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Motivation : Divergence of perturbative expansions
Perturbative expansion in QFT over Feynman graphs
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The perturbative expansion is a divergent power series (otherwise
Z defined for Re(g) < 0, g = 0 boundary of analyticity domain).

Perturbative expansion only valid as an asymptotic series for
g → 0 but does not allow for a definition of a QFT.

Origins of the divergence :
∑

G order n A(G ) ∼ n!

• too many graphs of given order (instantons)
• too large graph amplitudes at given order (renormalons)

Construction of QFT from its perturbative expansion usually
addressed using Borel summation.



Factorial growth of the number of Feynman graphs
Consider a simple integral analogue to the functional integral in
quantum field theory (Re(g) ≥ 0) with asymptotic expansion
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This integral counts Feynman graphs with factorial growth,
thus impeding the convergence of the series (two many graphs)
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From a physical viewpoint, the integral defines an analytic function
for Re(g) > 0 such that the origin lies on the boundary of
analyticity domain. If the series was convergent, it would make
sense for Re(g) < 0 leading to an unstable model. Alternatively,
gϕ4 cannot be treated as small for large field ϕ.



Borel summability and instanton singularity
Starting with a possibly divergent series
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to a function F (g), we can attempt at recovering F using
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sn the Borel transform.

This requires B(s) to be free of singularities on the positive real
axis. After rescaling the field ϕ → ϕ/
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The Dirac distribution leads to instanton singularities for classical
solutions of the equations of motion with real and positive action.



The Nevanlinna-Sokal theorem on Borel resummation
Recall the Nevanlinna-Sokal theorem : If F is a analytic function in
the disk Re(1/g) > R−1 and
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Combinatorial approach : Loop Vertex Representation
Basic idea (V. Rivasseau, arxiv 0706.1224) : expand the
partition function over forests (= not necessarily connected
graphs without loops) over instead of graphs and logarithm
expanded over trees (connected components)

Z =
∑

F forest

AF (g) ⇔ logZ =
∑
T tree

AT (g)

Convergence of the expansion possible because of power law
growth (solving the "too many graphs" issue)
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and power law bounds on tree amplitudes |AT (g)| ≤ Cn|g |n

Usual perturbative expansion recovered by further expanding
AT (g) in powers of g (addition of loops to T )

Open question in QFT but interesting results for random matrices.

https://arxiv.org/abs/0706.1224


Random Matrices
Topological ribbon graph expansion of matrix integral
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with χ = 2 − genus = #(vertices)−#(edges) + #(faces)

Ribbon Feynman graph (double line) dual to trianagulations
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Multiple occurence in physics as random Hamiltonians (spectra of
heavy nuclei, JT gravity in the Schwarzian limit, ..) or topological
expansion (large N QCD, 2d gravity, ...).



Main result : Uniform analyticity in a "Pac-Man" domain
For any ϵ > 0 there exists η > 0 such that the LVE expansion
1
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It is bounded by a constant independent of N and Borel summable
in g , uniformly in N (with a cut for p = 2).



Forest Formula (Abdesselam, Brydges, Kennedy, Rivasseau)
ϕ function of n(n−1)

2 variables xij ∈ [0, 1](edges between n vertices)
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where vij is the infimum of ukl along the unique path from from i
to j in F if it exists and 0 otherwise
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Tree expansion of the partition function
Then, one can rewrite the integral of the exponential over a variable
ϕ as a sum of multiple integrals over multiple variable ϕ1, . . . , ϕn
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In this formula, dµCij=1(ϕ) is a Gaussian measure with a covariance
matrix whose entries are all equal to 1 ⇔ sets ϕ1 = · · · = ϕn

Replacing Cij = uij for i ̸= j , we can apply the forest formula
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Since AF = AT1 · · · ATc , the logarithm reduces to a sum over trees
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Tree expansion of the matrix integral

Let us apply the forest formula after rescaling the matrix as
M → M/g
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Then the free energy logZ is a sum over embedded trees.

It remains to bound the amplitudes and the number of trees.



Morse-Palais change of variables
The Morse-Palais lemma states that any functional can be
reduced to a quadratic one in the vicinity of its extrema. For the
matrix integral, we set

K = M
√

1 +M2p−2 ⇔ M = K
√
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with T the Fuß-Catalan function such that T (z) = 1 + zT p(z).

For the matrix integral, it leads to∫
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with an effective potential computed from the Jacobian
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= −Tr⊗ log
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The derivative of the logarithm is a resolvent and analytic
properties of T (z) lead to useful bounds on tree amplitudes .



Effective potential and matrix derivative
For any single matrix function M =

∑
n a

n
K , the matrix derivative

acting on matrices MN(C) ∼ CN ⊗ CN by left and right
multiplication is defined as
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Fuß-Catalan generating function
Lagrange inversion formula leads to Fuß-Catalan numbers

T (z) = 1 + zT p(z) ⇒ T (z) =
∑
n

(np)!
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zn (24)

ordinary Catalan numbers for p = 2 (counting p-ary trees)

Some useful properties :

• T (z) analytic on the cut plane C−
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• T (z) ̸= 0 for finite z
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Analyticity from counting trees
The number of labelled and embedded trees on n vertices is
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Bounding each tree amplitude leads to a convergent series
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The factorial growth cancel so that the series has a finite radius of
convergence, with κ(argλ) ∝ 1

| cos(argλ)| for
∣∣argλ∣∣ < π/2

(positivity of Gaußian measure) ⇒ not enough for Borel
summation.



Analytic continuation from contour rotation

To accommodate a large range for argλ let us rotate the matrix
integral by and angle α M → exp(iα)M as well as all Cauchy
contours with two constraints :

• positivity of the Gaußian measure exp− trK 2

g

−π/2 < argλ− 2α < π/2 (28)

• singularity of the Fuß-Catalan function T
(
− K 2p−2)

−π < (2p − 2)α < π (29)

The maximal opening of the domain of analyticity is therefore
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Bounds on the tree amplitude
Writing the effective potential as Veff(K ) = Tr⊗ log(1 − Σ) (acting
in CN ⊗ CN), every vertex is represented as a double line graph
with insertions of (1 − Σ)−1 or ∂Σ

∂K , written as a contour integral.
The tree amplitude AT involves E (T ) + 2 faces and is a trace in
C⊗(E(T )+2). Using |Tr(A)| ≤ N⊗(E(T )+2)∥A∥, it can be bounded as∣∣AT
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where Oj are the operators encountered around the vertices and
contracted along the edges.
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Borel summability of the matrix model partition function

Borel summability follows from the Nevanlinna-Sokal theorem
checking the two hypothesis :

• Analyticity on the circle tangent to the positive axis follows
from the analyticity in the Pac-Man domain.

• The bound on the remainder can be obtained by recursively
adding edges to the trees

logZ =
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The remainder is a over trees with at least n + 1 − k edges on
which k edges have been added using the representation∫
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Towards a similar approach in Quantum Field Theory
Change of variables from Morse-Palais lemma : reduction of a
functional around a critical point in Hilbert space to a quadratic
form S [ϕ] = ⟨χ(ϕ), χ(ϕ)⟩∫ {

1
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leading to the non local effective potential (Jacobian)

Veff[χ] = log det
δϕ

δχ
= Tr log

δϕ

δχ

Difficulty : find suitable cut-off independent bounds.

Matrix model with kinetic term (Grosse-Wulkenhaar model)∫
DM exp−

{
TrAM2 + gTrM4

}
2d case by V. Rivasseau and Z.T. Wang arxiv1805.06365.

https://arxiv.org/abs/1805.06365

