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I. Starting point: analytic renormalisation
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Speer’s analytic renormalisation [JMP 1967] revisited

Eugene Speer considers Feynman amplitudes given by the coefficients of the
perturbation-series expansion of the S matrix in a Lagrangian field theory (with
non zero mass).

Excerpt of Speer’s article
In this paper we apply a method of defining divergent quantities which was originated by Riesz and has been used in various contexts by

many authors. [....] We find it necessary to consider functions of several complex variables z1 , · · · , zk , one associated with each line of

the Feynman graph. The main difficulty is the extension of the above [Riesz’s] treatment of poles to the more complicated singularities

which occur in several complex variables...

Speer shows [Theorem 1] that the divergent expressions lie in the filtered algebra
MFeyn(C∞) := ∪∞k=1M

Feyn(Ck ) consisting of Feynman functions

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

Li =
∑
j∈Ji

zj , Ji ⊂ {1, · · · , k }, h holom. at zero

Question: How to evaluate them consistently at the poles z1 = · · · = zk = 0 and
what freedom of choice do we have in the choice of evaluator?
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Brain teaser: an example

How can we evaluate f(z1, z2) := z1−z2
z1+z2

at z1 = z2 = 0?

Minimal subtraction scheme (in one variable)

f(z) :=
N∑

k=−K

aj z j + o(zN)  π+(f) :=
N∑

k=0

aj z j + o(zN)

= f(z) −
−1∑

k=−K

aj z j  ev reg
z=0(f) := evz=0 ◦ π+(f) = a0.

Iterated minimal subtraction schemes
reg

evz2=0 ◦
reg

evz1=0 (f(z1, z2)) = −1;
reg

evz1=0 ◦
reg

evz2=0 (f(z1, z2)) = 1;
1
2

[
reg

evz1=0 ◦
reg

evz2=0 +
reg

evz2=0 ◦
reg

evz1=0

]
(f(z1, z2)) = 0.
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Speer’s generalised evaluators

Iterated minimal substraction scheme

Eiter
k :=

1
k !

∑
σ∈Σk

[
evzσ(1)=0

reg ◦
reg

evzσ(2)=0 · · · ◦
reg

evzσ(k)=0

]
, k ∈ N,

define a family of linear forms Ek :MFeyn(Ck )→ C, compatible with the
filtration, which fulfill the following conditions

1 (extend ev0) E is the ordinary evaluation ev0 at zero on holom. germs;
2 (partial multiplicativity) E(f1 · f2) = E(f1) · E(f2) if f1 and f2 depend on

different sets (later called independent) of variables zi;
3 E is invariant under permutations of the variables Ek ◦ σ

∗ = Ek for any
σ ∈ Σk , with σ∗f(z1, · · · , zk ) := f(zσ(1), · · · , zσ(k));

4 (continuity) If fn(~zk ) · Ls1
1 · · · L

sm
m

uniformly
−→
n→∞

g(~zk ) as holomorphic germs, then

Ek (fn) −→
n→∞

Ek ( lim
n→∞

fn).
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An alternative coordinate free approach

Speer’s iterated minimal substraction scheme is coordinate dependent

Example
a) For f(u, v) = u

v , g(u, v) =
(

u
v

)2
, we have Eiter

2 (f) = Eiter
2 (g) = 0;

b) a change of variable u = z1 − z2 , v = z1 + z2 in f and g gives f̃(z1 , z2) =
z1−z2
z1+z2

, g̃(z1 , z2) =
(

z1−z2
z1+z2

)2
and we have

Eiter
2 (̃f) = 0 whereas Eiter

2 (g̃) = 1.

