Lattice Field Theory on Spin Foams

w.i.p. with Masooma Ali [2205.xxxx]

Sebastian Steinhaus

sebastian.steinhaus@uni-jena.de

Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena

Workshop "Random Geometry in Heidelberg" May 17th 2022

Lattice Field Theory on Spin Foams Sebastian Steinhaus

Gravity and quantum matter?

- Matter indispensable to describe our universe
 - Cosmology, early universe, black holes...
- Quantum matter on dynamical space-time?
 - · Reconcile general relativity with quantum field theory
- Does quantum gravity affect the matter sector?
 - Asymptotic safety: restriction on matter sector from quantum gravity [Dona, Eichhorn, Percacci '14] and quantum gravity influences particle physics [Eichhorn, Held '18]

Incorporating matter is **vital** to approaches of **pure quantum gravity**. **Consistency check**: recover quantum field theory on fixed (background) space-time This talk: **free, massive scalar field** on a simplified spin foam

Spin foam gravity

[Rovelli, Reisenberger, Barrett, Crane, Freidel, Livine, Krasnov, Perez, Speziale, Engle, Pereira, Kaminski...]

- Path integral of geometries
- Regulator: **Discretization** / 2-complex
- Quantum geometric building blocks
 - (Constrained) topological quantum field theory
 - Discrete area spectrum
- Physical content: Transition amplitudes
 - Assign an amplitude $\mathcal{A} \sim e^{i S_{\rm EH}}$ to each geometry
 - Single building block ~ discrete gravity [Conrady, Freidel '08, Barrett, Dowdall, Fairbairn, Gomes, Hellmann '09, Kaminski, Kisielowski, Sahlmann '17, Liu, Han '18, Sinñao, S.St. '21]
 - Quantum amplitudes (not Wick-rotated)

No reference to background geometry Aim to implement **diffeomorphism symmetry**

Spin foam gravity - Basics

- Regulator: (dual) **2-complex** Δ^*
 - Vertices v, edges e, faces f
- Coloured with group theoretic data $\{\rho_f, \iota_e\}$
- Boundary graph \sim 3D geometry
 - Polyhedra \sim intertwiner ι_e
 - Area of face \sim representation ho_f
- · Evolution: bulk geometry
 - · History interpolating between boundaries

Sum over all histories

- Sum over all ι and ρ
- Assign amplitude to each history
- Amplitude functionals: $\mathcal{A}_b : \mathcal{H}_b \to \mathbb{C}$
 - From initial to final state: $\mathcal{H}_i \otimes \mathcal{H}_f^*$: $\langle \psi_f, \psi_i \rangle_{\mathcal{A}}$

Partition function and geometric interpretation

Amplitudes locally assigned to building blocks

Quantum space-time as a superposition of quantum geometric building blocks

Matter in spin foams

- · How to incorporate matter in spin foam quantum gravity?
 - Matter on top of spin foam [Oriti, Pfeiffer '03, Speziale '07, Bianchi, Han, Rovelli, Wieland, Magliaro, Perini '13]
 - Unification scenarios [Crane '00, Smolin '09]
 - Massless scalar field [Lewandowski, Sahlmann '15, Kisielowski, Lewandowski '18]
- · Computational challenges for pure spin foams:
 - Vertex amplitude: numerical algorithm for EPRL/FK model [Dona, Fanizza, Sarno, Speziale '19, Dona, Gozzini, Sarno '20]
 - Sum over configurations: effective spin foam algorithm [Asanta, Dittrich, Haggard PRL '20, Asante, Dittrich, Padua-Argüelles '21]
 - Observables: MCMC on Lefshetz thimbles [Han, Huang, Liu, Qu, Wan '20]

• What is **matter at the Planck scale** and how can we connect to **observable physics**?

First test: Massive scalar field on a restricted 4D spin foam

1 Introduction

- 2 Cuboid spin foams
- 3 Lattice field theory scalar field
- 4 (Numerical) setup and results
- 5 Summary and Outlook

Towards a simplified model [Bahr, S.St. '15]

- Strategy: study a subset of the full spin foam path integral
- Quantum cuboids: 4D Riemannian EPRL model [Engle, Pereira, Rovelli, Livine '08] on hypercubic 2-complex [Lewandowski,

Kaminski, Kisielowski '09']

Restrict shape of intertwiner

• Coherent SU(2)-intertwiner [Livine-Speziale '07]

$$|\iota_{j_1,j_2,j_3}\rangle = \int_{\mathrm{SU}(2)} dg \; g \, \triangleright \, \bigotimes_{i=1}^3 |j_i,e_i\rangle \otimes |j_i,-e_i\rangle$$

- · Peaked on the shape of a cuboid
- e_i normal unit vectors in \mathbb{R}^3 .

