Double scaling limit of multi-matrix models joint work with V. Bonzom \& A. Tanasa

Victor Nador
LIPN - LaBRI - Univ. de Bordeaux

May 20th 2022

Introduction

- Tensor models are generalization of matrix models in $d>2$ dimensions

Introduction

- Tensor models are generalization of matrix models in $d>2$ dimensions
- Many features of matrix models can be adapted to tensors.
(1) Large N expansion governed by the degree $\omega \geq 0$. Graphs \mathcal{G} such that $\omega(\mathcal{G})=0$ are know as melons.

Introduction

- Tensor models are generalization of matrix models in $d>2$ dimensions
- Many features of matrix models can be adapted to tensors.
(1) Large N expansion governed by the degree $\omega \geq 0$. Graphs \mathcal{G} such that $\omega(\mathcal{G})=0$ are know as melons.
(2) Double scaling mechanism can also be implemented by sending $N \rightarrow+\infty, \lambda \rightarrow \lambda_{c}$ holding some ratio of the two fixed. [Bonzom-Gurau-Ryan-Tansas]
[Gurau-Tanasa-Youmans] [Benedetti-Carrozza-Toriumi-Valette]

Introduction

- Tensor models are generalization of matrix models in $d>2$ dimensions
- Many features of matrix models can be adapted to tensors.
(1) Large N expansion governed by the degree $\omega \geq 0$. Graphs \mathcal{G} such that $\omega(\mathcal{G})=0$ are know as melons.
(2) Double scaling mechanism can also be implemented by sending $N \rightarrow+\infty, \lambda \rightarrow \lambda_{c}$ holding some ratio of the two fixed. [Bonzom-Gurau-Ryan-Tanasa]
[Gurau-Tanasa-Youmans] [Benedetti-Carrozza-Toriumi-Valette]

Aim of this talk

- Show how schemes are a general tool useful to enumerate specific families of graphs
- Stress the difficulties that can arise for certain model (e.g. reduced symmetry group).

This presentation is based on arXiv:2109.07238 and a companion paper that should appear on arXiv in the upcoming weeks.

Outline

(1) The quartic $O(N)^{3}$ tensor model

- Short recap from Adrian's talk
- Finiteness of schemes
(2) The quartic $U(N)^{2} \times O(D)$ multi-matrix model
- Overview of the model
- Scheme decomposition
- Dominant schemes
(3) The quartic bipartite $U(N) \times O(D)$ multi-matrix model
- Overview of the model
- Scheme decomposition
- Dominant schemes
(4) Conclusion

The quartic $O(N)^{3}$ tensor model

The model

Introduced by S. Carrozza and A. Tanasa in [Carroza-Tanasa (2015)]

- The tensor $\phi_{a b c}$ is invariant under the action of $O(N)^{3}$:

$$
\phi_{a b c} \rightarrow \phi_{a^{\prime} b^{\prime} c^{\prime}}^{\prime}=\sum_{a, b, c=1}^{N} O_{a^{\prime} a}^{1} O_{b^{\prime} b}^{2} O_{c^{\prime} c}^{3} \phi_{a b c} \quad O^{i} \in O(N)
$$

The model

Introduced by S. Carrozza and A. Tanasa in [Carozza-Tansa (2015]

- The tensor $\phi_{a b c}$ is invariant under the action of $O(N)^{3}$:

$$
\phi_{a b c} \rightarrow \phi_{a^{\prime} b^{\prime} c^{\prime}}^{\prime}=\sum_{a, b, c=1}^{N} O_{a^{\prime} a}^{1} O_{b^{\prime} b}^{2} O_{c^{\prime} c}^{3} \phi_{a b c} \quad O^{i} \in O(N)
$$

- Two different quartic invariants:

$$
\begin{aligned}
I_{t}(\phi) & =\sum_{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}} \phi_{a b c} \phi_{a b^{\prime} c^{\prime}} \phi_{a^{\prime} b c^{\prime}} \phi_{a^{\prime} b^{\prime} c}=1 \\
I_{p, 1}(\phi) & =\sum_{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}} \phi_{a b c} \phi_{a^{\prime} b c} \phi_{a b^{\prime} c^{\prime}} \phi_{a^{\prime} b^{\prime} c^{\prime}}=23_{3}^{3}
\end{aligned}
$$

