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1 — Motivations and background



Motivations

Within the asymptotic safety scenario, the non-perturbative renormalization of gravity
formulated as a field theory would end up on a UV fixed point at short scales, which
would correspond to a scale-invariant probability distribution for the spacetime metric.

Results from many other approaches to quantum gravity agree that at short scales,
space-time should develop fractal properties.

The random geometry approach to quantum gravity aims at building scale-invariant,
fractal, random geometries, that could serve as models for quantum space-times.

— Search such random geometries as continuum scaling limits of sequences of
random triangulations, or more general random graphs.

- Want background independence and intrinsec geometry (unlike e.g. Brownian
motion),

— Also want a universality classes (sequences of random graphs that differ only by
small changes in the local properties should converge to the same limit).



Motivations

N.B: as far as | understand, we don’t really know what topological or geometrical
properties to expect for a random geometry to describe the UV fixed point of the

renormalization flow.

What we know, is what we should recover locally at our scales, after some coarse
graining procedure, yet to be defined...

For instance:

Must this random geometry have a well-defined topological dimension??

Or could the locally flat topology emerge at large scales? Please let me know your
insights on the matter.

Well-defined topology or not for the application to quantum gravity, knowing how to
build Brownian manifolds in topological dimensions 3, 4, would definitely help, starting
with the n-sphere.



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 1

Brownian motion:

Scale invariant continuum limit but background dependent, and distances are
infinite... But we know very well the asymptotic properties of walks and their limits

Brownian trees:

Simplest such object which is background
independent and has intrinsec geometry
is the continuum random tree (CRT)
[Aldous...], which can be obtained as a
limit of random trees with a uniform
distribution (but many others...
universality class)

Picture: L. Ménard 100000 edges




Scale-invariant, background independent, fractal random
geometries...? >> Dimension 1

Other universality classes of Brownian trees exist, such as stable trees, but plenty of
others (e.g. stable trees)

Pictures: Kortchemski.

Brownian trees of all kinds have been studied a LOT, and we have access to their
geometric properties through encoding by walks in the plane.



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

L)
Our aim is now to build Brownian surfaces % ¥
—
€ Any metric on the 2-sphere can be written as eP@(dx2+dy?)
- Make it random by taking p(z) =y h(z), where h(z) : Gaussian free field

- Get Liouville quantum gravity with parameter y (= y-LQG), a i R g o
random area measure on a fixed background. ) )'é*f. s{ j‘l’

[Physics : Polyakov, Knizhnik, Zamolodchikov, David, Distler, H. Kawai... ]
[Mathématics : Duplantier, Sheffield, Miller, David, Rhodes, Vargas, Berestycki, Sun...]



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

L)
Our aim is now to build Brownian surfaces ‘ ¥
—
€ Any metric on the 2-sphere can be written as eP@(dx2+dy?)
- Make it random by taking p(z) =y h(z), where h(z) : Gaussian free field

- Get Liouville quantum gravity with parameter y (= y-LQG), a
random area measure on a fixed background. w'? an
S

€ Other way to produce a random ‘typical’ surface is to take
uniform gluings of triangles and a continuum scaling limit.
This limit - the Brownian sphere - can be constructed rigorously and its
topological/geometrical properties can be studied analytically:

 Random continuum surface with a distance

* A.s. 2-spherical

e Fractal: Hausdorff dimension 4, self-similar properties

e Universality class

e Currently, study of the properties of geodesics e.g., etc.

