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Vector models: History

s = (s1, . . . , sN) ; Z(β) =
∑

s

e−βH[s]

Ising:

H[s] = −
∑
i∼j

Jsi sj − h
∑
i

si ; si = ±1

d = 1 : 〈si sj〉β ≤ C exp(−c(β)|i − j |) [Ising 1924]

d ≥ 2 : 〈si sj〉β ≥ c(β) > 0 (d = 2 [Onsager 1944])

Spin glasses:

Edwards-Anderson [1975]:

H =
∑
i∼j

Jijsi sj ; J2
ij ∝ J2

Sherrington-Kirkpatrick
[SK 1972, Parisi 1979, Talagrand 2006]:

H =
∑

1≤i<j≤N

Jijsi sj

Main properties: non-ergodicity, ultrametricity, non-selfaveraging.
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Vector models: Spherical p-spin

H[s] = −
∑

1≤i1<···<ip≤N

Ji1...ip si1 . . . sip − h
N∑
i=1

si

s2 = s2
1 + · · ·+ s2

N = N ; J2
i1...ip

=
J2p!

2Np−1

[Berlin Kac ’52]: fixed coupling (Ji1...ip = J > 0), nearest neighbour, large N:

d =

{
1, 2 disordered phase

3 spontaneous magnetization

[Crisanti Sommers ’92 (1)]: The annealed average introduces n replicas:

βF = −lnZ = − lim
n→0

Z n − 1

n

Z n =
∑

s1···sn

exp

(
−β

n∑
α=1

H[sα]

)

=
∑

s1···sn

exp

 (βJ)2p!

4Np−1

∑
1≤i1<···<ip≤N

si1α . . . sipαsi1β . . . sipβ + βh
N∑
iα

siα
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Vector models: Spherical p-spin

Introducing the overlap matrix:

qαβ =
1

N

∑
i

siαsiβ ; (Q)αβ = qαβ (order parameter)

with Lagrange multipliers (λ)αβ = λαβ , gives:

Z n =

∫
Q>0

∏
α<β

dqαβ

∫ i∞

−i∞
dλ exp (−NG [Q,λ]) ,

G [Q,λ] =− (βJ)2

4

∑
αβ

qp
αβ +

1

2

∑
αβ

λαβqαβ

− ln

∫ ∏
α

dsα exp

1

2

∑
αβ

λαβsαsβ + βh
∑
α

sα

+O
(

1

N

)
.
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Vector models: Spherical p-spin

After integration over s (Gaussian) and λ at first orders in 1/N and n:

Z n =

∫
Q>0

∏
αβ

√
N

2π
dqαβ exp

[
−NG0(Q)− G1(Q) +O

(
1

N

)]
,

2G0(Q) = −µ
p

∑
αβ

qp
αβ − b2

∑
αβ

qαβ − ln detQ +
b4

2

∑
αβ

qαβ

2

,

2G1(Q) =
µ

2
(p − 1)

∑
αβ

qp−2
αβ

1 + 2q2
αβ − 2b4(

∑
γδ

qαγqβδ)2

+ ln detQ ,

µ =
(βJ)2

2
p , b = βh .

Extremize (maximum!) and integrate over Gaussian fluctuations:

βF

N
= −s(∞) +

1

n
G0(Q∗) +

1

Nn

(
G1(Q∗) +

1

2

∑
ν

nν ln Λν

)
+O

(
1

N2

)
.

We will look for stable solutions (Λν > 0).
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Vector models: Spherical p-spin

Replica symmetric ansatz:

qαβ =

{
1 (α = β)

q (α 6= β)

1 step replica-symmetry-broken ansatz (0 ≤ q0 ≤ q1 ≤ 1):

In the SK model, full RSB mechanism was needed [Parisi ’79], with a monotone
functional:

q(x) (0 ≤ x ≤ 1).