The model

Introduced by S. Carrozza and A. Tanasa in [Carrozza-Tanasa (2015)]

- The tensor $\phi_{a b c}$ is invariant under the action of $O(N)^{3}$:

$$
\phi_{a b c} \rightarrow \phi_{a^{\prime} b^{\prime} c^{\prime}}^{\prime}=\sum_{a, b, c=1}^{N} O_{a^{\prime} a}^{1} O_{b^{\prime} b}^{2} O_{c^{\prime} c}^{3} \phi_{a b c} \quad O^{i} \in O(N)
$$

- Two different quartic invariants:

$$
\begin{aligned}
I_{t}(\phi) & =\sum_{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}} \phi_{a b c} \phi_{a b^{\prime} c^{\prime}} \phi_{a^{\prime} b c^{\prime}} \phi_{a^{\prime} b^{\prime} c}=\underbrace{3} \\
I_{p, 1}(\phi) & =\sum_{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}} \phi_{a b c} \phi_{a^{\prime} b c} \phi_{a b^{\prime} c^{\prime}} \phi_{a^{\prime} b^{\prime} c^{\prime}}=2
\end{aligned}
$$

- The action reads

$$
\begin{equation*}
S_{N}(\phi)=-\frac{N^{2}}{2} \phi^{2}+N^{5 / 2} \frac{\lambda_{1}}{4} I_{t}(\phi)+N^{2} \frac{\lambda_{2}}{4}\left(I_{p, 1}(\phi)+I_{p, 2}(\phi)+I_{p, 3}(\phi)\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\omega(\overline{\mathcal{G}})=3+\frac{3}{2} n_{t}(\overline{\mathcal{G}})+2 n_{p}(\overline{\mathcal{G}})-F(\overline{\mathcal{G}}) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\omega(\overline{\mathcal{G}})=3+\frac{3}{2} n_{t}(\overline{\mathcal{G}})+2 n_{p}(\overline{\mathcal{G}})-F(\overline{\mathcal{G}}) \tag{2}
\end{equation*}
$$

Melons

$$
\begin{aligned}
& M(t, \mu)=1+t M^{4}+t \mu M^{2} \\
& \quad \text { with }(t, \mu)=\left(\lambda_{1}^{2}, \frac{3 \lambda_{2}}{\lambda_{1}^{2}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\omega(\overline{\mathcal{G}})=3+\frac{3}{2} n_{t}(\overline{\mathcal{G}})+2 n_{p}(\overline{\mathcal{G}})-F(\overline{\mathcal{G}}) \tag{2}
\end{equation*}
$$

Melons

Dipoles

$U(t, \mu)=t M^{4}+\frac{1}{3} t \mu M^{2}$

$$
\begin{equation*}
\omega(\overline{\mathcal{G}})=3+\frac{3}{2} n_{t}(\overline{\mathcal{G}})+2 n_{p}(\overline{\mathcal{G}})-F(\overline{\mathcal{G}}) \tag{2}
\end{equation*}
$$

Schemes

Schemes

Theorem
The set of schemes of a given degree is finite in the quartic $O(N)^{3}$-invariant tensor model.

Overview of the proof

(1) Study what happens when removing a dipole/chain in a scheme
(2) Show that there can only be finitely many other faces

Chain removal

Two different cases:
(1) Removing the chain disconnects the scheme

$$
\Delta \omega=0
$$

(2) Removing the chain doesn't disconnect the scheme:

$$
-3 \leq \Delta \omega \leq-1
$$

One last definition..

One last definition..

Definition

For a scheme \mathcal{S}, its skeleton graph $\mathcal{I}(\mathcal{S})$ is such that

- The vertex set of $\mathcal{I}(\mathcal{S})$ is the set of connected components obtained by removing all chain-vertices and dipole-vertices of \mathcal{S}.
- There is an edge between two vertices in $\mathcal{I}(\mathcal{S})$ if the two corresponding connected components are connected by a chain-vertex or a dipole-vertex.
This edge is labeled by the type of chain- or dipole-vertex.