Instead, we

build a coordinate free multivariable minimal subtraction scheme governed
by an inner product Q ;

define a class of ”generalised evaluators” called locality evaluators which
contains multivariable minimal subtraction schemes;

show that (on certain algebras of meromorphic germs) modulo the action of
a Galois group, all locality evaluators are multivariable minimal subtraction
schemes.
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II. Framework and protagonists
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The abstract setup

A M• M+ C
φ π+ ev0

E

Meas := E ◦ φ

The protagonists
(A,∨) is an algebra consisting of Feynman graphs, rooted trees or
cones equipped with a concatenation ∨;

(M•, ·) is an algebra of meromorphic germs at zero with pointwise
product;

φ : (A,∨) −→ (M•, ·) is a morphism given by Feynman integrals,
branched zeta functions or conical zeta functions.
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Our main protagonists: Meromorphic germs
The target algebra (M•, ·) is an algebra of meromorphic germs at zero in several
variables with linear poles:

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

, Li : Ck → C, linear, h holom. at zero .

Prescribed pole structure

Feynman amplitudes [Speer JMP 1967]:

Li(~z) =
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`∈Ji
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Chen integrals / Multizeta functions [CGPZ JMP 2020]:
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amplitudes have poles of a nested form Ji ⊂ Ji+1:

Speer fractions: zs1
I1

(zI1 + zI2 )s2 · · · (zI1 + · · ·+ zIk )sk . Ij ⊂ {1, · · · , k }, (1)

(generalises Chen fractions z
s1
i1

(zi1 + zi2 )s2 · · · (zi1 + · · ·+ zik )sk . ij ∈ {1, · · · , k }

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 9 / 1



Our main protagonists: Meromorphic germs
The target algebra (M•, ·) is an algebra of meromorphic germs at zero in several
variables with linear poles:

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

, Li : Ck → C, linear, h holom. at zero .

Prescribed pole structure

Feynman amplitudes [Speer JMP 1967]:

Li(~z) =
∑
`∈Ji

z` with Ji ⊂ {1, · · · , k } MFeyn;

Chen integrals / Multizeta functions [CGPZ JMP 2020]:

Li(~z) =
∑
`∈Ji

z` with Ji = {1, · · · , i} MChen;

Laplace transforms on polyhedral cones [GPZ DJM 2017]:
Li(~z) =

∑Li
`=1 a` z`  M.

For I ⊂ [[1, n]] we set zI :=
∑

i∈I zi . Speer actually shows that Feynman
amplitudes have poles of a nested form Ji ⊂ Ji+1:

Speer fractions: zs1
I1

(zI1 + zI2 )s2 · · · (zI1 + · · ·+ zIk )sk . Ij ⊂ {1, · · · , k }, (1)

(generalises Chen fractions z
s1
i1

(zi1 + zi2 )s2 · · · (zi1 + · · ·+ zik )sk . ij ∈ {1, · · · , k }

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 9 / 1



Our main protagonists: Meromorphic germs
The target algebra (M•, ·) is an algebra of meromorphic germs at zero in several
variables with linear poles:

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

, Li : Ck → C, linear, h holom. at zero .

Prescribed pole structure

Feynman amplitudes [Speer JMP 1967]:

Li(~z) =
∑
`∈Ji

z` with Ji ⊂ {1, · · · , k } MFeyn;

Chen integrals / Multizeta functions [CGPZ JMP 2020]:

Li(~z) =
∑
`∈Ji

z` with Ji = {1, · · · , i} MChen;

Laplace transforms on polyhedral cones [GPZ DJM 2017]:
Li(~z) =

∑Li
`=1 a` z`  M.

For I ⊂ [[1, n]] we set zI :=
∑

i∈I zi . Speer actually shows that Feynman
amplitudes have poles of a nested form Ji ⊂ Ji+1:

Speer fractions: zs1
I1

(zI1 + zI2 )s2 · · · (zI1 + · · ·+ zIk )sk . Ij ⊂ {1, · · · , k }, (1)

(generalises Chen fractions z
s1
i1

(zi1 + zi2 )s2 · · · (zi1 + · · ·+ zik )sk . ij ∈ {1, · · · , k }

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 9 / 1



Our main protagonists: Meromorphic germs
The target algebra (M•, ·) is an algebra of meromorphic germs at zero in several
variables with linear poles:

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

, Li : Ck → C, linear, h holom. at zero .