[Physique >80: Weingarten, David, Frohlich, Kazakov, Ambjorn, Durhuus, ...] |
[Mathématiques > 04 : Marckert, Mokkadem, LeGall, Miermont, Albenque, Curien, Addario- i-}

Berry, ...] 6



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

L)
Our aim is now to build Brownian surfaces ¥
—
€ Any metric on the 2-sphere can be written as eP@(dx2+dy?)
- Make it random by taking p(z) =y h(z), where h(z) : Gaussian free field

= Get Liouville quantum gravity with parameter y (= y-LQG), a _
random area measure on a fixed background. %‘ﬁ: arb
W

€ Other way to produce a random ‘typical’ surface is to take
uniform gluings of triangles and a continuum scaling limit.
This limit - the Brownian sphere - can be constructed rigorously and its
topological/geometrical properties can be studied analytically:

 Random continuum surface with a distance

* A.s. 2-spherical

e Fractal: Hausdorff dimension 4, self-similar properties

e Universality class

e Currently, study of the properties of geodesics e.g., etc.

Shown rigorously that the Brownian map is equivalent to y-LQG for y=v8/3 %
[Miller, Sheffield, Holden, Sun]. Corresponds to “pure gravity’”’ (no matter). i 6



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

Movies by Benedikt Stufler



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

Other values of y obtained for random triangulations coupled with statistical models (e.g.
Ising model y = V3, number of spanning trees y =v2...), and correspond to LQG ‘coupled to
matter’, but less strong convergence results.




Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

Other values of y obtained for random triangulations coupled with statistical models (e.g.
Ising model y = V3, number of spanning trees y =v2...), and correspond to LQG ‘coupled to
matter’, but less strong convergence results.

7= "/A73

In general, we get stronger convergence results, and have better access to analytical
results (about e.g. geometry) when there are bijective encodings with (pairs of) trees.

v =0 v=1

For instance:
“Metric bijections”: Cori-Vauquelin-Schaeffer; Bouttier-Guitter-DiFrancesco...
“Mating of trees bijections”: Mullin; Bernardi; Li-Sun-Watson, Kenyon-Miller-Sheffield-Wilson, Biane...



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 2

Other values of y obtained for random triangulations coupled with statistical models (e.g.
Ising model y = V3, number of spanning trees y =v2...), and correspond to LQG ‘coupled to
matter’, but less strong convergence results.

v=20 v=1 v =+/4/3 7\/5 v =4+/8/3

In general, we get stronger convergence results, and have better access to analytical
results (about e.g. geometry) when there are bijective encodings with (pairs of) trees.

For instance:
“Metric bijections”: Cori-Vauquelin-Schaeffer; Bouttier-Guitter-DiFrancesco...
“Mating of trees bijections”: Mullin; Bernardi; Li-Sun-Watson, Kenyon-Miller-Sheffield-Wilson, Biane...

There are also non-LQG Brownian spheres, higher genus Brownian surfaces...



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 3

Consider triangulations of the 3-sphere with n tetrahedra and a weight xV,
where x is a variable and V is the number of vertices.

[Boulatov, Krzywicki, Ambjorn, Varsted, Hagura, Tsuda, Yukawa, Thorleifson...]



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 3
Consider triangulations of the 3-sphere with n tetrahedra and a weight xV,

where x is a variable and V is the number of vertices.
By varying x, simulations indicate two regimes, on both sides of a phase transition x:

* Forx>x_, class of “branched polymers”: large scale geometry reminiscent of trees,
conjectured continuum scaling limit is the continuum random tree

* Forx<x., “crumpled phase”: highly connected and degenerated triangulations,
diameter grows very slowly or might be asymptotically constant, continuum scaling
limit might be trivial. Includes the uniform triangulations of the 3-sphere

* Phase transition x=x_is where we could then hope to find the interesting critical
behavior (e.g. Ising model), but the transition seems discontinuous, meaning we

can’t find anything more at the transition.



Scale-invariant, background independent, fractal random
geometries...? >> Dimension 3

- Numerically, seems like nothing interesting by taking this distribution on the full set
of triangulations of the 3-sphere.

— But don’t know much about this crumpled phase really. Numerically not actually
possible to see anything for a diameter growing this slow, can’t differentiate with a
trivial space with constant diameter for instance, for which scaling limit is not
continuous.

