| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
|                            |                               |                     |            |
|                            |                               |                     |            |

## JT gravity at finite cutoff

#### Romain Pascalie Université Libre de Bruxelles

Work in progress, in collaboration with Frank Ferrari (ULB) and Nicolas Delporte (OIST)

18/05/2021

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### Prom embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

### 3 JT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

#### Motivations

• JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

#### 3 JT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Motivations                |                               |                     |            |

Jackiw-Teitelboim gravity is a model of 2*d* dilaton gravity:

- Appears in the dimensional reduction of the NH limit of NEBH.
- Dual to the SYK model:  $\mathcal{N}AdS_2/\mathcal{N}CFT_1$  holography.  $\rightarrow$  Toy model for islands.
- Model of 2d QG different from Liouville or topological gravity.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Outline                    |                               |                     |            |

### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

### **3** JT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| ○○○●○○                     |                               | 00000000            | O          |
| Euclidean JT grav          | ity                           |                     |            |

$$Z = \int \mathcal{D}g_{\mu\nu}\mathcal{D}\phi \exp\left\{\frac{1}{16\pi G_N}\int \mathrm{d}^2x\sqrt{g}\phi(R+2) + \frac{\phi_b}{8\pi G_N}\oint k\mathrm{d}s\right\}.$$
 (1)

Dilaton fixes R = -2, the  $H^2$  metric is:  $ds^2 = \frac{dt^2 + dx^2}{x^2}$ .

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| ○○○●○○                     |                               | 00000000            | O          |
| Euclidean JT grav          | ity                           |                     |            |

$$Z = \int \mathcal{D}g_{\mu\nu}\mathcal{D}\phi \exp\left\{\frac{1}{16\pi G_N}\int \mathrm{d}^2x\sqrt{g}\phi(R+2) + \frac{\phi_b}{8\pi G_N}\oint k\mathrm{d}s\right\}.$$
 (1)

Dilaton fixes R = -2, the  $H^2$  metric is:  $ds^2 = \frac{dt^2 + dx^2}{x^2}$ .

Reparametrization ansatz<sup>1</sup>: cutoff a boundary curve (t(u), x(u)), with fixed proper length  $I = \frac{\beta}{\epsilon}$ ,

$$g|_{bdy} = rac{1}{\epsilon^2}, \qquad rac{t'^2 + x'^2}{x^2} = rac{1}{\epsilon^2} \rightarrow x = \epsilon t' + O(\epsilon^3).$$
 (2)

<sup>&</sup>lt;sup>1</sup>Juan Maldacena, Douglas Stanford, and Zhenbin Yang. "Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space". In: *PTEP* 2016.12 (2016). arXiv: 1606.01857 [hep-th].

| Short review of JT gravity<br>○○○●○○ | From embeddings to immersions | JT at finite cutoff | Conclusion<br>O |
|--------------------------------------|-------------------------------|---------------------|-----------------|
| Euclidean JT grav                    | ity                           |                     |                 |

$$Z = \int \mathcal{D}g_{\mu\nu}\mathcal{D}\phi \exp\left\{\frac{1}{16\pi G_N}\int \mathrm{d}^2x\sqrt{g}\phi(R+2) + \frac{\phi_b}{8\pi G_N}\oint k\mathrm{d}s\right\}.$$
 (1)

Dilaton fixes R = -2, the  $H^2$  metric is:  $ds^2 = \frac{dt^2 + dx^2}{x^2}$ .

Reparametrization ansatz<sup>1</sup>: cutoff a boundary curve (t(u), x(u)), with fixed proper length  $I = \frac{\beta}{\epsilon}$ ,

$$g|_{bdy} = rac{1}{\epsilon^2}, \qquad rac{t'^2 + x'^2}{x^2} = rac{1}{\epsilon^2} \rightarrow x = \epsilon t' + O(\epsilon^3).$$
 (2)

Dilaton profile solution of EOM:  $\phi = \frac{\alpha + \gamma t + \delta(t^2 + x^2)}{x}$ ,  $\rightarrow$  dilaton at the boundary:  $\phi_b = \frac{\phi_r}{\epsilon}$ .

