Solution of the $\lambda \phi^{4}$-matrix model

Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität Münster

MM
Mathematics Münster

Cluster of Excellence
Co-authors: Harald Grosse, Erik Panzer, Alex Hock, Jörg Schürmann, Johannes Branahl, Maciej Dołęga

Triviality

- [Landau, Abrikosov, Khalatnikov 54] gave a heuristic argument that QED cannot exist as a renormalised QFT.
The problem is called Landau ghost, triviality, positivity of β-function.
- This was considered as death of QFT, rescued only by the discovery of asymptotic freedom in non-Abelian Yang-Mills theory by Gross, Politzer, Wilczek in 1973.
- [Aizenman 81] and [Fröhlich 82] gave a rigorous proof of triviality for the $\lambda \phi^{4}$-model in $D=4+\epsilon$ dimensions.
- Triviality of $\lambda \phi^{4}$ in dimension $D=4$ remained an open conjecture until [Aizenman, Duminil-Copin 19].

This project started as attempt to circumvent triviality by constructing the $\lambda \phi_{4}^{4}$-model as limit from noncommutative geometry.

QFT on noncommutative geometries

Consider $\lambda \phi^{4}$ in an harmonic oscillator potential on Moyal space:

$$
S(\phi)=\int_{\mathbb{R}^{D}} \frac{d x}{(8 \pi)^{D / 2}}\left(\frac{1}{2} \phi \star\left(-\Delta+\Omega^{2}\left\|2 \Theta^{-1} x\right\|^{2}+m^{2}\right) \phi+\frac{\lambda}{4} \phi \star \phi \star \phi \star \phi\right)(x)
$$

where $(f \star g)(x)=\int_{\mathbb{R}^{2 D}} \frac{d y c k}{(2 \pi)^{D}} f\left(x+\frac{1}{2} \Theta k\right) g(x+y) e^{i\langle k, y\rangle}$

- \exists matrix basis $\left(e_{k l}(x)\right)_{k, l \in \mathbb{N}}$ with $\left(e_{k l} \star e_{m n}\right)(x)=\delta_{l m} e_{k n}(x)$,

$$
\int d x e_{k l}(x)=\sqrt{\operatorname{det}(2 \pi \Theta)} \delta_{k l}
$$

- Expand $\phi(x)=\sum_{k, l=1}^{\infty} \Phi_{k l} e_{k l}(x)$ to get

$$
\int_{\mathbb{R}^{D}} d x(\phi \star \phi \star \phi \star \phi)(x)=\sqrt{\operatorname{det}(2 \pi \Theta)} \operatorname{Tr}\left(\phi^{4}\right)
$$

- For $\Omega=1$ also the kinetic term is matrix product:

$$
S(\phi)=\sqrt{\operatorname{det}(\Theta / 4)} \operatorname{Tr}\left(E \phi^{2}+\frac{\lambda}{4} \phi^{4}\right)
$$

$$
E=c_{0} \operatorname{id}+c_{1} \operatorname{diag}(0,1,1,2,2,2,3,3,3,3, \ldots) \text { in } 4 D
$$

- need renormalisation $c_{0} \mapsto m_{\text {bare }}^{2}, \Phi \mapsto \sqrt{Z} \Phi$

Reformulation as a matrix model

Setting $\sqrt{\operatorname{det}(\Theta / 4)} \mapsto N$ and truncating to H_{N} (Hermitian $N \times N$-matrices) gives formally a measure

$$
d \mu_{E, \lambda}(\Phi)=\frac{e^{-\frac{\lambda N}{4} \operatorname{Tr}\left(\phi^{4}\right)} d \mu_{E, 0}(\Phi)}{\int_{H_{N}^{\prime}} e^{-\frac{\lambda N}{4} \operatorname{Tr}\left(\phi^{4}\right)} d \mu_{E, 0}(\phi)}
$$

on H_{N}^{\prime} where $d \mu_{E, 0}$ is Gaußian with

$$
\int_{H_{N}^{\prime}} d \mu_{0}(\Phi) e^{\mathrm{i} \Phi(M)}=\exp \left(-\frac{1}{2 N} \sum_{k, l=1}^{N} \frac{M_{k \mid} M_{l k}^{\prime}}{E_{k}+E_{l}}\right)
$$

- Observe the analogy to the [Kontsevich 92] model which is a cubic deformation $\frac{1}{\mathcal{Z}} e^{-\frac{i N}{6} \operatorname{Tr}\left(\phi^{3}\right)} d \mu_{E, 0}(\Phi)$ of the same $d \mu_{E, 0}$.
- Correlation functions of the Kontsevich model generate intersection numbers of ψ - and κ-classes on the moduli space $\overline{\mathcal{M}}_{g, n}$ of stable complex curves.