- All analytical results completely out of reach, even in the uniform case: no
polynomial time algorithm to recognize the 3-sphere topology, and the
enumeration of triangulations of the 3-sphere is completely out of reach (even
whether exponentially bounded), so no hope for finer results about the geometry
(e.g. asymptotic diameter).



Do not know of any continuum background-independent universality class of random
geometry that cannot be obtained from random trees or surfaces (in contrast with the very
well populated zoo of random trees and surfaces...)

| would argue that:

* Worrying about what topological and geometrical properties such a space should have to
qualify as a model of quantum space-time is premature. It would require understanding
how to take a classical limit (‘coarse graining’-‘smoothing’) and studying how this and that
property evolve through this process.

* We need to produce examples of such new spaces, for which it is possible to prove

convergence and we have analytical access to the geometrical properties of the
continuum limit. What makes a difference is having bijective encodings using trees.

10



Do not know of any continuum background-independent universality class of random
geometry that cannot be obtained from random trees or surfaces (in contrast with the very
well populated zoo of random trees and surfaces...)

| would argue that:
* Worrying about what topological and geometrical properties such a space should have to

qualify as a model of quantum space-time is premature. It would require understanding
how to take a classical limit (‘coarse graining’-‘smoothing’) and studying how this and that
property evolve through this process.

* We need to produce examples of such new spaces, for which it is possible to prove
convergence and we have analytical access to the geometrical properties of the
continuum limit. What makes a difference is having bijective encodings using trees.

- with J.F. Marckert, we produced the first
candidates without worrying about any
topological realization. Existence of new
non-trivial scaling limit expected, not trees

nor surfaces...
- Hausdorff dim.exp. 8, Str.susc -3/2.

- Bijective encoding using 3 trees.

- Model with Budd, triangulations of the 3-sphere encoded by 3 trees: rest of the talk. 10



2 — Three points of view on
triple-tree triangulations



2.1 — Little detour on planar triangulations



Little detour on planar triangulations

In comparison, verifying the topology of 2-dimensional triangulation is trivial (Euler
characteristics)...

11



Little detour on planar triangulations

In comparison, verifying the topology of 2-dimensional triangulation is trivial (Euler
characteristics)

But also some characterizations: for any spanning tree of triangles, the complement is a
plane spanning tree (of edges):

698

N.B. “spanning tree of edges” - reaches all the vertices

“spanning tree of triangles” = reaches all the vertices of the dual graph
- visits all the triangles

11



Little detour on planar triangulations

In comparison, verifying the topology of 2-dimensional triangulation is trivial (Euler
characteristics)

But also some characterizations: for any spanning tree of triangles, the complement is a
plane spanning tree (of edges).

A plane tree is a non-crossing pairing of the edges around a circle:
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Little detour on planar triangulations

In comparison, verifying the topology of 2-dimensional triangulation is trivial (Euler
characteristics)

But also some characterizations: for any spanning tree of triangles, the complement is a
plane spanning tree (of edges).

A plane tree is a non-crossing pairing of the edges around a circle.

We see that a tree-decorated triangulation is encoded by two trees:

It’s a bijection for rooted planar tree-decorated triangulations, which are therefore

counted by C, C.,, for 2n triangles...
13



Little detour on planar triangulations

In comparison, verifying the topology of 2-dimensional triangulation is trivial (Euler
characteristics)

But also some characterizations: for any spanning tree of triangles, the complement is a
plane spanning tree (of edges).

A plane tree is a non-crossing pairing of the edges around a circle.
We see that a tree-decorated triangulation is encoded by two trees.

Each dynamical construction of the tree of edges from the non-crossing pairing gives a
local construction of the tree-decorated triangulation:

55066
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Little detour on planar triangulations

In particular we have seen that:

Triangulation is planar <> Complement of any spanning tree of the dual graph is a tree of
edges

< There exists a local construction of the triangulation starting from
a plane tree of triangles

And also that a rooted planar triangulation with a distinguished spanning tree of edges (or
triangles) is bijectively encoded by a pair of trees.