<sup>&</sup>lt;sup>1</sup>Maldacena, Stanford, and Yang, "Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| ○○○○●○                     |                               | 00000000            | O          |
| Schwarzian action          |                               |                     |            |

The action reduces to the boundary term:

$$S_{JT} \to -\frac{1}{8\pi G_N} \frac{\phi_r}{\epsilon} \int_0^\beta \frac{\mathrm{d}u}{\epsilon} k,$$
 (3)

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| ○○○○●○                     |                               | 00000000            | O          |
| Schwarzian action          |                               |                     |            |

The action reduces to the boundary term:

$$S_{JT} \to -\frac{1}{8\pi G_N} \frac{\phi_r}{\epsilon} \int_0^\beta \frac{\mathrm{d}u}{\epsilon} k,$$
 (3)

with the extrinsic curvature in the limit  $\epsilon \to 0$  (or  $l = \frac{\beta}{\epsilon} \to \infty$ )

$$k = \frac{t'(t'^2 + x'^2 + xx'') - xx't''}{(t'^2 + x'^2)^{\frac{3}{2}}} = 1 + \epsilon^2 \mathsf{Sch}[t, u], \tag{4}$$

and 
$$\operatorname{Sch}[t, u] = \frac{t'''}{t'} - \frac{3t''^2}{2t'^2}$$
 has a  $\operatorname{PSL}(2, \mathbb{R})$  symmetry:  
 $t(u) \to \tilde{t}(u) = \frac{at(u)+b}{ct(u)+d}$  with  $ad - bc = 1$ .

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| ○○○○●○                     |                               | 00000000            | O          |
| Schwarzian action          |                               |                     |            |

The action reduces to the boundary term:

$$S_{JT} \to -\frac{1}{8\pi G_N} \frac{\phi_r}{\epsilon} \int_0^\beta \frac{\mathrm{d}u}{\epsilon} k,$$
 (3)

with the extrinsic curvature in the limit  $\epsilon \to 0$  (or  $l = \frac{\beta}{\epsilon} \to \infty$ )

$$k = \frac{t'(t'^2 + x'^2 + xx'') - xx't''}{(t'^2 + x'^2)^{\frac{3}{2}}} = 1 + \epsilon^2 \mathsf{Sch}[t, u], \tag{4}$$

and 
$$\operatorname{Sch}[t, u] = \frac{t'''}{t'} - \frac{3t''^2}{2t'^2}$$
 has a  $\operatorname{PSL}(2, \mathbb{R})$  symmetry:  
 $t(u) \to \tilde{t}(u) = \frac{at(u)+b}{ct(u)+d}$  with  $ad - bc = 1$ .

Metric  $g_{\mu\nu} \rightarrow$  reparametrization t(u).

# Is the reparametrization a good characterisation of the metric at finite cutoff ?

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\mathsf{Diff}(S_1)+\\\mathsf{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\Big(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\Big). \tag{5}$$

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\text{Diff}(S_1)+\\ \text{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\left(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\right) = \frac{C}{\beta^{\frac{3}{2}}} e^{\frac{\pi}{\beta}}.$$
 (5)

The integration is exact<sup>2</sup>:

<sup>&</sup>lt;sup>2</sup>Douglas Stanford and Edward Witten. "Fermionic Localization of the Schwarzian Theory". In: *JHEP* 10 (2017). arXiv: 1703.04612 [hep-th].

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\text{Diff}(S_1)+\\ \text{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\left(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\right) = \frac{C}{\beta^{\frac{3}{2}}} e^{\frac{\pi}{\beta}}.$$
 (5)

The integration is exact<sup>2</sup>:

 Diff(S<sub>1</sub>)<sub>+</sub> PSL(2,ℝ) is a coadjoint orbit of Virasoro group.
 → symplectic manifold by Kirillov-Kostant-Souriau construction.

<sup>&</sup>lt;sup>2</sup>Stanford and Witten, "Fermionic Localization of the Schwarzian Theory".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\text{Diff}(S_1)+\\ \text{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\left(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\right) = \frac{C}{\beta^{\frac{3}{2}}} e^{\frac{\pi}{\beta}}.$$
 (5)

The integration is exact<sup>2</sup>:

- Diff(S<sub>1</sub>)<sub>+</sub> PSL(2,ℝ) is a coadjoint orbit of Virasoro group.
   → symplectic manifold by Kirillov-Kostant-Souriau construction.
- $\mathcal{D}g$  is the Liouville measure given by the sympletic form.