Other methods: TAP equations, Langevin dynamics, supersymmetry...
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Vector models: Spherical p-spin

The saddle point equations for qo and ql, obtained either 
for the stationary point of  (5.6) or from (3.20), read for 
n--*0 

/.tq p-1  + b 2 +  C = 0  

r + b2 + B + C=O. 

Each m (0 _< m < 1) corresponds 

(5.7) 

(5.8) 

to a thermodynamic 
phase. For  any T and h we take the one which maximises 
G O [12]. This leads to the additional equation 

-~-(qlP-qP)-(b2+C+m~ ) p  ( q , - q 0 )  

, 
m2 in = 0 (5.9) 

which has to be solved for 0 _< m _< 1. 
The quadratic form of the Gaussian q-fluctuations has 

for finite n nine eigenvalues, but the relevant ones are 
only two which, for n ~ 0 ,  read [see Appendix 3] 

A }~) = - /~  (p - 1) qp-2 + A 2 (5.10) 

Jl 0(3)= --[~ (p-- 1) qp--2-~" (A  + r o B )  2 . (5.11) 

The first eigenvalue, A }1), corresponds to fluctuations 
inside a cluster, while the second, A (03), between different 
clusters. 

5.1. The transition lines 

For  any value of m the RS solution q0 = q~ = q is a so- 
lution of  the 1 RSB equations, as can be checked by direct 
substitution. However, even if 1 RSB equations contain 
the RS solution, we have seen that this is not the correct 
one in the whole plane (T,h), and hence in general 
(5.7)-(5.9) will admit a different solution. The transition 
from the RS to the 1 RSB solution can be either con- 
tinuous, in the sense that q l -  qo goes continuously to 
zero at the transition, or discontinuous, i.e. q~ - q o  has a 
jump. The points where such transitions take place give 
the critical lines in the (T, h) plane. These yield the equiv- 
alent of  the de Almeida and Thouless line for the SK 
model [13]. 

The condition for a continuous transition can be found 
by solving the 1 RSB equations in the limit of  small q~ - %. 
A simple way of obtaining the equation of the continuous 
transition critical line is subtracting (5.7) from (5.8) and 
expanding the result for fixed temperature, field and m, 
about  q0 in powers of  ql - q0. One then gets to the lowest 
order 

ql - qo= - 2 

/~ (p - 1) qg-2  _ (1 - qo) -2 
X (5.12) 

(p - -1)  (p -- 2) q p 3 + 2 ( m - - 2 ) ( 1 - - q 0 )  -3"  

At the transition ql~qo~q and the right hand side of  
(5.12) must vanish. This leads to the critical line 
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1 
r p-2 ( l _ q ) 2 = 0  (5.13) 

where q is solution of the RS equation (4.5). This is the 
line where the RS solution becomes unstable, for it is 
nothing but A 1=0  [cf. (4.9) and (4.15)]. 

We have, however, not yet found the value of m. The 
1 RSB solution has a well defined m. Therefore, if the 
critical line is approached in the (T,h) plane from the 
1 RSB side along a m-line of  constant m, the solution at 
the transition wil lbe given by ql = q0 = q  with that value 
of m. This implies that m and q are related and may, and 
indeed does, discard a part  of  the line (5.13). 

Solving the full 1 RSB equations in the small q l -  q0 
limit leads, in addition to (5.13), to the relation 

p - 2  
m = ~ - q  ( l - q )  (5.14) 

where q is solution of (4.5) on the critical line. Since 
0 _< m _< 1 the above equation implies that the continuous 
transition takes place only on that part  of  the curve (5.13) 
which corresponds to 

l-2/p<=q<=l (5.15) 

i.e. the upper branch. This is the continuous line in Fig. 3. 
We then have the following scenario. When the critical 

line is approached from high temperatures and fields the 
RS solution becomes unstable and eventually the 1 RSB 
solution is continuously set up. The difference q l -  qo is 
zero at the transition, but m has a well defined value fixed 
by q at the transition through (5.14). Both eigenvalues 
A ~1) and A0 (3) are zero on the critical line, and positive 
below the transition. 

