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Motivations

Jackiw-Teitelboim gravity is a model of 2d dilaton gravity:

Appears in the dimensional reduction of the NH limit of NEBH.

Dual to the SYK model: NAdS2/NCFT1 holography.
→ Toy model for islands.

Model of 2d QG different from Liouville or topological gravity.
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Euclidean JT gravity

Z =

∫
DgµνDϕ exp

{
1

16πGN

∫
d2x

√
gϕ(R + 2) +

ϕb

8πGN

∮
kds

}
. (1)

Dilaton fixes R = −2, the H2 metric is: ds2 = dt2+dx2

x2 .

Reparametrization ansatz: cutoff a boundary curve (t(u), x(u)), with
fixed proper length l = β

ϵ ,

g |bdy =
1
ϵ2
,

t ′2 + x ′2

x2 =
1
ϵ2

→ x = ϵt ′ + O(ϵ3). (2)

Dilaton profile solution of EOM: ϕ = α+γt+δ(t2+x2)
x ,

→ dilaton at the boundary: ϕb = ϕr

ϵ .
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1Juan Maldacena, Douglas Stanford, and Zhenbin Yang. “Conformal symmetry and
its breaking in two dimensional Nearly Anti-de-Sitter space”. In: PTEP 2016.12
(2016). arXiv: 1606.01857 [hep-th].
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Schwarzian action

The action reduces to the boundary term:

SJT → − 1
8πGN

ϕr

ϵ

∫ β

0

du
ϵ
k , (3)

with the extrinsic curvature in the limit ϵ → 0 (or l = β
ϵ → ∞)

k =
t ′(t ′2 + x ′2 + xx ′′)− xx ′t ′′

(t ′2 + x ′2)
3
2

= 1 + ϵ2Sch[t, u], (4)

and Sch[t, u] = t′′′

t′ − 3t′′2
2t′2 has a PSL(2,R) symmetry:

t(u) → t̃(u) = a t(u)+b
c t(u)+d with ad − bc = 1.

Metric gµν → reparametrization t(u).

Is the reparametrization a good characterisation of the metric at
finite cutoff ?
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Localization

Noting t = tan g
2 , the path integral reduces to

Z =

∫
Diff(S1)+
PSL(2,R)

Dg exp
( ϕr

8πGN

∫ β

0
du Sch[tan

g

2
, u]
)
. (5)

Z =

∫
Diff(S1)+
PSL(2,R)

Dg exp
( ϕr

8πGN

∫ β

0
du Sch[tan

g

2
, u]
)
=

C

β
3
2
e

π
β . (6)

The integration is exact:
Diff(S1)+
PSL(2,R) is a coadjoint orbit of Virasoro group.
→ symplectic manifold by Kirillov-Kostant-Souriau construction.
Dg is the Liouville measure given by the sympletic form.
Schwarzian is the Hamlitonian U(1) generator on the orbit.
Duistermaat–Heckman: "stationary phase approximation" is exact.
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Theory”. In: JHEP 10 (2017). arXiv: 1703.04612 [hep-th].
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Dg is the Liouville measure given by the sympletic form.
Schwarzian is the Hamlitonian U(1) generator on the orbit.
Duistermaat–Heckman: "stationary phase approximation" is exact.

Other approach without DH : Goldstone vs gauge theory3.

2Stanford and Witten, “Fermionic Localization of the Schwarzian Theory”.
3Dionysios Anninos, Diego M. Hofman, and Stathis Vitouladitis. “One-dimensional

Quantum Gravity and the Schwarzian theory”. In: JHEP 03 (2022). arXiv:
2112.03793 [hep-th].
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Why immersions?

Disk metric in conformal gauge (more details later)

ds2 =
4|F ′(z)|2

(1 − |F (z)|2)2
|dz |2, (6)

with F : D → H2 holomorphic function.
Well defined metric for F ′(z) ̸= 0 for all z ∈ D.

Which F are allowed?

Embedding : globally injective =⇒ F ′(z) ̸= 0.
Immersion : locally injective ⇐⇒ F ′(z) ̸= 0.

Metric ↔ Immersion F
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Boundary curves

(a) Reparametrization
embedding.

(b) General embedding,
self-avoiding loop4

(c) Immersion with
self-overlap.