Drastic restrictions on spins and intertwiners.

Asymptotic expansion of full amplitude.

Semi-classical spin foam amplitudes [Bahr, S.St. '15]

$$\mathcal{A}_{v} \sim \int_{\mathrm{SU}(2)^{8}} \prod_{a} dg_{a} \, e^{\sum_{ab} 2j_{ab} \ln(\langle -\vec{n}_{ab} | g_{a}^{-1} g_{b} | \vec{n}_{ba} \rangle)}$$

- Face amplitude $\mathcal{A}_f \sim (2j+1)^{2\alpha}$

Vertex amplitude Amplitude

Stationary phase approximation:

$$\hat{\mathcal{A}}_v(j_1, j_2, j_3, j_4, j_5, j_6) \sim j_i^{2\alpha} \left(\frac{1}{\sqrt{D}} + \frac{1}{\sqrt{D^*}}\right)^2$$

• Spins $\{j_i\}_{i=1,2,\dots,6} \rightarrow \text{ edge lengths } \{l_k\}_{k=1,2,3,4}$

Flat space-time: discrete gravity / Regge action vanishes.

Model: superpostion of hypercuboidal, flat lattices.

Cuboids as a test case

• Renormalization group flow by comparing observables on different foams [Bahr, S.St. PRL '16, PRD '17]

 $\langle \mathcal{O} \rangle^{\rm fine}_{\alpha} \approx \langle \mathcal{O} \rangle^{\rm coarse}_{\alpha'}$

Indication for a UV-attractive fixed point and restored diffeomorphism symmetry

- Spectral dimension [S.St., Thürigen '18]
 - Superposition of geometries \rightarrow change of effective dimension measure
- Quantum amplitudes [Allen, Girelli, S.St. '22]
 - · Amplitude non-oscillatory also in quantum regime

1 Introduction

- 2 Cuboid spin foams
- 3 Lattice field theory scalar field
- 4 (Numerical) setup and results
- 5 Summary and Outlook

Interlude: scalar field on a regular lattice

• **Continuum** free scalar field with mass M_0 :

$$Z = \int \mathcal{D}\phi \, e^{-\int d^4 x \, \mathcal{L}(\phi, \partial_\mu \phi)}, \quad \mathcal{L}(\phi, \partial_\mu \phi) = \frac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) + \frac{M_0^2}{2} \phi^2$$

Discretisation: lattice constant a

a

 ϕ_i

$$Z = \int \prod_{i} d\phi_{i} e^{-\frac{1}{2}\phi_{i}K_{ij}\phi_{j}}, \quad K_{ij} = -a^{2} \sum_{\mu} (\delta_{i+e_{\mu},j} + \delta_{i-e_{\mu},j} - 2\delta_{ij}) + a^{4}M_{0}^{2}\delta_{ij}$$

- Theory depends on **relation** of M_0 and a
 - Lattice mass $M(a) = aM_0$
- Correlations: $\langle \phi_i \phi_j \rangle = K_{ij}^{-1} \sim \exp\{-d_{ij}M_0\}$

Straightforward continuum limit for $a \to 0$. Correlation length (in units of *a*) diverges for $M(a) \to 0$.

 ϕ_i

Discrete exterior calculus

- · Generalize lattice field theory to irregular lattice
- Discrete exterior calculus [Desbrun, Hirani, Leok, Marsden '05, Arnold, Falk, Winther '09, McDonal, Miller '10, Sorkin '75, Calcagni, Oriti, Thürigen '12]
 - Project p-forms onto p-dim objects $|\sigma_p\rangle$
 - ϕp -form smeared on p-surface $S = \sum_i |\sigma_p^i\rangle$:

$$\phi(\mathcal{S}) = \langle \phi | \mathcal{S} \rangle = \sum_{i} \langle \phi | \sigma_{p}^{i} \rangle = \sum_{i} V_{\sigma_{p}^{i}} \phi_{\sigma_{p}^{i}} = \sum_{i} \int_{\sigma_{p}^{i}} \phi = \int_{\mathcal{S}} \phi$$