Properties of the skeleton graph

Lemma

For any scheme \mathcal{S}, define by convention $\omega(\mathcal{I}(\mathcal{S}))=\omega(\mathcal{S})$. We have the following properties.
(1) If $\overline{\mathcal{G}}^{(r)}$ for $r \in\{1, \ldots, p\}$ has vanishing degree, then the corresponding vertex in $\mathcal{I}(\mathcal{S})$ has valency at least equal to 3.

Properties of the skeleton graph

Lemma

For any scheme \mathcal{S}, define by convention $\omega(\mathcal{I}(\mathcal{S}))=\omega(\mathcal{S})$. We have the following properties.
(1) If $\overline{\mathcal{G}}^{(r)}$ for $r \in\{1, \ldots, p\}$ has vanishing degree, then the corresponding vertex in $\mathcal{I}(\mathcal{S})$ has valency at least equal to 3.
(2) Let $\mathcal{T} \subset \mathcal{I}(\mathcal{S})$ be a spanning tree. Let q be the number of edges of $\mathcal{I}(\mathcal{S})$ which are not in \mathcal{T}. Then, $\omega(\mathcal{T}) \leq \omega(\mathcal{S})-q$.

Properties of the skeleton graph

Lemma

For any scheme \mathcal{S}, define by convention $\omega(\mathcal{I}(\mathcal{S}))=\omega(\mathcal{S})$. We have the following properties.
(1) If $\overline{\mathcal{G}}^{(r)}$ for $r \in\{1, \ldots, p\}$ has vanishing degree, then the corresponding vertex in $\mathcal{I}(\mathcal{S})$ has valency at least equal to 3.
(2) Let $\mathcal{T} \subset \mathcal{I}(\mathcal{S})$ be a spanning tree. Let q be the number of edges of $\mathcal{I}(\mathcal{S})$ which are not in \mathcal{T}. Then, $\omega(\mathcal{T}) \leq \omega(\mathcal{S})-q$.

- $\omega(\mathcal{T})=\omega\left(\mathcal{G}^{(0)}\right)+\sum_{r=1}^{p} \omega\left(\overline{\mathcal{G}}^{(r)}\right)$, in other words, if $\mathcal{I}(\mathcal{S})$ is a tree, then the degree of \mathcal{S} is the sum of the degrees of its components obtained by removing all chain- and dipole-vertices.

There are finitely many chains in a scheme

$$
\begin{equation*}
N(\mathcal{S}) \leq 7 \omega(\mathcal{S})-1 \tag{3}
\end{equation*}
$$

What about scheme with no chains ?

Through each edge of color 0 passes exactly one face of each color.

$$
\begin{equation*}
\sum_{p \geq 1} p F_{i}^{(p)}(\mathcal{G})=E_{0}(\mathcal{G})=2 n(\mathcal{G}) \tag{4}
\end{equation*}
$$

Using equation of the degree we get

$$
\begin{equation*}
\sum_{p \geq 5}(p-4) F^{(p)}(\mathcal{G})=4(\omega-3)+3 F^{(1)}(\mathcal{G})+2 F^{(2)}(\mathcal{G})+F^{(3)}(\mathcal{G}) \tag{5}
\end{equation*}
$$

What about scheme with no chains ?

Through each edge of color 0 passes exactly one face of each color.

$$
\begin{equation*}
\sum_{p \geq 1} p F_{i}^{(p)}(\mathcal{G})=E_{0}(\mathcal{G})=2 n(\mathcal{G}) \tag{4}
\end{equation*}
$$

Using equation of the degree we get

$$
\begin{equation*}
\sum_{p \geq 5}(p-4) F^{(p)}(\mathcal{G})=4(\omega-3)+3 F^{(1)}(\mathcal{G})+2 F^{(2)}(\mathcal{G})+F^{(3)}(\mathcal{G}) \tag{5}
\end{equation*}
$$

- We only have to show that there are finitely many "short faces"

Faces of length 1 and 2

(1) Faces of length 1 are tadpoles

Removing the tadpole gives

$$
\begin{equation*}
\Delta \omega=-\frac{1}{2} \tag{6}
\end{equation*}
$$

(2) Faces of length 2 are dipoles, which have already been shown to be bounded.