Figure: Different types of metrics obtained from deformed disks.
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Boundary curves

(a) Reparametrization
embedding.

(b) General embedding,
self-avoiding loop4

(c) Immersion with
self-overlap.

Figure: Different types of metrics obtained from deformed disks.

General embedding: g(u) /∈ Diff(S1)+ boundary curve has turning points.
In Poincaré disk coordinates: g(u) → Φ(u) angle.

4Douglas Stanford and Zhenbin Yang. “Finite-cutoff JT gravity and self-avoiding
loops”. In: (Apr. 2020). arXiv: 2004.08005 [hep-th].
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Boundary curves

(a) Reparametrization
embedding.

(b) General embedding,
self-avoiding loop4

(c) Immersion with
self-overlap.

Figure: Different types of metrics obtained from deformed disks.

At finite cut-off, can we describe the metrics/immersions by their
boundary curve?
→ What is the boundary of an immersed disk?

4Stanford and Yang, “Finite-cutoff JT gravity and self-avoiding loops”.
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What is the boundary of an immersed disk?

Boundary curve = self-overlapping curve5

Figure: Immersed disk: Deformed without folding or twisting6.
→ Not all self-intersecting curves bound a disk.

Subtlety: one curve can bound several inequivalent immersed disks.

→ Simplest example: Milnor’s curve.

5Valentin Poénaru. “Extension des immersions en codimension 1”. In: Séminaire
Bourbaki : années 1966/67 1967/68, exposés 313-346. Séminaire Bourbaki 10.
talk:342. Société mathématique de France, 1968.

6Jack E. Graver and Gerald T. Cargo. “When Does a Curve Bound a Distorted
Disk?” In: SIAM Journal on Discrete Mathematics 25.1 (2011). eprint:
https://doi.org/10.1137/090767716.
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Milnor’s curve
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Milnor’s curve

→ Two inequivalent immersed disks.
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1 boundary curve ↮ 1 immersed disk

Algorithms to count how many disks are bounded by the same
self-overlapping curve7,8.
→ disks/metrics are not well characterised by boundary curves.
Then what characterises metrics?

Curves studied in the JT literature are the reparametrization ansatz,
closed Brownian paths, or self-avoiding loops, but not self-overlapping
curves. Can we generate them?

7Peter W. Shor and Christopher J. Van Wyk. “Detecting and decomposing
self-overlapping curves”. In: Computational Geometry 2.1 (1992).

8Uddipan Mukherjee. “Self-overlapping curves: Analysis and applications”. In:
Comput. Aided Des. 46 (2014).
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8Mukherjee, “Self-overlapping curves: Analysis and applications”.
9Alexei Kitaev and S. Josephine Suh. “Statistical mechanics of a two-dimensional

black hole”. In: JHEP 05 (2019). arXiv: 1808.07032 [hep-th].
10Zhenbin Yang. “The Quantum Gravity Dynamics of Near Extremal Black Holes”.

In: JHEP 05 (2019). arXiv: 1809.08647 [hep-th].
11Stanford and Yang, “Finite-cutoff JT gravity and self-avoiding loops”.
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Discrete self-overlapping curves 1
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(a) 10 hexagons, perimeter 38.
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(b) 100 hexagons, perimeter 272.
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Discrete self-overlapping curves 2

-20 -10 10 20

-20

-10

10

20

Figure: 3000 hexagons, perimeter 7472.
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Conformal gauge and Liouville field12

Conformal gauge: ds2 = e2σ|dz |2.

Constraint of constant curvature: R = −2.
→ Liouville field solution of ∆σ = −2e2σ.

Theorem 1: Let σb : S1 → R be a continuous function defined on the
boundary of the disk. Then there exists a unique solution σ of the
Liouville equation such that σ = σb on the boundary.

Theorem 2: The most general solution to the Liouville equation is of the
form eσ = 2|F ′(z)|

1−|F (z)|2 , where F : D0 → D0 is a locally univalent
holomorphic function (unique up to PSL(2,R) disk automorphisms).

Then Liouville field at the boundary characterises the metric!