- Dual (d-p)-cells defined on **dual complex** $\langle \star \sigma_p |$.
 - $\langle \star \sigma_p | \sigma_{p'} \rangle = \delta_{p,p'}$ and $\sum_{\sigma} |\sigma\rangle \langle \star \sigma | = \text{id.}$
- · Discrete exterior derivative:

$$d\phi(\sigma_{p+1}) = \int_{\sigma_{p+1}} d\phi = \int_{\partial \sigma_{p+1}} \phi = \phi(\partial \sigma_{p+1}) = \sum_{\sigma_p \subset \sigma_{p+1}} \mathrm{sgn}(\sigma_p, \sigma_{p+1}) \phi(\sigma_p)$$

Derive scalar field action for general lattices.

Lattice Field Theory on Spin Foams Sebastian Steinhaus

Scalar field on an irregular lattice • Scalar field action in terms of forms:

$$S = \frac{1}{2} \int d\phi \wedge *d\phi + \frac{M_0^2}{2} \int \phi \wedge *\phi \ \rightarrow \ S = \frac{1}{2} \sum_{\sigma_1} \langle d\phi | d\phi \rangle + \frac{M_0^2}{2} \sum_{\sigma_0} \langle \phi | \phi \rangle \ .$$

• $\langle d\phi | d\phi \rangle = \langle \star d \star d\phi | \phi \rangle$ (periodic boundary conditions)

Scalar field action: $S = \frac{1}{2}\phi(\sigma_0^i) K_{ij} \phi(\sigma_0^j)$ [Hamber, Williams '93]:

$$K_{ij} = \begin{cases} \sum_{\sigma_1 \supset \sigma_0^i} \frac{V_{\star\sigma_1}}{V_{\sigma_1}} + M_0^2 V_{\star\sigma_0} & i = j \\ -\sum_{\sigma_1 \supset \sigma_0^i} \frac{V_{\star\sigma_1}}{V_{\sigma_1}} & i \neq j \end{cases}$$

- $V_{\star\sigma_0}$: 4-volume dual to vertex σ_0
- $V_{\star\sigma_1}$: 3-volume dual to edge σ_1 .
- V_{σ_1} : length of edge σ_1 .

Scalar field coupled to cuboid spin foams

- Ansatz for coupling scalar field and spin foams
 - Define scalar LTF for each spin foam state
 - · Spin foam amplitude unchanged
 - Summing over spin foam states \rightarrow superposition of scalar LTFs
- Partition function then reads:

$$Z = \int \prod_{\sigma_1} dl_{\sigma_1} \prod_{\sigma_0} d\phi(\sigma_0) \prod_{\sigma_4} \hat{\mathcal{A}}_{\sigma_4}(\alpha, \{l_{\sigma_1}\}) \exp\left(-\frac{1}{2}\phi(\sigma_0^i) K_{ij}(\{l_{\sigma_1}\}, M_0) \phi(\sigma_0^j)\right)$$

- "Minimal" coupling
 - · Assumption scalar field diagonalized by spin foam states

1 Introduction

- 2 Cuboid spin foams
- 3 Lattice field theory scalar field
- 4 (Numerical) setup and results
- 5 Summary and Outlook

What can we learn from this model?

- How to numerically explore the dynamics?
 - Markov Chain Monte Carlo for lengths and fields
 - Spin foam amplitudes non-oscillatory
- What can we measure?
 - Geometric observables: $\langle V
 angle$ or $\langle l
 angle$
 - Matter observables: $\langle \phi_i \phi_j \rangle$
- Physical meaning of "observables"?
 - Correlations between ϕ at vertex i and j?
 - Not meaningful: labels i, $j \sim \text{coordinates}$
- Diffeomorphism invariance?
 - · Lattice dependence! Can we define a continuum / refinement limit?

Conceptual question: What are good observables in quantum gravity? **Emergent / effective** behavior of the coupled system?

Analytical study: regular lattices

- Restrict edge lengths to regular lattice
- · Integrate out scalar fields: probability distribution for lengths

$$\frac{1}{Z} \frac{l^{N^4(24\alpha - 14)}}{\sqrt{l^{2N^4} \left(\sum_{i=1}^{N^4} a_i l^{2i} M^{2i}\right)}}$$

- Three regimes, depending on α :
 - * $\alpha < 0.625$: smallest lengths dominate
 - * $\alpha > 0.666$: largest lengths dominate
 - * $0.625 < \alpha < 0.666$: peak at finite lengths
- Plots for $M_0 = 10$, various α , lattice size 3

Peak position and width depends on mass M_0 and α .