<sup>&</sup>lt;sup>2</sup>Stanford and Witten, "Fermionic Localization of the Schwarzian Theory".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\text{Diff}(S_1)+\\ \text{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\left(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\right) = \frac{C}{\beta^{\frac{3}{2}}} e^{\frac{\pi}{\beta}}.$$
 (5)

The integration is exact<sup>2</sup>:

- Diff(S<sub>1</sub>)<sub>+</sub> PSL(2,ℝ) is a coadjoint orbit of Virasoro group.
   → symplectic manifold by Kirillov-Kostant-Souriau construction.
- $\mathcal{D}g$  is the Liouville measure given by the sympletic form.
- Schwarzian is the Hamlitonian U(1) generator on the orbit.

<sup>&</sup>lt;sup>2</sup>Stanford and Witten, "Fermionic Localization of the Schwarzian Theory".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 00000                      | 00000000                      | 0000000             |            |
| Localization               |                               |                     |            |

$$Z = \int_{\substack{\mathsf{Diff}(S_1)_+\\\mathsf{PSL}(2,\mathbb{R})}} \mathcal{D}g \exp\left(\frac{\phi_r}{8\pi G_N} \int_0^\beta \mathrm{d}u \operatorname{Sch}[\tan\frac{g}{2}, u]\right) = \frac{C}{\beta^{\frac{3}{2}}} e^{\frac{\pi}{\beta}}.$$
 (5)

The integration is exact<sup>2</sup>:

- $\frac{\text{Diff}(S_1)_+}{\text{PSL}(2,\mathbb{R})}$  is a coadjoint orbit of Virasoro group.
  - $\rightarrow$  symplectic manifold by Kirillov-Kostant-Souriau construction.
- $\mathcal{D}g$  is the Liouville measure given by the sympletic form.
- Schwarzian is the Hamlitonian U(1) generator on the orbit.
- Duistermaat-Heckman: "stationary phase approximation" is exact.

Other approach without DH : Goldstone vs gauge theory<sup>3</sup>.

<sup>2</sup>Stanford and Witten, "Fermionic Localization of the Schwarzian Theory". <sup>3</sup>Dionysios Anninos, Diego M. Hofman, and Stathis Vitouladitis. "One-dimensional Quantum Gravity and the Schwarzian theory". In: *JHEP* 03 (2022). arXiv: 2112.03793 [hep-th].

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 0000000                       | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

• Why immersions?

• What is the boundary of an immersed disk?

### 3 JT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Why immersions?            |                               |                                 |                 |

Disk metric in conformal gauge (more details later)

$$\mathrm{d}s^{2} = \frac{4|F'(z)|^{2}}{(1-|F(z)|^{2})^{2}}|\mathrm{d}z|^{2}, \tag{6}$$

with  $F : \mathcal{D} \to H^2$  holomorphic function. Well defined metric for  $F'(z) \neq 0$  for all  $z \in \mathcal{D}$ .

Which F are allowed?

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Why immersions?            |                               |                                 |                 |

Disk metric in conformal gauge (more details later)

$$\mathrm{d}s^{2} = \frac{4|F'(z)|^{2}}{(1-|F(z)|^{2})^{2}}|\mathrm{d}z|^{2}, \tag{6}$$

with  $F : \mathcal{D} \to H^2$  holomorphic function. Well defined metric for  $F'(z) \neq 0$  for all  $z \in \mathcal{D}$ .

Which F are allowed? Embedding : globally injective  $\implies F'(z) \neq 0$ .

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Why immersions?            |                               |                                 |                 |

Disk metric in conformal gauge (more details later)

$$\mathrm{d}s^{2} = \frac{4|F'(z)|^{2}}{(1-|F(z)|^{2})^{2}}|\mathrm{d}z|^{2}, \tag{6}$$

with  $F : \mathcal{D} \to H^2$  holomorphic function. Well defined metric for  $F'(z) \neq 0$  for all  $z \in \mathcal{D}$ .

Which F are allowed? Embedding : globally injective  $\implies F'(z) \neq 0$ . Immersion : locally injective  $\iff F'(z) \neq 0$ .

 $\mathsf{Metric} \leftrightarrow \mathsf{Immersion} \ \mathsf{F}$ 

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 0000000                       | 0000000             |            |
| Boundary curves            |                               |                     |            |



(a) Reparametrization embedding.

Figure: Different types of metrics obtained from deformed disks.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 0000000                       | 0000000             |            |
| Boundary curves            |                               |                     |            |



- (a) Reparametrization embedding.
- (b) General embedding, self-avoiding loop<sup>4</sup>

Figure: Different types of metrics obtained from deformed disks.

