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Introduction

Given a data matrix X, Principal Component Analysis (PCA) can be
regarded as a ‘denoising’ technique that replaces X by its closest rank-one
approximation.

Figure: Matrix PCA
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Matrix PCA

Existent applications of matrix PCA

High energy
physics [Huang
et al., 2020]

Quantitative
finance [Pasini,
2017]

Neuroscience
[Cunningham and
Byron, 2014]

Chemochemistry
[Wold et al.,
1987]

Geology [Joreskog
et al., 1976]

Computer
vision [De la
Torre and Black,
2001]
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Matrix PCA limit: Tensors

Powerful computers and acquisition devices have made it possible to
capture and store real-world multidimensional data.

Thus, the generalization of PCA to tensors is motivated by problems
in which it is important to exploit higher order moments, where data
elements are naturally given more than two indices.

Video data Weather data
Data from
multi-sensors
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Tensor PCA problem

Tensor PCA is a statistical model introduced by [Richard and
Montanari, 2014], it consists in inferring an unknown unit vector v0
from a tensor T given by:

T =
√
nβ(v0)

⊗k + Z

with Z Gaussian noise tensor such that Zi1...ik ∼ N (0, 1) and β the
signal-to-noise ratio.

H(v) = ⟨T, v⊗k⟩ will be referred to as the landscape.
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Tensor PCA motivations

Tensor PCA model has been extensively studied in the last years due to
three main important motivations:

1 Algorithms for Tensor PCA may be adaptable for Tensor
decomposition which has multiple important applications.

2 It is a simple model that allows the study of high dimensional non
convex landscapes that arise in multiple fields as well as the gradient
descent dynamics in such landscapes.

3 Tensor PCA may exhibit a statistical-algorithmic gap that are
common in multiple other statistical inference models.
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Eigenvalues and eigenvectors

An important concept in problems involving matrices is the spectral
theory.

Recovering the complete general information requires computing the
eigenvalues and their respective eigenvectors.

Examples:

Eigenvalues Eigenvectors

Matrix PCA Data variability
Direction of the

variability

Signal processing
Intensity

of the signal
Direction of the
signal associated

Quantum physics Energy levels States associated
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Eigenvalues and eigenvectors

An important property of the eigenvalues of a n-dimensional matrix
M is its invariance under orthogonal transformations.

{M → OMO−1,O ∈ O(n)}

Indeed, since these transformations essentially just rotate the basis
used to define the coordinate system, they must not affect intrinsic
information like data variability.

There are more such invariants than eigenvalues. For example the
trace of the powers of M : Tr

(
M2k

)
, k ∈ N
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Trace invariants

However, the concept of eigenvalue and eigenvector is ill defined in
the tensor case and not practical: the number of eigenvalues is
exponential with the dimension n ! [Qi, 2005]

In contrast, we have a very convenient generalization of the traces of
the power matrices for the tensors that we call trace invariants.

They have been extensively studied during the last years in the
context of high energy physics and many important properties have
been proven ( [Gurau, 2017]).
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Graph invariants

A tensor T transforms under the group
⊗d

a=1O(N) as:

Ta1j ...a
D
j
→ O

(1)

a1j b
1
j
. . .O

(D)

aDj b
D
j

Tb1j ...b
D
j

for O(i) ∈ O(N) ∀i ∈ [D] (1)

We can build scalars by contracting the indices of 2k copies of the
tensor T .

The number of these invariants is investigated in [Avohou et al.,
2020]. They have a very simple illustration as graphs.

(a) Ti jk (b) Ti jkTi jk
(c)
Ti jkTi j′k′Ti′jk′Ti′j′k

(d) Ti j jTikk

Figure: Example of graphs and their associated invariants
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Matrices associated to a graph

An invariant should be able to detect a signal. But if our goal is to
recover it, we should find mathematical objects that are able to
provide a vector.

To this effect, we introduce a new set of tools in the form of matrices.
We denote by MG,e the matrix obtained by cutting an edge e of a
graph G in two half edges.

edge e

IG(T) = Ti jkTi jk

i1 i2

MG,e ≡ (Ti1jkTi2jk)i1,i2∈[n]

Cut the edge e

Figure: Obtaining a matrix by cutting the edge of a trace invariant graph G
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The matrix

Tensor Matrix Signal vector
Unfolding

Tensor Invariant Matrix Signal vector

Unfolding

Figure: Using a more pertinent matrix for the PCA

Obtaining a vector requires using a matrix. We want to build a more
pertinent one so it is easier to study.
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Decomposition of the tensor

We can represent the tensor from which we hope to extract the signal
represented graphically as:

Tij1...jk−1 =
√
Nβvivj1 . . . vjk−1

+ Zij1...jk−1

Figure: Graphical decomposition of the tensor T

We decompose in a similar way the tensor trace invariant into B(0)

associated to the pure noise tensor and B(1) enclosing the additional
contributions from the signal.