Faces of length 3

Self-intersecting faces of length 4

Non-self intersecting faces of length 4

- Too many cases to handle..

Non-self intersecting faces of length 4

- Too many cases to handle..
- Instead, we can show that all bubbles contributing to a face of length 4 are at bounded distance of a bubble which is in finite quantity in the scheme.

Two possible schemes

We have shown that
(1) There are finitely many chains in a scheme of fixed degree
(2) There are finitely many scheme with no chains.

Therefore..

We have shown that
(1) There are finitely many chains in a scheme of fixed degree
(2) There are finitely many scheme with no chains.

Therefore..

Theorem

The set of schemes of a given degree is finite in the quartic $O(N)^{3}$-invariant tensor model.

The quartic $U(N)^{2} \times O(D)$ multi-matrix model

The model

This model model involves a vector of D complex matrices of size $N \times N$. It is required to be invariant under the following actions of $U(N)^{2} \times O(D)$

$$
\begin{array}{r}
X_{\mu} \rightarrow U_{1} X_{\mu} U_{2}^{\dagger} \\
X_{\mu} \rightarrow O_{\mu \mu^{\prime}} X_{\mu^{\prime}}
\end{array}
$$

These types of models are sometimes called matrix-tensor models since each symmetry group acts on a distinct index.

Quartic invariant

The quartic invariants are

$$
\begin{equation*}
I_{t}\left(X, X^{\dagger}\right)=\sum_{\mu, \nu} \operatorname{Tr}\left(X_{\mu} x_{\nu}^{\dagger} x_{\mu} x_{\nu}^{\dagger}\right)=1 \underbrace{2}_{2}= \tag{7}
\end{equation*}
$$

The action

The action of the model reads

$$
\begin{align*}
& S_{U(N)^{2} \times O(D)}\left(X_{\mu}, X_{\mu}^{\dagger}\right)=-N D \sum_{\mu=1}^{D} \operatorname{Tr}\left(X_{\mu} X_{\mu}^{\dagger}\right)+N D^{3 / 2} \frac{\lambda_{1}}{2} I_{t}\left(X_{\mu}, X_{\mu}^{\dagger}\right) \\
& +N D \frac{\lambda_{2}}{2}\left(I_{p ; 1}\left(X_{\mu}, X_{\mu}^{\dagger}\right)+I_{p ; 2}\left(X_{\mu}, X_{\mu}^{\dagger}\right)\right)+D^{2} \frac{\lambda_{2}}{2}\left(I_{p ; 3 b}\left(X_{\mu}, X_{\mu}^{\dagger}\right)+I_{p ; 3 n b}\left(X_{\mu}, X_{\mu}^{\dagger}\right)\right) \tag{11}
\end{align*}
$$

where each scaling is the unique choice such that there exists a large N, large D expansion and all interactions contribute at leading order of this expansion.
[Ferrari-Rivasseau-Villette]

The action

The action of the model reads

$$
\begin{align*}
& S_{U(N)^{2} \times O(D)}\left(X_{\mu}, X_{\mu}^{\dagger}\right)=-N D \sum_{\mu=1}^{D} \operatorname{Tr}\left(X_{\mu} X_{\mu}^{\dagger}\right)+N D^{3 / 2} \frac{\lambda_{1}}{2} I_{t}\left(X_{\mu}, X_{\mu}^{\dagger}\right) \\
& +N D \frac{\lambda_{2}}{2}\left(I_{p ; 1}\left(X_{\mu}, X_{\mu}^{\dagger}\right)+I_{p ; 2}\left(X_{\mu}, X_{\mu}^{\dagger}\right)\right)+D^{2} \frac{\lambda_{2}}{2}\left(I_{p ; 3 b}\left(X_{\mu}, X_{\mu}^{\dagger}\right)+I_{p ; 3 n b}\left(X_{\mu}, X_{\mu}^{\dagger}\right)\right) \tag{11}
\end{align*}
$$

where each scaling is the unique choice such that there exists a large N, large D expansion and all interactions contribute at leading order of this expansion.
[Ferrari-Rivasseau-Villette]