Equations of motion

Fourier transform $\mathcal{Z}(M):=\int_{H_{N}^{\prime}} d \mu_{E, \lambda}(\Phi) e^{\mathrm{i} \Phi(M)}$ satisfies
(1) $-N\left(E_{p}-E_{q}\right) \sum_{k=1}^{N} \frac{\partial^{2} \mathcal{Z}(M)}{\partial M_{p k} \partial M_{k q}}=\sum_{k=1}^{N}\left(M_{k p} \frac{\partial \mathcal{Z}(M)}{\partial M_{k q}}-M_{q k} \frac{\partial \mathcal{Z}(M)}{\partial M_{p k}}\right)$
(2) $\frac{1}{N} \frac{\partial \mathcal{Z}(M)}{\partial E_{p}}=\sum_{k=1}^{N} \frac{\partial^{2} \mathcal{Z}(M)}{\partial M_{p k} \partial M_{k p}}+\mathcal{Z}(M) \int_{H_{N}^{\prime}} d \mu_{E, \lambda}(\Phi) \frac{1}{N} \sum_{k=1}^{N} \Phi_{p k} \Phi_{k p}$

- They allow to express $\sum_{k=1}^{N} \frac{\mathcal{Z}(M)}{\partial M_{p k} \partial M_{k q}}$ in Dyson-Schwinger equations by fewer derivatives, i.e. of same or lower order.
- (1) essentially due [Disertori, Gurau, Magnen, Rivasseau 06], can be used for $p \neq q$, whereas $p=q$ requires (2).
- This brings the two-point functions and their derivatives with respect to E to our interest.

Two-point functions

- Build for $a \neq b$ the two-point functions

$$
\begin{aligned}
G_{|a b|} & =N \int_{H_{N}^{\prime}} \Phi_{a b} \Phi_{b a} d \mu_{E, \lambda}(\Phi) \\
G_{|a| b \mid} & =N^{2} \int_{H_{N}^{\prime}} \Phi_{a a} \Phi_{b b} d \mu_{E, \lambda}(\Phi)
\end{aligned}
$$

- Fact: matrix models have an asymptotic $1 / N$-expansion

$$
G_{|a b|}=\sum_{g=0}^{\infty} N^{-2 g} G_{|a b|}^{(g)} \quad \text { and } \quad G_{|a| b \mid}=\sum_{g=0}^{\infty} N^{-2 g} G_{|a| b \mid}^{(g)}
$$

where g is the genus. These $G_{|a b|}^{(g)}, G_{|a| b \mid}^{(g)}$ depend on $E=\operatorname{diag}\left(E_{1}, \ldots, E_{N}\right)$ and λ and give rise to

$$
\left.\Omega_{q_{1}, \ldots, q_{n}}^{(g)}:=\frac{(-N)^{n-1} \partial^{n-1}\left(\frac{1}{N} \sum_{k=1}^{N} G_{\left|k q_{1}\right|}^{(g)}+G_{\left|q_{1}\right| q_{1} \mid}^{(g-1)}\right)}{\partial E_{q_{2}} \cdots \partial E_{q_{n}}}+\frac{\delta_{g, 0} \delta_{n, 2}}{\left(E_{q_{1}}-E_{q_{2}}\right)^{2}}\right)
$$

Dyson-Schwinger equation for planar 2-point function

Theorem [Grosse, W 09]