15



2.2 — Definition of triple-tree-triangulations



Triple-tree triangulations

The aim is to define a subset of triangulations of the 3-sphere, bijectively
encoded by trees, for which we could use such tree encodings to study the
asymptotic properties analytically

16



Triple-tree triangulations
Spanning tree of tetrahedra T, : spanning tree of the dual graph

Complement T\T, of T,in T: replace T, by a 3-cell.
- embedded 2-complex

17



Triple-tree triangulations

* Spanning tree of tetrahedra T, : spanning tree of the dual graph

* Complement T\T, of T,in T: replace T, by a 3-cell.
- embedded 2-complex

e Cutting an embedded 2-complex C along a spanning tree of edges E : CE.
Cut(E): set of duplicates of edges of E.

VASE N

18



Triple-tree triangulations
Spanning tree of tetrahedra T, : spanning tree of the dual graph

Complement T\T, of T,in T: replace T, by a 3-cell.
- embedded 2-complex

Cutting an embedded 2-complex C along a spanning tree of edges E : CE.
Cut(E): set of duplicates of edges of E.

Tree of triangles.

P

18



Triple-tree triangulations
* Spanning tree of tetrahedra T, : spanning tree of the dual graph

* Complement T\T, of T,in T: replace T, by a 3-cell.
- embedded 2-complex

e Cutting an embedded 2-complex C along a spanning tree of edges E : CE.
Cut(E): set of duplicates of edges of E.

e Tree of triangles. Q%
g 4%%&

Starting from (T, Ty, E), where T,, E spanning trees of tetrahedra and edges of T,
consider (T\T,)t obtained by taking the complement of T, and cutting along E.

Definition: T is a triple-tree triangulation if:
»> (T\T,)Eis a tree of triangles
» Cut(E) is a tree

T~ T1p 7o T,L0

-~
ME \/ £ Cut(E)

18



Triple-tree triangulations
* Spanning tree of tetrahedra T, : spanning tree of the dual graph

* Complement T\T, of T,in T: replace T, by a 3-cell.
- embedded 2-complex

e Cutting an embedded 2-complex C along a spanning tree of edges E : CE.
Cut(E): set of duplicates of edges of E.

e Tree of triangles. Q%
g 4%%&

Starting from (T, Ty, E), where T,, E spanning trees of tetrahedra and edges of T,
consider (T\T,)t obtained by taking the complement of T, and cutting along E.

Definition: T is a triple-tree triangulation if:
»> (T\T,)Eis a tree of triangles
» Cut(E) is a tree

N.B. To be compared with:

“2d triangulation is planar < complement of a tree of triangles is a spanning tree of
edges”

18



2.3 — Bijective encoding by plane trees



Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

& R
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Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

Take:
* Ttarooted plane tree of triangles (= outerplanar triangulation of a polygon):
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Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

Take:

* Ttarooted plane tree of triangles (= outerplanar triangulation of a polygon).

* Two non-crossing pairings 1, ., of the boundary edges of t

/“‘\
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Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

Take:
* Ttarooted plane tree of triangles (= outerplanar triangulation of a polygon).

* Two non-crossing pairings 1, 1, of the boundary edges of T, such that:
- The planar triangulation obtained gluing t using m,,is Hierarchical (= melonic),

- The planar triangulation obtained gluing t using 11, is Apollonian.

AN NN
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Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

Take:
* Ttarooted plane tree of triangles (= outerplanar triangulation of a polygon).

* Two non-crossing pairings 1, 1, of the boundary edges of T, such that:
- The planar triangulation obtained gluing t using m,,is Hierarchical (= melonic),

- The planar triangulation obtained gluing t using 11, is Apollonian.

