Phase transitions in spherical models

Random Geometry in Heidelberg - May 16, 2022

Nicolas Delporte

Okinawa Institute of Science and Technology

Motivations

Motivations

Vectors and matrices dispose of a vast collection of interesting phases and transitions. What about tensors?
(1) Motivations
(2) Vector models
(3) Matrix models
(4) Tensor model
(5) Conclusions
(1) Motivations
(2) Vector models
(3) Matrix models

4 Tensor model
(5) Conclusions

Vector models: History

$$
\boldsymbol{s}=\left(s_{1}, \ldots, s_{N}\right) ; \quad Z(\beta)=\sum_{s} e^{-\beta H[s]}
$$

Ising:

$$
\begin{gathered}
H[s]=-\sum_{i \sim j} J s_{i} s_{j}-h \sum_{i} s_{i} ; \quad s_{i}= \pm 1 \\
d=1:\left\langle s_{i} s_{j}\right\rangle_{\beta} \leq C \exp (-c(\beta)|i-j|) \quad[\text { [lsing 1924] } \\
d \geq 2:\left\langle s_{i} s_{j}\right\rangle_{\beta} \geq c(\beta)>0 \quad(d=2 \text { [Onsager 1944] })
\end{gathered}
$$

Spin glasses:

Edwards-Anderson [1975]:
$H=\sum_{i \sim j} J_{i j} s_{i} s_{j} ; \quad \overline{J_{i j}^{2}} \propto J^{2}$

Sherrington-Kirkpatrick
[SK 1972, Parisi 1979, Talagrand 2006]:

$$
H=\sum_{1 \leq i<j \leq N} J_{i j} s_{i} s_{j}
$$

Main properties: non-ergodicity, ultrametricity, non-selfaveraging.

Vector models: Spherical p-spin

$$
\begin{gathered}
H[s]=-\sum_{1 \leq i_{1}<\cdots<i_{p} \leq N} J_{i_{1} \ldots i_{p}} s_{i_{1}} \ldots s_{i_{p}}-h \sum_{i=1}^{N} s_{i} \\
s^{2}=s_{1}^{2}+\cdots+s_{N}^{2}=N ; \quad \overline{J_{i} \ldots i_{p}}=\frac{J^{2} p!}{2 N^{p-1}}
\end{gathered}
$$

[Berlin Kac '52]: fixed coupling ($J_{i_{1} \ldots i_{p}}=J>0$), nearest neighbour, large N :

$$
d= \begin{cases}1,2 & \text { disordered phase } \\ 3 & \text { spontaneous magnetization }\end{cases}
$$

[Crisanti Sommers '92 (1)]: The annealed average introduces n replicas:

$$
\begin{aligned}
& \beta F=-\overline{\ln Z}=-\lim _{n \rightarrow 0} \frac{\overline{Z^{n}}-1}{n} \\
& \overline{Z^{n}}=\overline{\sum_{s_{1} \cdots s_{n}} \exp \left(-\beta \sum_{\alpha=1}^{n} H\left[s_{\alpha}\right]\right)} \\
&=\sum_{s_{1} \cdots s_{n}} \exp \left(\frac{(\beta J)^{2} p!}{4 N^{p-1}} \sum_{1 \leq i_{1}<\cdots<i_{p} \leq N} s_{s_{1} \alpha} \ldots s_{i_{p} \alpha} s_{i_{1} \beta} \ldots s_{i_{p} \beta}+\beta h \sum_{i \alpha}^{N} s_{i \alpha}\right)
\end{aligned}
$$

Vector models: Spherical p-spin

Introducing the overlap matrix:

$$
q_{\alpha \beta}=\frac{1}{N} \sum_{i} s_{i \alpha} s_{i \beta} ; \quad(Q)_{\alpha \beta}=q_{\alpha \beta} \quad \text { (order parameter) }
$$

with Lagrange multipliers $(\boldsymbol{\lambda})_{\alpha \beta}=\lambda_{\alpha \beta}$, gives:

$$
\begin{aligned}
& \overline{Z^{n}}=\int_{Q>0} \prod_{\alpha<\beta} \mathrm{d} \boldsymbol{q}_{\alpha \beta} \int_{-i \infty}^{i \infty} \mathrm{~d} \boldsymbol{\lambda} \exp (-N G[Q, \lambda]), \\
& G[Q, \lambda]=-\frac{(\beta J)^{2}}{4} \sum_{\alpha \beta} q_{\alpha \beta}^{p}+\frac{1}{2} \sum_{\alpha \beta} \lambda_{\alpha \beta} q_{\alpha \beta} \\
&-\ln \int \prod_{\alpha} \mathrm{d} s_{\alpha} \exp \left(\frac{1}{2} \sum_{\alpha \beta} \lambda_{\alpha \beta} s_{\alpha} s_{\beta}+\beta h \sum_{\alpha} s_{\alpha}\right)+\mathcal{O}\left(\frac{1}{N}\right) .
\end{aligned}
$$