Let e_{1}, \ldots, e_{d} be the pairwise different $\left\{E_{k}\right\}$ which arise with multiplicities $r_{1}, . ., r_{d}$. There is a function $G^{(0)}$ of complex variables which interpolates $G^{(0)}\left(e_{k}, e_{l}\right)=G_{|k| \mid}^{(0)}$ and satisfies

$$
\left(\zeta+\eta+\frac{\lambda}{N} \sum_{l=1}^{d} r_{l} G^{(0)}\left(\zeta, e_{l}\right)\right) G^{(0)}(\zeta, \eta)=1+\frac{\lambda}{N} \sum_{k=1}^{d} r_{k} \frac{G^{(0)}\left(e_{k}, \eta\right)-G^{(0)}(\zeta, \eta)}{e_{k}-\zeta}
$$

One can arrange an integral equation for $N \rightarrow \infty$. Depending on dimension, renormalisation constants are necessary:

$$
\begin{aligned}
& \left(\zeta+\eta+\mu_{\text {bare }}^{2}+\lambda \int_{0}^{\infty} d t \varrho_{0}(t) Z G^{(0)}(\zeta, t)\right) Z G^{(0)}(\zeta, \eta) \\
& =1+\lambda \int_{0}^{\infty} d t \varrho_{0}(t) \frac{Z G^{(0)}(t, \eta)-Z G^{(0)}(\zeta, \eta)}{t-\zeta}
\end{aligned}
$$

Solution

Theorem [Panzer-W 18 for $\varrho_{0}=1$, Grosse-Hock-W 19a]

(0) Ansatz $G^{(0)}(\zeta, \eta)=\frac{e^{\mathcal{H}_{\zeta}\left[\tau_{\eta}(\bullet)\right]} \sin \tau_{\eta}(\zeta)}{Z \lambda \pi \varrho_{0}(\zeta)}$
$Z=$ renormalisation
$\mathcal{H}_{\zeta}[f]=\frac{1}{\pi} f \frac{d p f(p)}{p-\zeta}$
(2) $\tau_{\eta}(\zeta)=\operatorname{Im} \log (\eta+I(\zeta+\mathrm{i} \epsilon))$ with $I(\zeta)=-R\left(-\mu^{2}-R^{-1}(\zeta)\right)$
(3)

$$
R(z)=z-\lambda(-z)^{D / 2} \int_{0}^{\infty} \frac{d t \varrho_{\lambda}(t)}{\left(\mu^{2}+t\right)^{D / 2}\left(t+\mu^{2}+z\right)}
$$

$D=2\left[\frac{\delta}{2}\right]$ at spectral dimension $\delta=\inf \left(p: \int \frac{\text { dtoo }(t)}{(1+t)^{p / 2}}<\infty\right)$
(9) ϱ_{λ} is implicit solution of $\varrho_{0}(R(\zeta))=\varrho_{\lambda}(\zeta)$.

- Proof: [Cauchy 1831] residue theorem, [Lagrange 1770] inversion theorem, [Bürmann 1799] formula
- $\varrho_{0}(t) \equiv 1$ (2D Moyal) in terms of Lambert-W, $W(z) e^{W(z)}=z$: $I(\zeta):=\lambda W_{0}\left(\frac{1}{\lambda} e^{\frac{1+\zeta}{\lambda}}\right)-\lambda \log \left(1-\lambda W_{0}\left(\frac{1}{\lambda} e^{\frac{1+\zeta}{\lambda}}\right)\right)$

$D=4$ Moyal space: $\varrho_{0}(t)=t$ [Grosse-Hock-W 19b]

- $\varrho_{\lambda}(x) \equiv \varrho_{0}(R(x))=R(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d t \varrho_{\lambda}(t)}{\left(\mu^{2}+t\right)^{2}(t+x)}$
- If $\varrho_{\lambda}(t) \sim \varrho_{0}(t)=t$, then $R(x)$ bounded above.

Consequently, R^{-1} would not be globally defined: triviality!

- Fredholm equation perturbatively solved by iterated integrals: Hyperlogarithms and $\zeta(2 n)$ which can be summed to

$$
\begin{aligned}
& \varrho_{\lambda}(x)=x \cdot{ }_{2} F_{1}\left(\left.\begin{array}{c}
\alpha_{\lambda}, 1-\alpha_{\lambda} \\
2
\end{array} \right\rvert\,-\frac{x}{\mu^{2}}\right) \\
& \alpha_{\lambda}=\left\{\begin{array}{cl}
\frac{\arcsin (\lambda \pi)}{\pi} & \text { for }|\lambda| \leq \frac{1}{\pi} \\
\frac{1}{2}+i \frac{\operatorname{arcosh}(\lambda \pi)}{\pi} & \text { for } \lambda \geq \frac{1}{\pi}
\end{array}\right.
\end{aligned}
$$

Corollary

The interaction alters the spectral dimension to $4-2 \frac{\arcsin (\lambda \pi)}{\pi}$ and thus avoids the triviality problem.