The continuous transition critical line ends at the 
critical point qc = 1 - 2 / 1 )  where m - -  1. Below this point 
the 1 RSB can only be reached discontinuously, i.e. with 

h/J 
i I I I 

1 . 2  / 

.S / / 
/ / / .;' 

l / . /  / ...-,,' 
/ / / / .  ...... 

_ I .../...~. I . . . . . . . . . .  ~ ,,'l 
.2 .4 .6 .8 

T/J 
Fig. 3. The continuous transition critical line (full line) and the 
discontinuous transition critical line (dashed line) for p =  3. The 
square marks the critical point. The dotted line is the lower branch 
of the A ~ = 0 line. The dash-dotted lines are 1 RSB solutions with 
m= 1/2, 1/4, 1/8 and 1/16 

(T/j)2=P (1 -q~)[1 - (1 -m)q~-mqo]  
2 ql - qo 

x(qf-~_qp 1) 

(h/ j )2_p (1 _q l ) (qp -1 -  q p -  l) 
2 (q~ ~qo)(l~U22m)q~-mqo] 

(5.23) 

P qg-1 .  
2 

(5.24) 

In this way we have obtained the m-lines shown in the 
Fig. 3 (dash-dotted lines) and the n =  1 critical line of  
Figs. 1-3. 

The above reformulation of  the 1 RSB equation is also 
useful from an analytical point of  view. For  example an 
expansion near x = 1 would give the solution near the 
continuous transition critical line. In this way one can 
find, e.g., (5.14). Similarly x = 0  for h = 0 ,  and hence an 
expansion for small x would give the solution for small 
field. 

f /a 
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Fig. 5. The free energy f as a function of T for h = 0 and p = 3. 
The upper line is the 1 RSB solution, while the lower line ths RS. 
The dashed line is the free energy of the metastable state with 
m= 1/2 

6. Thermodynamic properties 

In this section we shall discuss some thermodynamic 
properties of  the spherical pSG.  We shall consider first 
the case of  zero external field, since in this case the equa- 
tions simplify and this help for a better understanding of 
the discontinuous transition. The case of  non-zero exter- 
nal field does not present new qualitative features, as far 
as the discontinuous transition is concerned. 

6.1. Zero external field 

In this case the RS solution is q = 0, and the free energy 
in the high temperature phase is [see (4.4) with J =  1] 

1 
f ( T )  4 T Ts(oo) (6.1) 

Interestingly, this is of  the same form of the free energy 
in the high temperature phase of  the Ising spin case [6]. 
One has just to replace s ( ~ )  with the corresponding 
infinite temperature entropy which for the Ising spins is 
ln2. 

F rom (6.1) a simple calculation leads to the entropy 
per spin 

1 
s ( T ) -  4 T  2 + s ( ~ )  (6.2) 

so that s (T) becomes negative, as expected from the sim- 
ilarity with the Ising case, for T <  [4s(oo)] -1/2. Never- 
theless here this does not imply an instability in the model 
since for continuous variables the entropy is not strictly 
positive. 

At the critical temperature To(0 ) the 1 RSB solution 
appears with m = 1, q~ - q0* 0, q0 = 0 and the same free 
energy of the RS solution. When the temperature is fur- 
ther decreased, m becomes smaller than one and the 1 RSB 
solution leads to a larger free energy. In Figs. 5 and 6 we 
show the free energy as a function of T at h = 0 for p = 3 

f/d 

-'i.2 

- i  .4 '[~ 

,2 .4 .6 .E~ 
T/J 

Fig. 6. The free energy f as a function of T for h=0 andp= 10. 
The upper line is the 1 RSB solution, while the lower line ths RS. 
The dashed line is the free energy of the metastable state with 
m= 1/2 

and p = 10, respectively. The upper branch (full line) is 
the 1 RSB solution, while the lower branch (full line) is 
the RS solution. 