General embedding:  $g(u) \notin \text{Diff}(S^1)_+$  boundary curve has turning points. In Poincaré disk coordinates:  $g(u) \rightarrow \Phi(u)$  angle.

<sup>&</sup>lt;sup>4</sup>Douglas Stanford and Zhenbin Yang. "Finite-cutoff JT gravity and self-avoiding loops". In: (Apr. 2020). arXiv: 2004.08005 [hep-th].

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 0000000                       | 0000000             |            |
| Boundary curves            |                               |                     |            |



(a) Reparametrization (b) General embedding, (c) Immersion with self-avoiding loop<sup>4</sup> self-overlap.

Figure: Different types of metrics obtained from deformed disks.

At finite cut-off, can we describe the metrics/immersions by their boundary curve?

 $\rightarrow$  What is the boundary of an immersed disk?

<sup>4</sup>Stanford and Yang, "Finite-cutoff JT gravity and self-avoiding loops".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 0000000                       | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

• Why immersions?

• What is the boundary of an immersed disk?

#### 3 JT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| What is the bo             | undary of an immerse          | d disk?             |            |

Boundary curve = self-overlapping curve<sup>5</sup>



Figure: Immersed disk: Deformed without folding or twisting<sup>6</sup>.

 $\rightarrow$  Not all self-intersecting curves bound a disk.

<sup>5</sup>Valentin Poénaru. "Extension des immersions en codimension 1". In: *Séminaire Bourbaki : années 1966/67 1967/68, exposés 313-346.* Séminaire Bourbaki 10. talk:342. Société mathématique de France, 1968.

<sup>6</sup>Jack E. Graver and Gerald T. Cargo. "When Does a Curve Bound a Distorted Disk?" In: *SIAM Journal on Discrete Mathematics* 25.1 (2011). eprint: https://doi.org/10.1137/090767716.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| What is the bo             | undary of an immerse          | d disk?             |            |

Boundary curve = self-overlapping curve<sup>5</sup>



Figure: Immersed disk: Deformed without folding or twisting<sup>6</sup>.  $\rightarrow$  Not all self-intersecting curves bound a disk.

Subtlety: one curve can bound several inequivalent immersed disks.

 $\rightarrow$  Simplest example: Milnor's curve.

<sup>&</sup>lt;sup>5</sup>Poénaru, "Extension des immersions en codimension 1".
<sup>6</sup>Graver and Cargo, "When Does a Curve Bound a Distorted Disk?"

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Milnor's curve             |                               |                     |            |



| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 000000000                     | 0000000             |            |
| Milpor's ourse             |                               |                     |            |





| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             | 0          |
| NATE 7                     |                               |                     |            |

#### Milnor's curve



| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             | 0          |
| NATE 7                     |                               |                     |            |

#### Milnor's curve



| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 000000000                     | 0000000             |            |
| Milnor's curve             |                               |                     |            |



| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Milnor's curve             |                               |                     |            |



| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Milnor's curve             |                               |                     |            |



 $\rightarrow$  Two inequivalent immersed disks.

| 1 boundary curve ↔ 1 immersed disk | Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>O |
|------------------------------------|----------------------------|-------------------------------|---------------------------------|-----------------|
|                                    | 1 boundary curve           | ↔ 1 immersed disk             |                                 |                 |

Algorithms to count how many disks are bounded by the same self-overlapping  $curve^{7,8}$ .

 $\rightarrow$  disks/metrics are not well characterised by boundary curves. Then what characterises metrics?

<sup>&</sup>lt;sup>7</sup>Peter W. Shor and Christopher J. Van Wyk. "Detecting and decomposing self-overlapping curves". In: *Computational Geometry* 2.1 (1992).

<sup>&</sup>lt;sup>8</sup>Uddipan Mukherjee. "Self-overlapping curves: Analysis and applications". In: *Comput. Aided Des.* 46 (2014).

| 1 boundary curve ↔ 1 immersed disk | Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion<br>O |
|------------------------------------|----------------------------|-------------------------------|---------------------|-----------------|
|                                    | 1 boundary curve           | ↔ 1 immersed disk             |                     |                 |

Algorithms to count how many disks are bounded by the same self-overlapping  $curve^{7,8}$ .

 $\rightarrow$  disks/metrics are not well characterised by boundary curves.