Numerical setup

- + $N \times N \times N \times N$ lattice with periodic boundary conditions
- · Monte Carlo: importance sampling for probability distribution

$$\frac{1}{Z} \prod_{\sigma_4} \hat{\mathcal{A}}_{\sigma_4}(\alpha, \{l_{\sigma_1}\}) \, \exp\left(-\frac{1}{2}\phi(\sigma_0^i) \, K_{ij}(\{l_{\sigma_1}\}, M_0) \, \phi(\sigma_0^j)\right)$$

Metropolis algorithm

- Randomly choose to sample four lengths or one scalar field
- · Lengths: pick one lengths per dimension and rescale them individually

Simulation parameters:

- Two parameters: α and M_0
- · Upper and lower cut-off on edge lengths
- Sample size: 5000 (lattice size 3,4) and 2000 (lattice size 5)

System difficult to sample: long auto-correlation time.

Geometric observables

- Total 4-volume $\langle V
angle$ and (normalized) variance $\sqrt{}$

Recognize three distinct regimes

- "Plateau": Finite volume for intermediate α
- Small / large α : cut-off dependent
- Normalized variance has two peaks
 - Localized at end of plateau
 - Peaks do not appear to grow with lattice size
- Scalar field mass has strong effect on total volume
- · Lattice size small impact
 - · Different volume, slightly shifted plateau.

What does a typical lattice look like?

Lengths histograms • Histogram for all lengths combined:

Distribution relatively sharply peaked; regular lattice on average Mass linearly influences the average lengths.

Lattice Field Theory on Spin Foams Sebastian Steinhaus Workshop "Random Geometry in Heidelberg" , May 17th 2022 21/25

Correlations and correlation lengths

- We measure: correlations $\phi_i \phi_j$ and distance d_{ij}
 - Plot correlation over distance (forget labels)
 - Path distance d_{ij}
- Correlations + distance diffeo-invariant
- We can only measure at probable distances
 - · Algorithm does not allow us to set distance manually.
- Mass influences mostly spin foam
 - * $M \rightarrow 10 M \text{:}\ l \rightarrow l/10$
 - Correlations hardly change
- Lattice appears highly regular!

What is the correlation length $\frac{1}{M_{\text{eff}}}$?

Effective mass

- Good agreement of M_0 and $M_{\rm eff}$ in plateau region
 - $M_{\rm eff}$ decreases as α increases

Probably no physical effect

- Large α implies large edge lengths
- Fields are hard to sample then, probably overestimate correlations
- Scalar field apparently **not sensitive** to spin foam fluctuations.
 - · Note: correlation length is non-local, coarse observable.

Effectively scalar field theory on a regular lattice. Lattice spacing dynamical, function of M_0 and α .

Summary

- Massive scalar field coupled to a superposition of hypercuboid lattices
- 4D cuboid spin foam model
 - · Superposition of flat irregular lattices
 - · Not realistic, but remnant of diffeomorphism symmetry
- Matter action derived via discrete exterior calculus
 - Applicable to more general lattices than hypercuboids
 - Not unique, depend on choice of dual lattice
- Results: on average regular lattice + scalar field
 - · Lattice spacing depends strongly on mass
 - · Correlation lengths: measure correlations and distance in spin foams
 - · Effectively recover scalar field theory on a regular lattice

Tentative evidence that we might recover QFT on fixed space-time from spin foams.

Outlook

Many assumptions / simplifications

- More general than cuboids: effective spin foams on triangulation [Asante, Dittrich, Haggard '20]
- Matter: Yang-Mills, interacting scalar field theory

Conceptual questions:

- How to measure correlations for arbitrary distance? [Ambjorn, Goerlich, Jurkiewicz, Loll '12]
- · Lorentzian: mismatch between Wick-rotated matter action and spin foam.
- · Which numerical tools to use beyond Monte Carlo?
- · Role of gravitational constant / length scales?
- Renormalization / coarse graining of matter-spin foam system
 - Ambiguities, phase diagram, fixed points, continuum limit... [S.St. 15]
 - Restoration of diffeomorphism symmetry?
- · Restrictions on matter sector from spin foams?

Thank you for your attention!