Prescribed pole structure

Feynman amplitudes [Speer JMP 1967]:

Li(~z) =
∑
`∈Ji

z` with Ji ⊂ {1, · · · , k } MFeyn;

Chen integrals / Multizeta functions [CGPZ JMP 2020]:

Li(~z) =
∑
`∈Ji

z` with Ji = {1, · · · , i} MChen;

Laplace transforms on polyhedral cones [GPZ DJM 2017]:
Li(~z) =

∑Li
`=1 a` z`  M.

For I ⊂ [[1, n]] we set zI :=
∑

i∈I zi . Speer actually shows that Feynman
amplitudes have poles of a nested form Ji ⊂ Ji+1:

Speer fractions: zs1
I1

(zI1 + zI2 )s2 · · · (zI1 + · · ·+ zIk )sk . Ij ⊂ {1, · · · , k }, (1)

(generalises Chen fractions z
s1
i1

(zi1 + zi2 )s2 · · · (zi1 + · · ·+ zik )sk . ij ∈ {1, · · · , k }

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 9 / 1



Our main protagonists: Meromorphic germs
The target algebra (M•, ·) is an algebra of meromorphic germs at zero in several
variables with linear poles:

f : Ck → C, f =
h(z1, · · · , zk )

Ls1
1 · · · L

sm
m

, Li : Ck → C, linear, h holom. at zero .

Prescribed pole structure

Feynman amplitudes [Speer JMP 1967]:

Li(~z) =
∑
`∈Ji

z` with Ji ⊂ {1, · · · , k } MFeyn;

Chen integrals / Multizeta functions [CGPZ JMP 2020]:

Li(~z) =
∑
`∈Ji

z` with Ji = {1, · · · , i} MChen;

Laplace transforms on polyhedral cones [GPZ DJM 2017]:
Li(~z) =

∑Li
`=1 a` z`  M.

For I ⊂ [[1, n]] we set zI :=
∑

i∈I zi . Speer actually shows that Feynman
amplitudes have poles of a nested form Ji ⊂ Ji+1:

Speer fractions: zs1
I1

(zI1 + zI2 )s2 · · · (zI1 + · · ·+ zIk )sk . Ij ⊂ {1, · · · , k }, (1)

(generalises Chen fractions z
s1
i1

(zi1 + zi2 )s2 · · · (zi1 + · · ·+ zik )sk . ij ∈ {1, · · · , k }
A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 9 / 1



III. A guiding principle: locality
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Locality and independence
We want to evaluate meromorphic germs at poles according to the principle of
locality:

”two events separated in space can be measured independently”

Principle of locality: factorisation on independent events
a and b︸ ︷︷ ︸
∈A

independent =⇒
factorisation

Meas (a ∨ b)︸   ︷︷   ︸
concatenation

= Meas(a) · Meas(b).

Here: independence of meromorphic germs f⊥g by means of a binary
symmetric relation ⊥ called locality ;

Principle of locality revisited: ⊥-locality evaluators
f ⊥ g =⇒ E(f · g) = E(f)E(g) for two meromorphic germs f and g inM•.

Claim: On certain algebras of meromorphic germs with a prescriped type of
pole at zero, modulo a Galois transformation, any ⊥-locality evaluator at
the poles is determined by a multivariable minimal subtraction scheme.
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Locality on/independence of meromorphic germs

Meromorphic germs with linear poles

M(Ck ) 3 f =
h(`1,··· ,`n)

Ls1
1 ···L

sn
n

, h holomorphic germ, si ∈ Z≥0,

`i : Ck → C, Lj : Ck → C linear forms with real coefficients (lie in L(Ck )).

Example: (z1, z2) 7−→ z1−z2
z1+z2

.

Locality on meromorphic germs: orthogonality

Dependence set Dep(f) := 〈`1, · · · , `m, L1, · · · , Ln〉.

Q inner product on Rk induces one on L(Ck )

f1⊥Q f2 ⇐⇒ Dep(f1)⊥QDep(f2).

Take Q the canonical inner product on Rk . Then (z1 − z2) ⊥Q (z1 + z2).