#### Then what characterises metrics?

Curves studied in the JT literature are the reparametrization ansatz, closed Brownian paths<sup>9,10</sup> or self-avoiding loops<sup>11</sup>, but not self-overlapping curves. **Can we generate them?** 

<sup>7</sup>Shor and Van Wyk, "Detecting and decomposing self-overlapping curves". <sup>8</sup>Mukherjee, "Self-overlapping curves: Analysis and applications".

<sup>9</sup>Alexei Kitaev and S. Josephine Suh. "Statistical mechanics of a two-dimensional black hole". In: *JHEP* 05 (2019). arXiv: 1808.07032 [hep-th].

<sup>10</sup>Zhenbin Yang. "The Quantum Gravity Dynamics of Near Extremal Black Holes". In: JHEP 05 (2019). arXiv: 1809.08647 [hep-th].

<sup>11</sup>Stanford and Yang, "Finite-cutoff JT gravity and self-avoiding loops".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Discrete self-ov           | erlapping curves 1            |                     |            |



(a) 10 hexagons, perimeter 38.



(b) 100 hexagons, perimeter 272.

| Short review of JI gravity From embeddings to in<br>0000000 0000000 | 0000000 | Conclusion |
|---------------------------------------------------------------------|---------|------------|
| Discrete self-overlapping curve                                     | es 2    |            |



Figure: 3000 hexagons, perimeter 7472.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

### IT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### Conclusion

| Short review of JT gravity | From embeddings to immersions     | J⊤ at finite cutoff<br>0€000000 | Conclusion |
|----------------------------|-----------------------------------|---------------------------------|------------|
| Conformal gauge a          | and Liouville field <sup>12</sup> |                                 |            |
|                            |                                   |                                 |            |

Conformal gauge:  $ds^2 = e^{2\sigma} |dz|^2$ .

Constraint of constant curvature: R = -2.  $\rightarrow$  Liouville field solution of  $\Delta \sigma = -2e^{2\sigma}$ .

<sup>&</sup>lt;sup>12</sup>Daniela Kraus and Oliver Roth. *Conformal Metrics.* 2008. arXiv: 0805.2235 [math.CV].

| Short review of JT gravity | From embeddings to immersions    | JT at finite cutoff<br>0●000000 | Conclusion |
|----------------------------|----------------------------------|---------------------------------|------------|
| Conformal gauge a          | nd Liouville field <sup>12</sup> |                                 |            |

Conformal gauge:  $ds^2 = e^{2\sigma} |dz|^2$ .

Constraint of constant curvature: R = -2.  $\rightarrow$  Liouville field solution of  $\Delta \sigma = -2e^{2\sigma}$ .

**Theorem 1:** Let  $\sigma_b: S^1 \to R$  be a continuous function defined on the boundary of the disk. Then there exists a unique solution  $\sigma$  of the Liouville equation such that  $\sigma = \sigma_b$  on the boundary.

<sup>&</sup>lt;sup>12</sup>Kraus and Roth, Conformal Metrics.

| 0000000 00000000 0000000                          | 0000000 |  |
|---------------------------------------------------|---------|--|
| Conformal gauge and Liouville field <sup>12</sup> |         |  |

Conformal gauge:  $ds^2 = e^{2\sigma} |dz|^2$ .

Constraint of constant curvature: R = -2.  $\rightarrow$  Liouville field solution of  $\Delta \sigma = -2e^{2\sigma}$ .

**Theorem 1:** Let  $\sigma_b: S^1 \to R$  be a continuous function defined on the boundary of the disk. Then there exists a unique solution  $\sigma$  of the Liouville equation such that  $\sigma = \sigma_b$  on the boundary.

**Theorem 2:** The most general solution to the Liouville equation is of the form  $e^{\sigma} = \frac{2|F'(z)|}{1-|F(z)|^2}$ , where  $F : \mathcal{D}^0 \to \mathcal{D}^0$  is a locally univalent holomorphic function (unique up to  $PSL(2, \mathbb{R})$  disk automorphisms).

Then Liouville field at the boundary characterises the metric!

<sup>&</sup>lt;sup>12</sup>Kraus and Roth, Conformal Metrics.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

#### IT at finite cutoff

Conformal gauge

#### The action

The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| The estion.                | companying bound the          | Schurgerian limit   |            |

#### The action: $\epsilon$ -expansion beyond the Schwarzian limit

We can parameterise the boundary Liouville field as a diffeomorphism of the circle:

$$e^{\sigma_b} = \frac{2|F'|}{1 - |F|^2} = \frac{\beta}{2\pi\epsilon} \frac{1}{f'},$$
(7)

with  $f \in \text{Diff}(S^1)_+$ , F(0) = 0 and F'(0) > 0 which fixes F uniquely.