Theorem There is a bijection between:
- The set of non-crossing pairings (t, T 1,) such that t has 2n triangles
- The set of rooted triple-tree triangulations with n-1 tetrahedra

N.B. To be compared to the bijection between planar rooted tree-decorated
2d triangulations and the set of (t, i)

19



Bijective encoding by plane trees

Actually encoding by three non-crossing pairings (< chord diagrams).

Take:
* Ttarooted plane tree of triangles (= outerplanar triangulation of a polygon).

* Two non-crossing pairings 1, 1, of the boundary edges of T, such that:
- The planar triangulation obtained gluing t using m,,is Hierarchical (= melonic),

- The planar triangulation obtained gluing t using 11, is Apollonian.
1 8

Theorem There is a bijection between:
- The set of non-crossing pairings (t, T 1,) such that t has 2n triangles
- The set of rooted triple-tree triangulations with n-1 tetrahedra

The number of vertices of T minus 1 is given by the number of loops of the
meander system [, 1,]

19



Bijective encoding by plane trees

Using this encoding, the partition function for random triple-tree triangulation distributed
according to xV can be expressed as:

M(z,x) = Z 2" My, (x), M, (x) = Z N T
n=1 (7,7, A )ETn

Counting this triplets of trees is simpler than counting the 3-dimensional triangulations...

M(z,x) = 22%2% 4+ (8x + 122%)2* + (60x + 4022)2° + (3362 + 9962% + 4202> 4 618x%)2°
+ (5460z + 1041622 + 6496x° + 16522*) 2"
+ (63344 4 1357762 + 1505442° + 753602* + 463602°)2% + - - -

B8 @B ®® @ @




2.4 —Topology



Local constructibility

Topology: we show that triple-tree triangulations are locally constructible, which
guarantees that they have the topology of the 3-sphere.

Locally constructible triangulations in dimension 3: Start from a tree of tetrahedra
and recursively select an edge on the boundary and glue the triangles on both sides.

e

e

21



Local constructibility

Topology: we show that triple-tree triangulations are locally constructible, which
guarantees that they have the topology of the 3-sphere.

Locally constructible triangulations in dimension 3: Start from a tree of tetrahedra
and recursively select an edge on the boundary and glue the triangles on both sides.

Theorem: Triple-tree triangulations admit a “tree-avoiding” local construction

& —
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Local constructibility

Topology: we show that triple-tree triangulations are locally constructible, which
guarantees that they have the topology of the 3-sphere.

Locally constructible triangulations in dimension 3: Start from a tree of tetrahedra
and recursively select an edge on the boundary and glue the triangles on both sides.

Theorem: Triple-tree triangulations admit a “tree-avoiding” local construction

N.B. To be compared with: “2d triangulation is planar < it admits a local construction”

558 6 6
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3 — Simulations



Simulations

We performed some Monte Carlo simulations for triple-tree triangulations distributed
according to xV. Dual graph looks like:

22



Simulations

We performed some Monte Carlo simulations for triple-tree triangulations distributed
according to xV. Dual graph looks like:

ThreeTrees
N = 6400

Looking at the max-vertex-degree as an order parameter, there appears to be a phase

transition between crumpled-but-less-crumpled phase and a branched polymer
phase.

800 |
1600 |
3200 |
6400 |

degmax/N3

degmax/Na

00k

0.0
0 1 2 3 4 5
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Simulations

The transition does not present the characteristics of a first order phase transition, as
observed for the full set of triangulations of the 3-sphere:
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Conclusions:

We defined a subset of triangulations of the 3-sphere, which should provide a good
model to study the asymptotic properties analytically, because:

- Simple characterization (is (T\TO)E a tree of triangles...?)

- Bijective encoding by trees 2 more hope to get some exact results on the
asymptotic geometry

- Phase diagram seems more interesting at this preliminary stage
To Do:

e Better simulations?

* Exact enumeration?

* Encoding by trees that would contain information on the distances («metric
bijection»)
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Thank you for your attention!