From these figures one sees that in this model the 
entropy is always negative at low temperatures and di- 
verges as T--,0. Solving the 1 RSB equations in this limit 
shows that indeed the entropy diverges logarithmically as 
T ~ 0 .  The RS solution gives a stronger, T -2, singularity, 
and hence the RS entropy is lower than the 1 RSB one. 
This indicates the presence of freezing. 

The spin glass transition is of  the first order, as far as 
the order parameter  is concerned. However, due to the 
maximisation of the free energy, a genuine spin glass first 
order transition would have a negative latent heat [7]. 
Moreover, the order parameter  is a function and the dis- 
continuity appears on a set of  zero measure. These con- 
siderations lead to the conclusion that the transition must 

Phase diagram and free energy (for h = 0) for p = 3. [Taken from (1)]
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Fig. 7. The  specific hea t  (lower line) and  the  susceptibili ty (upper  
line) as a func t ion  o f  T for h = 0 and  p = 3 

be of the second order in the thermodynamic sense [6, 7], 
i.e., in the sense that discontinuities or singularities can 
be seen only from the second derivatives of the free en- 
ergy. In Fig. 7 we report the susceptibility and the specific 
heat as a function of T for p = 3 and h = 0. 

An interesting feature is the presence of metastable 
states, i.e. of  states which are locally stable, but have 
smaller free energy. Consider for example the RS solu- 
tion. For  h = 0 it is stable for all temperatures [see (4.13)]. 
However it leads to a smaller free energy (see Figs. 5 and 
6). Other metastable states are obtained by solving the 
1 RSB equation (5.8) for b = 0 = q0 and m fixed. For  any 
m this equation has two solutions which appear for 
A2(3)=0, where they coincide, but are unstable since 
A }1) < 0. When the temperature is further decreased one 
of  the two solutions becomes stable leading to a recta- 
stable state. In Figs. 5 and 6 we show the free energy of 
one of these metastable states (m = 1/2) as function of  T 
for p = 3 and p = 10 (dashed line). The line starts from 
the point where the solution becomes stable, i.e. 
A ~) = 0. The free energy of  these m-states is always lower 
than of  the 1 RSB, but equals the latter at the point where 
that particular value of m is solution of (5.9) (see Figs. 5 
and 6). We note that due to this fact, the free energy of 
the 1 RSB solution can be seen as the envelope of the free 
energies of  all these metastables m-states. 

From Figs. 5 and 6 we see that there exists a particular 
value o f p  between 3 and 10 for which the critical tem- 
perature T~ (0) equals the temperature where the entropy 
becomes zero. For  larger value of  p the latter is always 
given by the RS value [4s (oo)]-~/2. Apart for this prop- 
erty, this special p has no other special features. 

6.2. Finite external field 

If the field is not zero we have to distinguish two cases: 
h < h~ and h > h c, where h~ is the value of  the field at the 
critical point qc = 1 - 2/p. Its value for anyp can be found 
by inserting qc into (4.15). For  T = 0  the critical field h 0 
takes the simple form 

(ho/J) 2 p(p?2) (6.3) 

For  h < h C the transition is discontinuous, and qual- 
itatively similar to the h = 0 case. The only difference is 
that the strength of the discontinuities at the transition, 
e.g. in the order parameter and specific heat, decreases 
as the field is increased and eventually vanishes at the 
critical point. The metastable states, which for h = 0 exist 
for any temperature below the transition, may now dis- 
appear at a temperature which depends on both h and 
m. This temperature can be found by the vanishing of 
the most relevant eigenvalue. For  example the RS met- 
astable state becomes unstable at the lower branch of the 
A 1 =  0 line, see e.g. Figs. 1-3. 