The double scaling limit of this model with tetrahedral interaction only (e.g. $\lambda_{2}=0$) has been studied in [Benedetic:Carorza-Toriumi-Valette]

The large N, large D expansion

The free energy $F_{U(N)^{2} \times O(D)}\left(\lambda_{1}, \lambda_{2}\right)$ admits a large N, large D expansion given by

$$
\begin{equation*}
F_{U(N)^{2} \times O(D)}\left(\lambda_{1}, \lambda_{2}\right)=\sum_{g \in \mathbb{N}} N^{2-2 h} \sum_{l \in \mathbb{N}} D^{-1+h-\frac{\ell}{2}} \sum_{\overline{\mathcal{G}} \in \bar{G}_{g, l}} \mathcal{A}(\overline{\mathcal{G}}) \tag{12}
\end{equation*}
$$

Sending both N and D to ∞ while holding $L=\frac{N}{\sqrt{D}}$ fixed we get

$$
\begin{equation*}
\tilde{F}_{U(N)^{2} \times O(D)}\left(\lambda_{1}, \lambda_{2}\right)=\sum_{\overline{\mathcal{G}} \in \bar{G}} L^{2-2 h(\overline{\mathcal{G}})} D^{2-l(\overline{\mathcal{G}}) / 2} \mathcal{A}_{\overline{\mathcal{G}}}\left(\lambda_{1}, \lambda_{2}\right) \tag{13}
\end{equation*}
$$

where

- $h(\overline{\mathcal{G}})$ is a non-negative integer called the genus,
- $I(\overline{\mathcal{G}})$ is a non-negative integer called the grade.

$$
\begin{align*}
2-2 h(\overline{\mathcal{G}}) & =F_{01}+F_{02}-E_{0}+n_{t}+n_{1}+n_{2} \tag{14}\\
1+h(\overline{\mathcal{G}})-\frac{l(\overline{\mathcal{G}})}{2} & =F_{03}-E_{0}+\frac{3}{2} n_{t}+n_{1}+n_{2}+2\left(n_{3 b}+n_{3 n b}\right), \tag{15}
\end{align*}
$$

Leading order : the melonic limit

The elementary melons of our model are the following 2-point graphs:

The generating function of melonic graph is given by

$$
M\left(\lambda_{1}, \lambda_{2}\right)=1+\lambda_{1}^{2} M\left(\lambda_{1}, \lambda_{2}\right)^{4}+4 \lambda_{2} M\left(\lambda_{1}, \lambda_{2}\right)^{2}
$$

Dipoles

Dipoles are the 4-point graphs which can be obtained from an elementary melon by cutting one of its edges of color 0 .

There are two different dipoles of color 3, depending if it is bipartite or not.

and

Chains

Chains are the 4 -point functions obtained by connecting at least 2 dipoles side by side.

We distinguish different types of chains depending on the color of the dipoles involved:

- If a chain only has dipoles of color i then it is a chain of color i.
- Otherwise, the chain is said to be broken.