Vector models: Spherical p-spin

After integration over s (Gaussian) and λ at first orders in $1 / N$ and n :

$$
\begin{gathered}
\overline{Z^{n}}=\int_{Q>0} \prod_{\alpha \beta} \sqrt{\frac{N}{2 \pi}} \mathrm{~d} q_{\alpha \beta} \exp \left[-N G_{0}(Q)-G_{1}(Q)+\mathcal{O}\left(\frac{1}{N}\right)\right], \\
2 G_{0}(Q)=-\frac{\mu}{p} \sum_{\alpha \beta} q_{\alpha \beta}^{p}-b^{2} \sum_{\alpha \beta} q_{\alpha \beta}-\ln \operatorname{det} Q+\frac{b^{4}}{2}\left(\sum_{\alpha \beta} q_{\alpha \beta}\right)^{2}, \\
2 G_{1}(Q)=\frac{\mu}{2}(p-1) \sum_{\alpha \beta} q_{\alpha \beta}^{p-2}\left(1+2 q_{\alpha \beta}^{2}-2 b^{4}\left(\sum_{\gamma \delta} q_{\alpha \gamma} q_{\beta \delta}\right)^{2}\right)+\ln \operatorname{det} Q, \\
\mu=\frac{(\beta J)^{2}}{2} p, \quad b=\beta h .
\end{gathered}
$$

Extremize (maximum!) and integrate over Gaussian fluctuations:

$$
\frac{\beta F}{N}=-s(\infty)+\frac{1}{n} G_{0}\left(Q_{*}\right)+\frac{1}{N n}\left(G_{1}\left(Q_{*}\right)+\frac{1}{2} \sum_{\nu} n_{\nu} \ln \Lambda_{\nu}\right)+\mathcal{O}\left(\frac{1}{N^{2}}\right) .
$$

We will look for stable solutions ($\Lambda_{\nu}>0$).

Vector models: Spherical p-spin

Replica symmetric ansatz:

$$
q_{\alpha \beta}= \begin{cases}1 & (\alpha=\beta) \\ q & (\alpha \neq \beta)\end{cases}
$$

1 step replica-symmetry-broken ansatz $\left(0 \leq q_{0} \leq q_{1} \leq 1\right)$:

In the SK model, full RSB mechanism was needed [Parisi '79], with a monotone functional:

$$
q(x) \quad(0 \leq x \leq 1)
$$

Other methods: TAP equations, Langevin dynamics, supersymmetry...

Vector models: Spherical p-spin

Phase diagram and free energy (for $h=0$) for $p=3$. [Taken from (1)]

Susceptibility (upper), specific heat (lower) for $h=0$ and $p=3$. [Taken from (1)]
(1) Motivations

2 Vector models
(3) Matrix models
(4) Tensor model
(5) Conclusions

Matrix models: Spin softening

Can matrix models serve to describe glasses?
[Cugliandolo et al '94, Anninos et al '14, Hartnoll et al '19 (2)]

$$
H[S]=\operatorname{tr}\left[V\left(S S^{t}\right)\right], \quad S_{a B}= \pm 1 \quad\left(1 \leq a \leq N_{1} ; 1 \leq B \leq N_{2}\right)
$$

Spin softening:

$$
Z(\beta)=\sum_{\boldsymbol{S}=\{ \pm 1\}^{N_{1} N_{2}}} e^{-\beta H[S] N_{i} \rightarrow \infty} \int d M \delta\left(\operatorname{tr} M M^{t}-N_{1} N_{2}\right) e^{-\beta H(M)}
$$

Remarks:

- Emergent continuous symmetry at high T.
- Bad approximation for non-singlet correlators at low T.

Matrix models: Spin softening

Indeed:

$$
Z(\beta)=\int \mathrm{d} \boldsymbol{G} \mathrm{~d} \boldsymbol{\lambda} e^{-\beta \operatorname{tr} V(G)} \int \mathrm{d} \boldsymbol{S} \delta\left(S_{a B}^{2}-1\right) e^{-i \lambda_{a b}\left(G_{a b}-\left(S S^{t}\right)_{a b}\right)}
$$