For  fields larger than h c the transition becomes con- 
tinuous. The RS solution is unstable at the transition and 
the 1 RSB state is continuously set up. The first discon- 
tinuities appear only on the third derivatives of the free 
energy, and hence the transition is thermodynamically of 
the third order. For  comparision we report in Fig. 8 the 
internal energy near the transitions as a function of T for 
p = 3. The upper line refers to the discontinuous transi- 
tion (h < he) while the lower line to the continuous tran- 
sition (h > hc). The square marks the point of the tran- 

u/J 
I I I I 

- . B  

-1 

1.8 

I I r I 

.8 .4 .6 .8 

T/J  

Fig. 8. The  internal  energy as a funct ion  o f  T for h < h~. (upper  
line) and  h > hc for p = 3. The  squares  m a r k  the t rans i t ion  

.8 

.6 

.4 

2 

r i i i 

.4 .8 ~.8 :1,6 

T/J 

Fig. 9. The  magne t i sa t ion  as a func t ion  o f  T for p = 3. The  upper  
line refers to h > h C, while the lower line to h < h c 

Susceptibility (upper), specific heat (lower) for h = 0 and p = 3. [Taken from (1)]
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Matrix models: Spin softening

Can matrix models serve to describe glasses?

[Cugliandolo et al ’94, Anninos et al ’14, Hartnoll et al ’19 (2)]

H[S ] = tr
[
V (SS t)

]
, SaB = ±1 (1 ≤ a ≤ N1; 1 ≤ B ≤ N2)

Spin softening:

Z(β) =
∑

S={±1}N1N2

e−βH[S] Ni→∞→
∫

dMδ(trMM t − N1N2)e−βH(M) .

Remarks:

• Emergent continuous symmetry at high T.

• Bad approximation for non-singlet correlators at low T.
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Matrix models: Spin softening

Indeed:

Z(β) =

∫
dGdλe−β tr V (G)

∫
dSδ(S2

aB − 1)e−iλab(Gab−(SSt )ab) .

Inserting the trivial relation:
∑

a µa

(
N2 − (SS t)aa

)
= 0,∫

dSδ(S2
aB − 1)e iλab(SSt )ab = e iN2

∑
a µaz(µ,λ)N2 ,

such that, with λ̃ab = 2i(λab − µaδab):

z(µ,λ) = ]
∑

s∈{±1}N1

1√
det λ̃

∫
dwe−

1
2
waλ̃

−1wb+
∑

a wasa

= ]
1√

det λ̃

∫
dwe−

1
2
waλ̃

−1wb+
∑

a ln(2 cosh(wa))

!
≈ ] 1√

det
(

1− λ̃
) .
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Matrix models: Spin softening

The last line holds when we have chosen the µa such that:(
1

1− λ̃

)
aa

= 1 ∀a.

In this way, we can obtain a matrix integral:

z(µ,λ)N2 =

∫
dMe−

1
2
MaC (1−λ̃∗)abMbC .

The integral over λ gives δ(MM t − G), hence the result1

Z(β) ≈
∫

dMδ(trMM t − N1N2)e−
1
2

tr MMt−β tr V (MMt ) .

1Numerics helped set µa = µ ∀a.
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Matrix models: Topological transition

For simplicity, we assume: N1 = N2 = N.
Diagonalizing M, with eigenvalues (xi )1≤i≤N :

Z(β) =

∫
dµ
∏

dxi expN2
[
iµ

(
1− 1

N

∑
i

x2
i

)
− β

N

∑
i

V (xi )

+
1

2N2

∑
i 6=j

log
∣∣∣x2

i − x2
j

∣∣∣] .
The saddle-point equations are:

1

N

∑
i

x2
i = 1 , iµxi +

β

2
V ′(xi ) =

1

N

∑
j 6=i

xi
x2
i − x2

j∫
dxρ(x)x2 = 1 , iµx +

β

2
V ′(x) = P

∫
dy

ρ(y)

x − y

• β → 0: Gaussian limit, Wigner semi-circular law ,

• β →∞: V dominates log, ρ(x) =
∑

s∗δ(x − x∗) .
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Matrix models: Topological transition

Indeed, one- and multi-cut solutions can be obtained exactly for different
potentials and match with finite N numerics.