Gives non-perturbative integral representation for $G^{(0)}(\xi, \eta)$.

All planar correlation functions

- A Catalan tuple is a tuple $\tilde{p}=\left(p_{0}, p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geq 0$, $\sum_{j=0}^{l} p_{j}>l$ if $l<k$ and $\sum_{j=0}^{k} p_{j}=k$. We let $|\tilde{p}|=k$.
- We call a collection $\mathcal{T}=\left\langle\tilde{p}_{0}, \tilde{p}_{1}, \ldots, \tilde{p}_{n+1}\right\rangle$ of Catalan tuples a nested Catalan table (of length n) if its length tuple $\left(\left|\tilde{p}_{0}\right|+1,\left|\tilde{p}_{1}\right|, \ldots,\left|\tilde{p}_{n+1}\right|\right)$ is itself a Catalan tuple.
- There are $\frac{1}{n+1}\binom{3 n+1}{n}$ different Catalan tables of length n. Example $n=1:\langle(1,0),(0),(0)\rangle$ and $\langle(0),(1,0),(0)\rangle$

Theorem [de Jong, Hock W 19]
The planar n-point function is a sum of terms of the form $\frac{ \pm G_{b_{p} b_{0}}^{(0)} \cdots G_{b_{r} b_{s}}^{(0)}}{\left(E_{b_{t}}-E_{b_{u}}\right) \cdots\left(E_{b_{v}}-E_{b_{w}}\right)}$ which are in bijection with nested Catalan tables of length $\frac{n-2}{2}$. The numerator is encoded in the length tuple, the denominator by two types of plane trees associated with the Catalan tuples it is made of.

The planar 2-point function for finite N

For finite N we make contact with complex algebraic geometry:

Theorem ([Schürmann-W 19], inspired by [Hock-Grosse-W 19])

Let $\left(\varepsilon_{k}, \varrho_{k}\right)$ be implicitly defined by $e_{k}=R\left(\varepsilon_{k}\right), r_{k}=R^{\prime}\left(\varepsilon_{k}\right) \varrho_{k}$
for $R(z)=z-\frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_{k}}{z+\varepsilon_{k}}$.
Then $G^{(0)}(\zeta, \eta)=\mathcal{G}^{(0)}(z, w)$ for $R(z)=\zeta, R(w)=\eta$ and

$$
\mathcal{G}^{(0)}(z, w)=\frac{S(R(z), R(w))}{(R(z)-R(-w))(R(w)-R(-z))}
$$

where

$$
S(R(z), R(w))=\frac{\prod_{j=0}^{d}\left(R(z)-R\left(-\hat{w}^{j}\right)\right)}{\prod_{k=1}^{d}\left(R(z)-R\left(\varepsilon_{k}\right)\right)}
$$

is a symmetric rational function of $R(z), R(w)$. Here $u \in\left\{w=\hat{w}^{0}, \hat{w}^{1}, \ldots, \hat{w}^{d}\right\}$ are all solutions of $R(u)=R(w)$.

Topological recursion [Eynard-Orantin 07]

- The exact solution by complex geometry suggests a link to topological recursion (TR).
- TR recursively constructs, starting from a spectral curve consisting of
- a ramified covering $x: \Sigma \rightarrow \Sigma_{0}$ of Riemann surfaces,
- meromorphic differentials $\omega_{0,1}=y d x$ on Σ and $\omega_{0,2}$ on $\Sigma \times \Sigma$, a family $\omega_{g, n}$ of meromorphic differentials on Σ^{n}, with poles at zeros of $d x$ (ramification points), schematically by

Surprisingly many examples in mathematical physics, algebraic and enumerative geometry follow this TR-construction scheme.