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             | 0          |
| The estimation             | courses housed the            | Schurgerige limit   |            |

#### The action: $\epsilon$ -expansion beyond the Schwarzian limit

We can parameterise the boundary Liouville field as a diffeomorphism of the circle:

$$e^{\sigma_b} = \frac{2|F'|}{1-|F|^2} = \frac{\beta}{2\pi\epsilon} \frac{1}{f'},$$
 (7)

with  $f \in \text{Diff}(S^1)_+$ , F(0) = 0 and F'(0) > 0 which fixes F uniquely.

In the Schwarzian limit  $\epsilon \to 0$ , writing an  $\epsilon$ -expansion for F, we obtain the "reparametrization ansatz" g in terms on the diffeomorphism f

$$g = f + \sum_{n>0} \left(\frac{2\pi\epsilon}{\beta}\right)^n f_n.$$
 (8)

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| The estion.                | courses housed th             | · Cohurrian limit   |            |

#### The action: $\epsilon$ -expansion beyond the Schwarzian limit

We can parameterise the boundary Liouville field as a diffeomorphism of the circle:

$$e^{\sigma_b} = \frac{2|F'|}{1 - |F|^2} = \frac{\beta}{2\pi\epsilon} \frac{1}{f'},$$
(7)

with  $f \in \text{Diff}(S^1)_+$ , F(0) = 0 and F'(0) > 0 which fixes F uniquely.

In the Schwarzian limit  $\epsilon \to 0$ , writing an  $\epsilon$ -expansion for F, we obtain the "reparametrization ansatz" g in terms on the diffeomorphism f

$$g = f + \sum_{n>0} \left(\frac{2\pi\epsilon}{\beta}\right)^n f_n.$$
 (8)

We then compute the  $\epsilon$ -expansion of the extrinsic curvature to get

$$k = 1 + \left(\frac{2\pi\epsilon}{\beta}\right)^2 \operatorname{Sch}[\tan\frac{f}{2}] + \sum_{n\geq 3} \left(\frac{2\pi\epsilon}{\beta}\right)^n k_n.$$
(9)

| Short review of JT gravity | From embeddings to immersions | J⊤ at finite cutoff<br>00000000 | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Reparametrization          | ansatz in light-cone of       | coordinates                     |                 |

Introducing the coordinates z = -ix + t,  $\bar{z} = ix + t$ , the extrinsic curvature writes<sup>13</sup>

$$k = \frac{2z'^2 \bar{z}' + (\bar{z} - z)\bar{z}'z'' + z'(2\bar{z}'^2 + (z - \bar{z})\bar{z}'')}{4(z'\bar{z}')^{\frac{3}{2}}},$$

$$= 1 + \left(\frac{2\pi\epsilon}{\beta}\right)^2 \operatorname{Sch}[z, u] - i\left(\frac{2\pi\epsilon}{\beta}\right)^3 \partial_u \operatorname{Sch}[z, u] + \left(\frac{2\pi\epsilon}{\beta}\right)^4 \left(-\frac{1}{2}\operatorname{Sch}[z, u]^2 + \partial_u^2 \operatorname{Sch}[z, u]\right) + O(\epsilon^5)$$
(10)

Expressed only in function of the Schwarzian and its derivatives.

 $\rightarrow z(u)$  can be expressed in terms of f.

<sup>&</sup>lt;sup>13</sup>Luca V. Iliesiu et al. "JT gravity at finite cutoff". In: *SciPost Phys.* 9 (2020). arXiv: 2004.07242 [hep-th].