Inserting the trivial relation: $\sum_{a} \mu_{a}\left(N_{2}-\left(S S^{t}\right)_{a a}\right)=0$,

$$
\int \mathrm{d} \boldsymbol{S} \delta\left(S_{a B}^{2}-1\right) e^{i \lambda_{a b}\left(S S^{t}\right)_{a b}}=e^{i N_{2} \sum_{a} \mu_{a}} z(\mu, \boldsymbol{\lambda})^{N_{2}}
$$

such that, with $\tilde{\lambda}_{a b}=2 i\left(\lambda_{a b}-\mu_{a} \delta_{a b}\right)$:

$$
\begin{aligned}
z(\mu, \boldsymbol{\lambda}) & =\sharp \sum_{s \in\{ \pm 1\}^{N_{1}}} \frac{1}{\sqrt{\operatorname{det} \tilde{\lambda}}} \int \mathrm{~d} \boldsymbol{w} e^{-\frac{1}{2} w_{a} \tilde{\boldsymbol{\lambda}}^{-1} w_{b}+\sum_{a} w_{a} s_{a}} \\
& =\sharp \frac{1}{\sqrt{\operatorname{det} \tilde{\boldsymbol{\lambda}}}} \int \mathrm{~d} \boldsymbol{w} e^{-\frac{1}{2} w_{a} \tilde{\boldsymbol{\lambda}}^{-1} w_{b}+\sum_{a} \ln \left(2 \cosh \left(w_{a}\right)\right)} \\
& \stackrel{\vdots}{\approx} \sharp \frac{1}{\sqrt{\operatorname{det}(1-\tilde{\boldsymbol{\lambda}})}}
\end{aligned}
$$

Matrix models: Spin softening

The last line holds when we have chosen the μ_{a} such that:

$$
\left(\frac{1}{1-\tilde{\lambda}}\right)_{a a}=1 \quad \forall a
$$

In this way, we can obtain a matrix integral:

$$
z(\mu, \boldsymbol{\lambda})^{N_{2}}=\int \mathrm{d} M e^{-\frac{1}{2} M_{a} C\left(1-\tilde{\boldsymbol{\lambda}}^{*}\right)_{a b} M_{b C}}
$$

The integral over $\boldsymbol{\lambda}$ gives $\delta\left(M M^{t}-G\right)$, hence the result ${ }^{1}$

$$
Z(\beta) \approx \int d M \delta\left(\operatorname{tr} M M^{t}-N_{1} N_{2}\right) e^{-\frac{1}{2} \operatorname{tr} M M^{t}-\beta \operatorname{tr} V\left(M M^{t}\right)}
$$

[^0]
Matrix models: Topological transition

For simplicity, we assume: $N_{1}=N_{2}=N$.
Diagonalizing M, with eigenvalues $\left(x_{i}\right)_{1 \leq i \leq N}$:

$$
\begin{aligned}
Z(\beta)=\int d \mu \prod d x_{i} \exp N^{2} & {\left[i \mu\left(1-\frac{1}{N} \sum_{i} x_{i}^{2}\right)-\frac{\beta}{N} \sum_{i} V\left(x_{i}\right)\right.} \\
& \left.+\frac{1}{2 N^{2}} \sum_{i \neq j} \log \left|x_{i}^{2}-x_{j}^{2}\right|\right]
\end{aligned}
$$

The saddle-point equations are:

$$
\begin{aligned}
& \frac{1}{N} \sum_{i} x_{i}^{2}=1, \quad i \mu x_{i}+\frac{\beta}{2} V^{\prime}\left(x_{i}\right)=\frac{1}{N} \sum_{j \neq i} \frac{x_{i}}{x_{i}^{2}-x_{j}^{2}} \\
& \int d x \rho(x) x^{2}=1, \quad i \mu x+\frac{\beta}{2} V^{\prime}(x)=P \int d y \frac{\rho(y)}{x-y}
\end{aligned}
$$

- $\beta \rightarrow 0$: Gaussian limit, Wigner semi-circular law,
- $\beta \rightarrow \infty$: V dominates log, $\rho(x)=\sum s_{*} \delta\left(x-x_{*}\right)$.

Matrix models: Topological transition

Indeed, one- and multi-cut solutions can be obtained exactly for different potentials and match with finite N numerics.

Spectral density for $H=\operatorname{tr}\left(S S^{t}\right)^{3}$ and $H=-3 \operatorname{tr}\left(S S^{t}\right)^{4}+\operatorname{tr}\left(S S^{t}\right)^{5}$ [Taken from (2)].

Matrix models: Low temperature

Generically (except for $N=2^{k}$), there is a glass transition (not described by the matrix!) and the topological transition happens for various potentials.

Energy density for $H=\operatorname{tr}\left(S S^{t}\right)^{3}$ and $H=-3 \operatorname{tr}\left(S S^{t}\right)^{4}+\operatorname{tr}\left(S S^{t}\right)^{5}$ [Taken from (2)].