Generating function for dipoles and chains

Generating function for dipoles are

$$
\begin{align*}
& U(t, \mu)=t M(t, \mu)^{4}+\frac{1}{4} t \mu M(t, \mu)^{2}=M(t, \mu)-1-\frac{3}{4} t \mu M(t, \mu)^{2} \tag{18}\\
& V(t, \mu)=\frac{1}{4} t \mu M(t, \mu)^{2} \tag{19}
\end{align*}
$$

And the generating function for chains is

$$
\begin{align*}
C_{1}(t, \mu) & =C_{2}(t, \mu)=U^{2} \sum_{n \geq 0} U^{n}=\frac{U^{2}}{1-U} \tag{20}\\
C_{3}(t, \mu) & =(U+V)^{2} \sum_{n \geq 0}(U+V)^{n}=\frac{(U+V)^{2}}{1-(U+V)} \tag{21}\\
B(t, \mu) & =\frac{-6 U^{3}-8 U^{2} V+6 U^{2}-2 U V^{2}+4 U V}{(1-3 U-V)(1-U)(1-U-V)} \tag{22}
\end{align*}
$$

Schemes

For a graph $\mathcal{G} \in \overline{\mathbb{G}}$, we define the scheme of \mathcal{G} is obtained by
(1) Replacing every melonic 2-point subgraph with an edge of color 0 ,
(2) Replacing every maximal chain with a chain-vertex of the same type,
(0) Replacing every dipole with a dipole-vertex of the same type.

Theorem

For any genus and grade (h, l), the set of scheme $\mathbb{S}_{h, l}$ is a finite.

Proof via the $O(N)^{3}$ tensor model

From a scheme of our model of genus h and grade I, we can obtain a scheme of degree $\omega=h+\frac{l}{2}$ by forgetting the coloring of the vertices in the stranded representation.

Proof via the $O(N)^{3}$ tensor model

From a scheme of our model of genus h and grade I, we can obtain a scheme of degree $\omega=h+\frac{l}{2}$ by forgetting the coloring of the vertices in the stranded representation.

Double scaling limit and criticality

In the double scaling limit, coupling constants are sent to a critical point for the partition function. There are two possible types of singularity that could be encountered:

Double scaling limit and criticality

In the double scaling limit, coupling constants are sent to a critical point for the partition function. There are two possible types of singularity that could be encountered:

- Singular points for the melons generating function M.

Double scaling limit and criticality

In the double scaling limit, coupling constants are sent to a critical point for the partition function. There are two possible types of singularity that could be encountered:

- Singular points for the melons generating function M.
- Singular points for the different types of chains.

Critical points for M

$$
M(t, \mu) \underset{t \rightarrow t_{c}(\mu)}{\sim} M_{c}(\mu)-K(\mu) \sqrt{1-\frac{t}{t_{c}(\mu)}}
$$

where $M_{c}(\mu)$ is the unique positive real root of the polynomial equation

$$
\begin{equation*}
-3 x^{3}+4 x^{2}-\mu x+2 \mu=0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\mu)=\sqrt{\frac{M_{c}(\mu)^{2}\left(M_{c}(\mu)^{2}+\mu\right)}{6 M_{c}(\mu)^{2}+\mu}} . \tag{25}
\end{equation*}
$$

Dominant schemes

Theorem

A dominant scheme of genus $h>0$ has $2 h-1$ broken chain-vertices, all separating. Such a scheme has the structure of a rooted binary plane tree where:

- Edges correspond to broken chains.
- The root corresponds to the two external legs of the 2-point function.
- The h leaves are one of the two following graphs

- There are 7 types of internal nodes,

Double scaling parameter

The contribution of a dominant scheme is given by

$$
\begin{equation*}
G_{\mathcal{T}}^{h}(t, \mu)=L^{2-2 h}\left(C_{3, \bullet} \bullet(t, \mu)+t C_{3, \bullet \bullet}(t, \mu)\right)^{h}(1+6 t)^{h-1} B(t, \mu)^{2 h-1} \tag{26}
\end{equation*}
$$

Double scaling parameter

The contribution of a dominant scheme is given by

$$
\begin{equation*}
G_{\mathcal{T}}^{h}(t, \mu)=L^{2-2 h}\left(C_{3, \bullet} \bullet(t, \mu)+t C_{3, \bullet \bullet}(t, \mu)\right)^{h}(1+6 t)^{h-1} B(t, \mu)^{2 h-1} \tag{26}
\end{equation*}
$$