12Daniela Kraus and Oliver Roth. Conformal Metrics. 2008. arXiv: 0805.2235
[math.CV].
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The action: ϵ-expansion beyond the Schwarzian limit

We can parameterise the boundary Liouville field as a diffeomorphism of
the circle:

eσb =
2|F ′|

1 − |F |2
=

β

2πϵ
1
f ′
, (7)

with f ∈ Diff(S1)+, F (0) = 0 and F ′(0) > 0 which fixes F uniquely.

In the Schwarzian limit ϵ → 0, writing an ϵ-expansion for F , we obtain
the "reparametrization ansatz" g in terms on the diffeomorphism f

g = f +
∑
n>0

(2πϵ
β

)n
fn. (8)

We then compute the ϵ-expansion of the extrinsic curvature to get

k = 1 +
(2πϵ

β

)2
Sch[tan

f

2
] +
∑
n≥3

(2πϵ
β

)n
kn. (9)
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In the Schwarzian limit ϵ → 0, writing an ϵ-expansion for F , we obtain
the "reparametrization ansatz" g in terms on the diffeomorphism f

g = f +
∑
n>0

(2πϵ
β

)n
fn. (8)

We then compute the ϵ-expansion of the extrinsic curvature to get

k = 1 +
(2πϵ

β

)2
Sch[tan

f

2
] +
∑
n≥3

(2πϵ
β

)n
kn. (9)
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Reparametrization ansatz in light-cone coordinates

Introducing the coordinates z = −ix + t, z̄ = ix + t, the extrinsic
curvature writes13

k =
2z ′2z̄ ′ + (z̄ − z)z̄ ′z ′′ + z ′(2z̄ ′2 + (z − z̄)z̄ ′′)

4(z ′z̄ ′)
3
2

, (10)

= 1 +
(2πϵ

β

)2
Sch[z , u]− i

(2πϵ
β

)3
∂uSch[z , u]

+
(2πϵ

β

)4(
− 1

2
Sch[z , u]2 + ∂2

uSch[z , u]
)
+ O(ϵ5) (11)

Expressed only in function of the Schwarzian and its derivatives.

→ z(u) can be expressed in terms of f .

13Luca V. Iliesiu et al. “JT gravity at finite cutoff”. In: SciPost Phys. 9 (2020).
arXiv: 2004.07242 [hep-th].
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Extrinsic curvature

The first correction k3, is manifestly PSL(2,R) invariant

k3[f ](ϑ) =
6
π

lim
δ→0

((∫ ϑ−δ

0
+

∫ 2π

ϑ+δ

)
O2(ϑ, ϑ

′)− 2
3δ3 − 2

3δ
Sch[tan

f

2
]

)
,

(12)
with the bilocal PSL(2,R)-invariant operator

Ok(ϑ, ϑ
′) =

(
f ′(ϑ)f ′(ϑ′)

4 sin2( f (ϑ)−f (ϑ′)
2 )

)k

. (13)

→ k4 is a work in progress.

We get a different ϵ-expansion compared to the expansion obtain from
considering only embeddings
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14Iliesiu et al., “JT gravity at finite cutoff”.
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Closed manifold

In the spirit of D’Hoker and Phong15, in conformal gauge, the JT path
integral for a closed manifold16 reduces to

ZJT =

∫
moduli

d(Weil-Pet.) det(P†
1P1)

∫
DσDϕ e−26SL[σ]e

1
16πGN

∫
dx2ϕ(R+2)

,

(14)
with SL[σ] the Liouville action.
The dilaton fixes the Liouville field to be σ = 0.

Work in progress : the case of the disk.
The moduli space is trivial. However the Liouville field is not fixed but
determined by the boundary Liouville field σb.

15Eric D’Hoker and D. H. Phong. “The geometry of string perturbation theory”. In:
Rev. Mod. Phys. 60 (4 1988).

16Phil Saad, Stephen H. Shenker, and Douglas Stanford. “JT gravity as a matrix
integral”. In: (Mar. 2019). arXiv: 1903.11115 [hep-th].
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Conclusion

We propose a formulation of JT gravity at finite cutoff and aim to answer
the following questions:

Can we derive the path integral measure?

Can we formulate perturbation expansion in powers of the cutoff (for
the extrinsic curvature and the partition function)?

Can we study the properties of self-overlapping curves?

We are also interested in:

Gauge theory formulation of JT.

Flat JT gravity.
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