The $\Omega_{n}^{(g)}$

In [Branahl, Hock, W 20] we derived DS-equations for
complexifications $\Omega_{q_{1}, \ldots, q_{n}}^{(g)}=\Omega_{n}^{(g)}\left(\varepsilon_{q_{1}}, \ldots, \varepsilon_{q_{n}}\right)$ coupled to other functions. The Ω 's are converted to meromorphic differentials

$$
\omega_{g, n}\left(z_{1}, \ldots, z_{n}\right)=\lambda^{2-2 g-n} \Omega_{n}^{(g)}\left(z_{1}, \ldots, z_{m}\right) \prod_{k=1}^{n} d R\left(z_{k}\right) \text {. We find }
$$

$$
\begin{aligned}
\omega_{0,2}(u, z) & =\frac{d u d z}{(u-z)^{2}}+\frac{d u d z}{(u+z)^{2}}, \\
\omega_{0,3}\left(u_{1}, u_{2}, z\right) & =-\sum_{i=1}^{2 d} \frac{\left(\frac{1}{\left(u_{1}-\beta_{i}\right)^{2}}+\frac{1}{\left(u_{1}+\beta_{1}\right)^{2}}\right)\left(\frac{1}{R_{1}\left(\beta_{i}-\beta_{1}\right)^{2}}+\frac{1}{\left(u_{2}+\beta_{i}\right)^{2}}\right) d u_{1} d u_{2} d z}{R_{i}\left(-\beta_{i}\right)^{\prime \prime}\left(\beta_{i}\right)\left(z-\beta_{i}\right)^{2}} \\
& +\left[d_{u_{1}}\left(\frac{\omega_{0,2}\left(u_{2}, u_{1}\right)}{(d R)\left(u_{1}\right)} \frac{d z}{R^{\prime}\left(-u_{1}\right)\left(z+u_{1}\right)^{2}}\right)+u_{1} \leftrightarrow u_{2}\right]
\end{aligned}
$$

with $\beta_{1, \ldots, 2 d}$ the ramification points (solve $d R\left(\beta_{i}\right)=0$).

Observation

The blue terms correspond to topological recursion for $x(z)=R(z)$ and $y(z)=-R(-z)$, the red terms signal an extension to blobbed topological recursion [Borot-Shadrin 15].

Contact with topological recursion

The pattern continues:

$$
\begin{aligned}
\omega_{1,1}(z) & =\sum_{i=1}^{2 d} \frac{d z}{R^{\prime}\left(-\beta_{i}\right) R^{\prime \prime}\left(\beta_{i}\right)}\left\{\frac{1}{8\left(z-\beta_{i}\right)^{4}}+\frac{\frac{1}{24} x_{1, i}}{\left(z-\beta_{i}\right)^{3}}\right. \\
& \left.+\frac{\left(x_{2, i}+y_{2, i}-x_{1, i} y_{1, i}-x_{1, i}^{2}-\frac{6}{\beta_{i}^{2}}\right)}{48\left(z-\beta_{i}\right)^{2}}\right\} \\
& -\frac{d z}{8\left(R^{\prime}(0)\right)^{2} z^{3}}+\frac{R^{\prime \prime}(0) d z}{16\left(R^{\prime}(0)\right)^{3} z^{2}}
\end{aligned}
$$

where $x_{n, i}:=\frac{R^{(n+2)}\left(\beta_{i}\right)}{R^{\prime \prime}\left(\beta_{i}\right)}, y_{n, i}:=\frac{(-1)^{n} R^{(n+1)}\left(-\beta_{i}\right)}{R^{\prime}\left(-\beta_{i}\right)}$.
Also found $\omega_{0,4}, \omega_{0,5}$ and then all $\omega_{0, n}$ described on next page. Recently extended to $\omega_{1,2}$.