NB: If the potential is unbounded below, there is a ferromagnetic ground state (low energy), again not described by the matrix integral (high entropy).
(1) Motivations
(2) Vector models
(3) Matrix models
(4) Tensor model
(5) Conclusions

Tensor model

$$
T_{a b c} \quad(1 \leq a, b, c \leq N) ; \quad \sum_{a, b, c=1}^{N} T_{a b c}^{2}=N^{3 / 2}
$$

Imposing a spherical constraint removes the negative directions of the tetrahedron:

$$
\begin{aligned}
S(T, \mu, \lambda) & =\frac{\mu}{2} T_{a b c} T_{a b c}+\frac{\lambda}{4} T_{a b c} T_{a d e} T_{f b e} T_{f d c} \\
Z_{s p h}(\lambda) & =\int_{0}^{\infty} \mathrm{d} \mu \int \mathrm{~d} T \exp \left[N^{3} \mu-N^{3 / 2} S(T, \mu, \lambda)\right] \\
\frac{G_{s p h}(\lambda ; a b c)}{N^{3 / 2}} & =\frac{\int_{0}^{\infty} \mathrm{d} \mu \int \mathrm{~d} T T_{a b c} T_{a b c} \exp \left[N^{3} \mu-N^{3 / 2} S(T, \mu, \lambda)\right]}{Z_{s p h}(\lambda)}
\end{aligned}
$$

Tensor model II

Rescaling $\tilde{T}=\sqrt{\mu} T$, one finds:

$$
\frac{\int \mathrm{d} \mu \exp \left[N^{3}\left(\mu-\left(\frac{1}{2}+\frac{1}{N^{3}}\right) \ln \mu-F_{C T}\left(\lambda / \mu^{2}\right)\right)\right] G_{C T}\left(\lambda / \mu^{2}\right)}{\int \mathrm{d} \mu \exp \left[N^{3}\left(\mu-\left(\frac{1}{2}+\frac{1}{N^{3}}\right) \ln \mu-F_{C T}\left(\lambda / \mu^{2}\right)\right)\right]}
$$

with [Carrozza Tanasa '15]:

$$
Z_{C T}(\lambda)=\int d T e^{-N^{3 / 2} S(T, 1, \lambda)}=\exp \left[-N^{3} F_{C T}(\lambda)\right]
$$

The large- N saddle-point equation

$$
1-1 /\left(2 \mu_{*}\right)-\left.\partial_{\mu} F_{C T}\left(\lambda / \mu^{2}\right)\right|_{\mu=\mu_{*}}=\mathcal{O}(1 / N)
$$

becomes

$$
\begin{gathered}
\mu_{*}-3 / 2+G_{C T}\left(\lambda / \mu_{*}^{2}\right)=0 \\
(\lambda<0.0448)
\end{gathered}
$$

using Schwinger-Dyson equation:

$$
G_{C T}(\lambda)=1+\lambda \partial_{\lambda} F_{C T}(\lambda)
$$

Tensor model III

Additionally, at LO (melonic approximation):

$$
\begin{gathered}
G_{C T}(\lambda)=\sum_{p \in N} C_{p} \lambda^{2 p}, \quad C_{p}=\frac{(4 p)!}{p!(3 p+1)!}, \quad|\lambda|^{2}<\lambda_{c}^{2}=\frac{3^{3}}{4^{4}} \\
G_{C T}(\lambda) \underset{\lambda \rightarrow \lambda_{c}^{-}}{\sim} \frac{4}{3}-K \sqrt{1-\frac{\lambda^{2}}{\lambda_{c}^{2}}}
\end{gathered}
$$

Returning to the spherical model:

$$
\frac{G_{s p h}(\lambda)}{N^{3 / 2}} \sim \frac{e^{N^{3}\left(\mu_{*}-1 / 2 \ln \mu_{*}-F_{C T}\left(\lambda / \mu_{*}^{2}\right)\right)}}{Z_{\text {sph }}(\lambda)} G_{C T}\left(\lambda / \mu_{*}^{2}\right) ; \quad 0 \leq \frac{\lambda^{2}}{\mu_{*}^{4}}<\frac{3^{3}}{4^{4}}
$$

(1) Motivations
(2) Vector models
(3) Matrix models

4 Tensor model
(5) Conclusions

Conclusions

What happens after $\lambda=0.0448$?
Low temperature/high coupling ground state?
Phase transition?
Good order parameter?

Beyond the melonic limit?

- Mean field theory around non-trivial vacuum? 2PI effective action [Benedetti, Gurau '18] with reduced symmetry [Benedetti, Costa '19]
- Numerics? Monte Carlo [Jha '21], bootstrap equations [Lin '20]

Thank you!

[^0]: ${ }^{1}$ Numerics helped set $\mu_{a}=\mu \forall a$.