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>○○○○○●○○ | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Extrinsic curvature        | 2                             |                                 |                 |

The first correction  $k_3$ , is manifestly  $PSL(2, \mathbb{R})$  invariant

$$k_{3}[f](\vartheta) = \frac{6}{\pi} \lim_{\delta \to 0} \left( \left( \int_{0}^{\vartheta - \delta} + \int_{\vartheta + \delta}^{2\pi} \right) \mathcal{O}_{2}(\vartheta, \vartheta') - \frac{2}{3\delta^{3}} - \frac{2}{3\delta} \operatorname{Sch}[\operatorname{tan} \frac{f}{2}] \right),$$
(12)

with the bilocal  $\mathsf{PSL}(2,\mathbb{R})$ -invariant operator

$$\mathcal{O}_{k}(\vartheta,\vartheta') = \left(\frac{f'(\vartheta)f'(\vartheta')}{4\sin^{2}(\frac{f(\vartheta)-f(\vartheta')}{2})}\right)^{k}.$$
(13)

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>○○○○○●○○ | Conclusion<br>O |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Extrinsic curvature        | 5                             |                                 |                 |

The first correction  $k_3$ , is manifestly  $PSL(2, \mathbb{R})$  invariant

$$k_{3}[f](\vartheta) = \frac{6}{\pi} \lim_{\delta \to 0} \left( \left( \int_{0}^{\vartheta - \delta} + \int_{\vartheta + \delta}^{2\pi} \right) \mathcal{O}_{2}(\vartheta, \vartheta') - \frac{2}{3\delta^{3}} - \frac{2}{3\delta} \operatorname{Sch}[\operatorname{tan} \frac{f}{2}] \right),$$
(12)

with the bilocal  $PSL(2, \mathbb{R})$ -invariant operator

$$\mathcal{O}_{k}(\vartheta,\vartheta') = \left(\frac{f'(\vartheta)f'(\vartheta')}{4\sin^{2}(\frac{f(\vartheta)-f(\vartheta')}{2})}\right)^{k}.$$
(13)

 $\rightarrow$   $k_4$  is a work in progress.

We get a different  $\epsilon\text{-expansion}$  compared to the expansion obtain from considering only embeddings^{14}.

<sup>&</sup>lt;sup>14</sup>Iliesiu et al., "JT gravity at finite cutoff".

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 00000000            |            |
| Outline                    |                               |                     |            |

#### Short review of JT gravity

- Motivations
- JT gravity in the Schwarzian limit

#### 2 From embeddings to immersions

- Why immersions?
- What is the boundary of an immersed disk?

#### IT at finite cutoff

- Conformal gauge
- The action
- The path integral

#### 4 Conclusion

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff | Conclusion |
|----------------------------|-------------------------------|---------------------|------------|
| 000000                     | 00000000                      | 0000000             |            |
| Closed manifold            |                               |                     |            |

In the spirit of D'Hoker and Phong^{15}, in conformal gauge, the JT path integral for a closed manifold  $^{16}$  reduces to

$$Z_{JT} = \int_{moduli} \mathrm{d}(\mathsf{Weil-Pet.}) \det(P_1^{\dagger}P_1) \int \mathcal{D}\sigma \mathcal{D}\phi \, e^{-26\mathcal{S}_L[\sigma]} e^{\frac{1}{16\pi G_N} \int \mathrm{d}x^2 \phi(R+2)},$$
(14)

with  $S_L[\sigma]$  the Liouville action. The dilaton fixes the Liouville field to be  $\sigma = 0$ .

Work in progress : the case of the disk. The moduli space is trivial. However the Liouville field is not fixed but determined by the boundary Liouville field  $\sigma_b$ .

 $<sup>^{15}</sup>$  Eric D'Hoker and D. H. Phong. "The geometry of string perturbation theory". In: Rev. Mod. Phys. 60 (4 1988).

<sup>&</sup>lt;sup>16</sup>Phil Saad, Stephen H. Shenker, and Douglas Stanford. "JT gravity as a matrix integral". In: (Mar. 2019). arXiv: 1903.11115 [hep-th].

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>• |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Conclusion                 |                               |                                 |                 |

We propose a formulation of JT gravity at finite cutoff and aim to answer the following questions:

- Can we derive the path integral measure?
- Can we formulate perturbation expansion in powers of the cutoff (for the extrinsic curvature and the partition function)?
- Can we study the properties of self-overlapping curves?

| Short review of JT gravity | From embeddings to immersions | JT at finite cutoff<br>00000000 | Conclusion<br>• |
|----------------------------|-------------------------------|---------------------------------|-----------------|
| Conclusion                 |                               |                                 |                 |

We propose a formulation of JT gravity at finite cutoff and aim to answer the following questions:

- Can we derive the path integral measure?
- Can we formulate perturbation expansion in powers of the cutoff (for the extrinsic curvature and the partition function)?
- Can we study the properties of self-overlapping curves?

We are also interested in:

- Gauge theory formulation of JT.
- Flat JT gravity.