Recursion of the genus-0 sector

Theorem [Hock-W 21]

$$
\begin{aligned}
& \omega_{0, m+1}\left(u_{1}, \ldots, u_{m}, z\right) \\
& =\sum_{i=1}^{2 d} \operatorname{Res}_{q \rightarrow \beta_{i}} K_{i}(z, q) \sum_{\left.l_{1} \notin\right|_{2}=\left\{u_{1}, \ldots, u_{m}\right\}} \omega_{0,\left|l_{1}\right|+1}\left(l_{1}, q\right) \omega_{0,\left|\left|l_{\mid}\right|+1\right.}\left(I_{2}, \sigma_{i}(q)\right)
\end{aligned}
$$

(for $m \geq 2$). Here σ_{i} is the local Galois involution near β_{i}, i.e. $R(z)=R\left(\sigma_{i}(z)\right), \sigma_{i}\left(\beta_{i}\right)=\beta_{i}, \sigma_{i} \neq \mathrm{id}$. The recursion kernels are

$$
\begin{aligned}
K_{i}(z, q) & =\frac{\frac{1}{2}\left(\frac{d z}{z-q}-\frac{d z}{z-\sigma_{i}(q)}\right)}{d R\left(\sigma_{i}(q)\right)\left(R\left(-\sigma_{i}(q)\right)-R(-q)\right)}, \\
\tilde{K}(z, q, u):= & \frac{\frac{1}{2}\left(\frac{d z}{z-q}-\frac{d z}{z-u}\right)}{d R(q)(R(u)-R(-q))} .
\end{aligned}
$$

Work in progress: higher g (kernel K_{0} for pole at $z=0$ is found)

Linear and quadratic loop equations

The best strategy seems to prove that the Dyson-Schwinger equations imply linear and quadratic loop equations

$$
\begin{aligned}
& \sum_{j=0}^{d} \omega_{g,|| |+1}\left(I, \hat{z}^{j}\right)=f_{1}(R(z) ; I) \\
& \sum_{\substack{j, k=0 \\
j \neq k}}^{d}\left(\omega_{g-1,|| |+2}\left(I, \hat{z}^{j}, \hat{z}^{k}\right)+\sum_{\substack{g_{1}+g_{2}=g \\
l_{1} \uplus I_{2}=l}} \omega_{g_{1},\left|l_{1}\right|+1}\left(l_{1}, \hat{z}^{j}\right) \omega_{g_{2}, l_{2} \mid+1}\left(l_{2}, \hat{z}^{k}\right)\right) \\
& =f_{2}(R(z) ; l)
\end{aligned}
$$

where f_{1}, f_{2} are holomorphic at ramification points of R.

- Blobbed TR is the general solution of such loop equations [Borot, Shadrin 15]. To reduce to TR one needs more.
- In our case f_{1}, f_{2} are of particular structure which completely fixes the poles at $z=-u_{k}$ and $z=0$.

Outlook I: Intersection numbers

Eynard proved in 2011 a general formula which expresses $\omega_{g, n}$ for any spectral curve ($x: \Sigma \rightarrow \Sigma_{0}, \omega_{0,1}, \omega_{0,2}$) with simple ramification points in terms of intersection numbers of ψ - and κ-classes on several copies of $\overline{\mathcal{M}}_{g, n}$.

- Extensions to higher-order ramifications are known.
- According to [Borot, Shadrin 15], Eynard's formula survives with some modifications to blobbed TR.
Thus, expressing our $\omega_{g, n}$ in terms of intersection numbers is an achievable goal in very near future.
- This expression can be interesting (like the ELSV formula) or not.
- We hope it captures aspects of the involution $z \mapsto-z$ which plays a decisive rôle in the residue formula.

Outlook II: Integrability

Consider $\tau\left(\left\{t_{i}\right\}\right)=N^{2} \mathcal{F}^{(0)}+\mathcal{F}^{(1)}+\sum_{g=2}^{\infty} N^{2-2 g} \omega_{g, 0}$

- $\mathcal{F}^{(0)}$ and $\mathcal{F}^{(1)}$ have been found in [Branahl, Hock 21].
- In the [Kontsevich 92] model, for $t_{i}=-\frac{(2 i-1)!!}{N} \operatorname{Tr}\left(E^{-2 i-1}\right)$, τ satisfies the Hirota bilinear PDE of the KdV-hierarchy.
- [Eynard, Orantin 07] describe how to obtain from any spectral curve of TR a formal Hirota equation (order by order in $1 / N^{2}$).
- Whether or not integrability extends to blobbed TR is not known.
We remain optimistic for our case because the recursion formula with residue kernel is very close to TR.