Speer’s locality: separation of variables

(z1 − z2) ⊥Speer (z3 + z4)⇒ (z1 − z2) ⊥Q (z3 + z4).
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IV. Statement and ingredients for its proof
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Data

Data(
M•,⊥Q

)
an (locality) algebra of meromorphic germs at zero with a

prescribed type of poles (e.g. Chen ⊂ Speer ⊂ Feynman);

M+ ⊂ M
• the algebra of holomorphic germs at zero;

the evaluation at zero: ev0 :M+ → C;

the Galois group Gal⊥
Q

(M•/M+) of (locality) transformations of(
M•,⊥Q

)
;

M•Q
− is the set of polar germs f = h

g with h ⊥Q g.

Orthogonal projection
⊥Q induces a splitting

M• =M+⊕M
•Q
− and π+

Q :M• −→M+

is the induced projection onto the holomorphic part.
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Statement of the main result

A M• M+ C
φ π+

Q ev0

E?

Meas := E ◦ φ

Theorem [Guo, S.P., Zhang 2021]
Given an inner product Q , a locality evaluator at zero E :M• −→ C i.e. a linear
form which i) extends the ordinary evaluation ev0 at zero and ii) factorises on
independent germs is of the form: E = ev0 ◦ π+︸    ︷︷    ︸

minimal subtraction

◦ TE︸︷︷︸
Gal⊥(M•/M+)

.
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form which i) extends the ordinary evaluation ev0 at zero and ii) factorises on
independent germs is of the form:
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Ingredients for the proof

Locality algebras (A ,>), here
(
M,⊥Q

)
;

Locality polynomial algebras A = 〈X〉> locally freely generated by a
set X , here

(
M•,⊥Q

)
generated by fractions S = 1∏

i L
si
i

∈ S•;

Locality algebra morphisms f : (A ,>)→ (A ,>) i.e., linear maps such
that a>a′ ⇒ f(a · a′) = f(a) f(a′), here we consider Aut⊥

Q
(M•);

Laurent expansions in several variables (L. Guo, S.-P., B. Zhang (PJM
2020)) which refine the splittingM• =M+⊕M

•Q
− :

f = h +

 ∑
S∈S•

hS ·
⊥Q

S

 ;

the Galois group

Gal⊥(M•) = {T ∈ Aut⊥
Q

(M•) | T |M+ = Id}.

In practice, we consider a restricted Galois group singling out
transformations which preserve the residue arising form the Laurent
expansion.
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Final step of the proof

SinceMChen, resp. MFeyn are ⊥-local polynomial algebras, a generalised
evaluator is uniquely determined by its values on the free generators.

The case of freely generated locality-algebras
IfM• is a free polynomial locality-algebra generated by S•, then:

T ∈ Gal⊥(M•/M+) =⇒ T

∑
S∈S

hS · S

 =
∑

S∈S•
hS · T(S).

⊥-locality evaluators

Given a ⊥Q -locality evaluator E on a freely generated algebraM•

generated by S, the map TE : S• 7→ S• + E(S•) 1 defines an element of
the Galois group Gal⊥(M•/M+) and

E = ev0 ◦ π+
⊥︸      ︷︷      ︸

⊥Q−minimal subtraction

◦ TE︸︷︷︸
Galois transformation

.
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Perspectives

Dependence on the choice of Q
for two inner products Q and Q ′,

the Galois groups are isomorphic:

Gal⊥
Q

(M•/M+) ' Gal⊥
Q′

(M•/M+).

Question
What happens beyond ⊥Q -locality relations?

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 18 / 1



Perspectives

Dependence on the choice of Q
for two inner products Q and Q ′,

the Galois groups are isomorphic:

Gal⊥
Q

(M•/M+) ' Gal⊥
Q′

(M•/M+).

Question
What happens beyond ⊥Q -locality relations?

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 18 / 1



THANK YOU FOR YOUR ATTENTION!

A Galois group on meromorphic germs and locality evaluatorsRandom Geometry in Heidelberg, 19 May 2022 19 / 1



P. Clavier, L. Guo, B. Zhang and S. P., An algebraic formulation of the locality
principle in renormalisation, European Journal of Mathematics, Volume 5
(2019) 356-394

P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation via locality
morphisms, Revista Colombiana de Matemáticas, Volume 53 (2019) 113-141
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