B = B(0) + B(1)
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Matrix decomposition

Figure: Graph decomposition of a matrix
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Graph associated to the norm operator

Let A = M⊤
G,eMG,e where MG,e is the matrix associated to a graph G and

an edge e. The trace of the power r of A, Tr(Ar ) can be represented as
the graph gluing the open edges of 2r G.

(a) Covering graph contributing

Only internal
propagator

(b) Covering graph not contributing
to E(Tr

(
(M − E(M))2

)
)

Figure: Two covering graphs for the graph of Tr
(
(M⊤M)2

)
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The algorithm

Algorithm 1: Recovery algorithm associated to the graph G and edge e

Input: The tensor T = βv⊗k + Z
Goal: Estimate v0.
Calculate the matrix MG,e(T)
Compute its top eigenvector by matrix power iteration (repeat
vi ← Mijvj).
Output: Obtaining an estimated vector v

Note: You can apply Tensor Power iteration (v ← Tvv
∥Tvv∥) on the output

of the algorithm to slightly increase the precision.
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SOTA

It appears that the two state of the art (SOTA) methods are
equivalent to the algorithms associated to graphs of degree 2.

This striking fact incites us to investigate the algorithm associated to
the tetrahedral graph which is a graph of degree 4 as illustrated in the
following Figure.

Figure: Methods associated to invariant graphs
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Simple generalization: perfect one factorization

A one factorization graph is said to be perfect if the union of any two of
its distinct 1-factors (edges of a given color) is a cycle that visits each
vertex exactly once (also called maximally single trace (MST)
graphs [Ferrari et al., 2019]).

Figure: Complete graph for N = 5

Theorem

The algorithm associated to a perfect one-factorization graph is able to
recover the signal vector for β = O(nk/4).
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Numerical experiment

2.00 2.25 2.50 2.75 3.00 3.25 3.50
/ n

0.2

0.4

0.6

0.8

1.0

<
v,

v 0
>

p-tetr
tetr
p-mel
mel
hom

Figure: Comparison of different methods for symmetric recovery. n=150. The
prefix ”p-” indicates that power iteration is performed on the output of the
method.
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Novel theoretical threshold

Let’s first consider the more general case where the tensor T has axes of
different dimensions ni (T ∈

⊗k
i=1Rni ). We can assume without any loss

of generality that n1 ≥ n2 ≥ · · · ≥ nk .

T = βv1 ⊗ · · · ⊗ vk + Z where vi ∈ Rni , ni ∈ N. (2)

Theorem

Using the melon graph, the threshold for v1 is given by

max
(
(
∏k

i=1 ni )
1/4, n

1/2
1

)
while the thresholds for vj , j ≥ 2 are equal to

(
∏k

i=1 ni )
1/4.
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Algorithmic threshold given by the generalized melon

Theorem

Let k ≥ 3. It is impossible to detect or recover the signal using a single
graph below the threshold β ≤ n(k−2)/4 which is related to the minimal
Gaussian variance of any graph G.

Figure: Generalized melon for the complete graph for N = 5
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Real-life applications

One of the advantages of this framework is that
it is generalizable for the tensor decomposition
model (both CP and Tucker decomposition).

We performed experiments on the problem
of denoising Hyperspectral images (HSI) on
a real world data: the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) HSI, an airborne
hyperspectral system flown by NASA/Jet Propulsion Laboratory (JPL).
We showed an improvement on the performance comparing to existent
methods.

This first strategy was the object of a paper : Ouerfelli, Tamaazousti and
Rivasseau (2022). Random tensor theory for tensor decomposition. In
Proceedings of the AAAI Conference on Artificial Intelligence
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Existent Algorithms

O(1) O(N(k−2)/4) β

Optimal theoretical
threshold

Information theory

Best algorithmic
threshold

Degree 4 Sum-of-Squares
Tensor unfolding

Homotopy

statistical-computational

gap
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Statistical-computational gap investigations

There often exist conjectured intrinsic statistical-computational gaps
in many problems, as observed in tensor completion (Barak and
Moitra, 2016), high-order clustering (Luo and Zhang, 2020), but also
planted clique, sparse PCA, community detection, etc.

The analysis of statistical-computational gaps has attracted a lot of
attention because of its crucial role in the understanding of the
computational feasibility of a wide range of inference and tensor
problems.

