrahedra	
and	recursively	select	an	edge	on	the	boundary	and	glue	the	triangles	on	both	sides.	
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Topology:		we	show	that	triple-tree	triangula/ons	are	locally	construc/ble,	which	
guarantees	that	they	have	the	topology	of	the	3-sphere.	
	
Locally	construc*ble	triangula*ons	in	dimension	3:	Start	from	a	tree	of	tetrahedra	
and	recursively	select	an	edge	on	the	boundary	and	glue	the	triangles	on	both	sides.		

Theorem:		Triple-tree	triangula/ons	admit	a	“tree-avoiding”	local	construc/on		

N.B.	To	be	compared	with:	“2d	triangula/on	is	planar	ó	it	admits	a	local	construc/on”		



3	–	Simula/ons	
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With	Timothy	Budd	[ongoing	work],	we	consider	new	models	of	random	
triangula,ons	of	the	3-sphere	(that	admit	a	discrete	Morse	gradient).		
	
We	find	a	new	phase	diagram	with	extended	objects	in	the	‘’low	parameter	phase’’,	
and	a	possibly	con)nuous	transi)on.	

Pics:	
Budd	

We	performed	some	Monte	Carlo	simula/ons	for	triple-tree	triangula/ons	distributed	
according	to	xV.	Dual	graph	looks	like:	
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We	performed	some	Monte	Carlo	simula/ons	for	triple-tree	triangula/ons	distributed	
according	to	xV.	Dual	graph	looks	like:	
	
	
	
	
	
	
	

Looking	at	the	max-vertex-degree	as	an	order	parameter,	there	appears	to	be	a	phase	
transi/on	between	crumpled-but-less-crumpled	phase	and	a	branched	polymer	
phase.		
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The	transi/on	does	not	present	the	characteris/cs	of	a	first	order	phase	transi/on,	as	
observed	for	the	full	set	of	triangula/ons	of	the	3-sphere:	
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Conclusions:	
	
We	defined	a	subset	of	triangula/ons	of	the	3-sphere,	which	should	provide	a	good	
model	to	study	the	asympto/c	proper/es	analy/cally,	because:	
	
-  Simple	characteriza/on	(is	(T\T0)E	a	tree	of	triangles…?)	

-  Bijec/ve	encoding	by	trees	à	more	hope	to	get	some	exact	results	on	the	
asympto/c	geometry	

-  Phase	diagram	seems	more	interes/ng	at	this	preliminary	stage	

To	Do:		
	
•  Beber	simula/ons?		

•  Exact	enumera/on?	
	
•  Encoding	by	trees	that	would	contain	informa/on	on	the	distances	(«metric	

bijec/on»)	

	



Thank	you	for	your	aben/on!	