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

x

ρ

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

ρ

Spectral density for H = tr(SS t)3 and H = −3 tr(SS t)4 + tr(SS t)5
[Taken from (2)].
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Matrix models: Low temperature

Generically (except for N = 2k), there is a glass transition (not described by
the matrix!) and the topological transition happens for various potentials.

0 1 2 3 4 5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

T

E

N2

0 5 10 15 20

-8.5

-8.0

-7.5

-7.0

-6.5

T

E

N2

Energy density for H = tr(SS t)3 and H = −3 tr(SS t)4 + tr(SS t)5
[Taken from (2)].

NB: If the potential is unbounded below, there is a ferromagnetic ground state
(low energy), again not described by the matrix integral (high entropy).
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Tensor model

Tabc (1 ≤ a, b, c ≤ N) ;
N∑

a,b,c=1

T 2
abc = N3/2

Imposing a spherical constraint removes the negative directions of the
tetrahedron:

S(T , µ, λ) =
µ

2
TabcTabc +

λ

4
TabcTadeTfbeTfdc

Zsph(λ) =

∫ ∞
0

dµ

∫
dT exp

[
N3µ− N3/2S(T , µ, λ)

]
Gsph(λ; abc)

N3/2
=

∫∞
0

dµ
∫
dTTabcTabc exp

[
N3µ− N3/2S(T , µ, λ)

]
Zsph(λ)
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Tensor model II

Rescaling T̃ =
√
µT , one finds:∫

dµ exp
[
N3
(
µ−

(
1
2

+ 1
N3

)
lnµ− FCT (λ/µ2)

)]
GCT (λ/µ2)∫

dµ exp
[
N3
(
µ−

(
1
2

+ 1
N3

)
lnµ− FCT (λ/µ2)

)]
with [Carrozza Tanasa ’15]:

ZCT (λ) =

∫
dTe−N3/2S(T ,1,λ) = exp

[
−N3FCT (λ)

]
.

The large-N saddle-point equation

1− 1/(2µ∗)− ∂µFCT (λ/µ2)|µ=µ∗ = O(1/N)

becomes

µ∗ − 3/2 + GCT (λ/µ2
∗) = 0

(λ < 0.0448)

using Schwinger-Dyson equation:

GCT (λ) = 1 + λ∂λFCT (λ).
0.01 0.02 0.03 0.04

λ

0.1

0.2

0.3

0.4

0.5

μ*(λ)
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Tensor model III

Additionally, at LO (melonic approximation):

GCT (λ) =
∑
p∈N

Cpλ
2p, Cp =

(4p)!

p!(3p + 1)!
, |λ|2 < λ2

c =
33

44
,

GCT (λ) ∼
λ→λ−

c

4

3
− K

√
1− λ2

λ2
c
.

Returning to the spherical model:

Gsph(λ)

N3/2
∼ eN

3(µ∗−1/2 lnµ∗−FCT (λ/µ2
∗))

Zsph(λ)
GCT (λ/µ2

∗) ; 0 ≤ λ2

µ4
∗
<

33

44
.

0.01 0.02 0.03 0.04
λ

0.02

0.04

0.06

0.08

0.10

0.12

λ2 /(μ*(λ))
4
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Conclusions

What happens after λ = 0.0448?
Low temperature/high coupling ground state?
Phase transition?
Good order parameter?

Beyond the melonic limit?

• Mean field theory around non-trivial vacuum?
2PI effective action [Benedetti, Gurau ’18] with reduced symmetry [Benedetti,

Costa ’19]

• Numerics? Monte Carlo [Jha ’21], bootstrap equations [Lin ’20]
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Thank you!
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