Two main approaches:

Average case reduction [Luo and Zhang, 2020]: Evidence for the
computational hardness developed by establishing the equivalence of
the computational hardness commonly raised conjectures.
Analysis of restricted algorithmic models
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Existent Algorithms

O(1) O(N(k−2)/4) β

Optimal theoretical
threshold

Tensor resolvent :
Infinite sum of graphs

Best algorithmic
threshold

One graph based method.

statistical-computational

gap

The resolvent ω(w ;T) =
∑

n≥0
1

wn+1
1
N

∑
b∈Bn

Trb(T) where Bn denotes
the set of connected rooted p–valent maps with n unlabelled vertices.
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Gradient-based algorithms

In particular for local algorithms like gradient descent (on which SMPI is
based). Two main explanations are given for the failure of gradient-based
methods in low SNR:

The number of minima is exponentially large, thus the algorithm will
get stuck in one of them. [Arous et al., 2019]

Regardless of if it will get stuck or not, the signal is too weak anyway
in the equator [Arous et al., 2020].

30 / 44



1 Introduction

2 First strategy : Random Tensor Theory

3 Statistical-computational gap

4 Second strategy : SMPI

5 Conclusion

31 / 44



Naive power iteration

In the power iteration, let’s denote the part associated to the noise
gN and the one associated to the signal gS .

Tvv = Zvv + β⟨v , v0⟩2v0
≡ gN +gS

A naive approach is to consider that gN is a random vector at each
step. Thus, we have to study in which case we can increase the
correlation with v0 at each step.

If β ≫ n(k−2)/2, power iteration will always be successful.
If β ≪ n(k−2)/2, power iteration with a random initialization will fail
with an exponential probability.
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Power iteration and gradient descent

The gradient of a function f on a sphere is given by
∇f (v)− (∇f (v).v).v = Tvv − (Tvvv)v (more mathematical details
in [Ros et al., 2019])

In our case, it is equal to g = Tvv − (Tvvv)v .

The power iteration could be considered as a gradient descent with a
step size equal to 1/(Tvvv) indeed
Tvv = Tvv − (Tvvv)v + (Tvvv)v = g + (Tvvv)v =

((Tvvv)v)(v +
g

(Tvvv)v
).
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Algorithm SMPI

Algorithm 2: Selective Multiple Power Iteration

1: Input: The tensor T = Z+ βv⊗k
0 , minit > 10n, miter > 10n,Λ

2: Goal: Estimate v0.
for i=0 to minit do

3:

Generate a random vector vi ,0 for j=0 to miter do
4:

vi ,j+1 =
T(:, vi ,j , vi ,j)
∥T(:, vi ,j , vi ,j)∥

if j > Λ and |⟨vi ,j−Λ, vi ,j⟩| ≥ 1− ε then
5:

vi ,miter
= vi ,j

6: break
7: Select the vector v = argmax1≤i≤minit

T(vi ,miter
, vi ,miter

, vi ,miter
)

8: Output: the estimated vector v
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Comparison Features

Table: The five essential features of SMPI compared to other power iteration
based studies

Algorithm Symmetry
Discreet
step size

Poly. nb
of initialisat.

Poly. nb
of iterations

No stop
condition

Wang et al.
2017

Yes Yes No No No

Huang et al.
2020

No Yes Yes Yes Yes

Ben Arous et al.
2020

Yes No Yes Yes Yes

Dudeja et al.
2022

Yes Yes Yes No Yes

SMPI
2021

Yes Yes Yes Yes Yes

35 / 44



Empirical comparison

1.2 1.3 1.4 1.5 1.6 1.7 1.8

0.2

0.4

0.6

0.8
<

v,
v 0

>

Method
Unf 100
Hom 100
SMPI 100

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0

0.2

0.4

0.6

0.8
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> Method
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SMPI 200

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0

0.2

0.4

0.6

0.8

<
v,

v 0
> Method

Unf 400
Hom 400
SMPI 400

Figure: Comparison of the results of SMPI with the unfolding method (Unf) and
Homotopy-based method (Hom)

36 / 44



Statistical algorithmic gap

1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.2

0.4

0.6

0.8

1.0
<

v,
v 0

>
Method
St50
St75
St100
St150
St300
St400
Opt 

Figure: Asymptotic behavior of SMPI method illustrated by different results on
various values of n, ranging from 50 to 400. The dashed line (Opt ∞)
corresponds to the predicted optimal theoretical result assuming n =∞
( [Jagannath et al., 2020]).
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Possible ideas for a theoretical proof

Adapting the method of Oleg Evnin that previously studied power
iteration in order to investigate the largest eigenvalue of a random
tensor in [Evnin, 2020].

Figure: The graph associated to the power iteration method with 3 iterations for
an initialization v . The cross represents the vector v and the black dot the tensor
T.

Using advanced probability tools to prove the success of SMPI (with
Ben Arous).
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Conclusion

The results obtained and the new insights opens the way to explore
further questions:

Spin glass phenomena
Gradient descent dynamics in machine learning
Concrete applications (compression of neural network,
telecommunication, etc.).
New mathematical tools
Quantum gravity

Possible approaches to improve our understanding:

Investigate what choice of graphs to sum.

Adapt existing probability methods for a theoretical proof of SMPI.

Renormalization group approach.

⇒ New group at CEA Paris Saclay to explore these multiple directions.
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