Therefore we define the double scaling parameter as

$$
\begin{equation*}
\left.\kappa(\mu)^{-1}=L^{2} \frac{1}{(1+6 t)\left(C_{3, \bullet} \bullet\right.}(t, \mu)+t C_{3, \bullet \bullet}(t, \mu)\right)\left(\frac{1}{B(t, \mu)}\right)^{2} \tag{27}
\end{equation*}
$$

Double scaling parameter

The contribution of a dominant scheme is given by

$$
\begin{equation*}
G_{\mathcal{T}}^{h}(t, \mu)=L^{2-2 h}\left(C_{3, \bullet} \bullet(t, \mu)+t C_{3, \bullet \bullet}(t, \mu)\right)^{h}(1+6 t)^{h-1} B(t, \mu)^{2 h-1} \tag{26}
\end{equation*}
$$

Therefore we define the double scaling parameter as

$$
\begin{equation*}
\left.\kappa(\mu)^{-1}=L^{2} \frac{1}{(1+6 t)\left(C_{3, \bullet} \bullet\right.}(t, \mu)+t C_{3, \bullet \bullet}(t, \mu)\right)\left(\frac{1}{B(t, \mu)}\right)^{2} \tag{27}
\end{equation*}
$$

which gives

$$
\begin{equation*}
G_{d o m}^{h}(t, \mu)=L\left(\left.\frac{\left(C_{3, \bullet \bullet}+t C_{3, \bullet \bullet}\right)}{1+6 t}\right|_{\left(t_{c}(\mu), \mu\right)}\right)^{\frac{1}{2}} \kappa(\mu)^{h-\frac{1}{2}} \tag{28}
\end{equation*}
$$

Final computation

The genus $h>0$ contribution is obtained by summing over binary trees with h leaves

$$
\begin{equation*}
G_{d o m}^{h}(t, \mu)=L \operatorname{Cat}_{h-1} M_{c}\left(t_{c}(\mu), \mu\right)\left(\left.\frac{\left(C_{3, \bullet \bullet}+t C_{3, \bullet \bullet}\right)}{1+6 t}\right|_{\left(t_{c}(\mu), \mu\right)}\right)^{\frac{1}{2}} \kappa(\mu)^{h-\frac{1}{2}} \tag{29}
\end{equation*}
$$

Final computation

The genus $h>0$ contribution is obtained by summing over binary trees with h leaves

$$
\begin{equation*}
G_{d o m}^{h}(t, \mu)=L \operatorname{Cat}_{h-1} M_{c}\left(t_{c}(\mu), \mu\right)\left(\left.\frac{\left(C_{3, \bullet} \bullet t C_{3, \bullet \bullet}\right)}{1+6 t}\right|_{\left(t_{c}(\mu), \mu\right)}\right)^{\frac{1}{2}} \kappa(\mu)^{h-\frac{1}{2}} \tag{29}
\end{equation*}
$$

Finally, the 2-point function at leading order in the double scaling limit is

$$
\begin{equation*}
G_{2}^{D S}(\mu)=M_{c}\left(t_{c}(\mu), \mu\right)\left(1+L\left(\left.\frac{\left(C_{3, \bullet} \bullet t C_{3, \bullet \bullet}\right)}{1+6 t}\right|_{\left(t_{c}(\mu), \mu\right)}\right)^{\frac{1}{2}} \frac{1-\sqrt{1-4 \kappa(\mu)}}{2 \kappa(\mu)^{\frac{1}{2}}}\right) \tag{30}
\end{equation*}
$$

Conclusion for this model

- All the tools used for the $O(N)^{3}$ tensor model can be used for this matrix-tensor model.

Conclusion for this model

- All the tools used for the $O(N)^{3}$ tensor model can be used for this matrix-tensor model.
- Some details in the structure on the Feynman graphs still depend on the model.

The quartic bipartite $U(N) \times O(D)$ multi-matrix model

The model

The matrices are now required to be invariant under the action of $U(N) \times O(D)$

$$
\begin{array}{r}
X_{\mu} \rightarrow U X_{\mu} U^{\dagger} \\
X_{\mu} \rightarrow O_{\mu \mu^{\prime}} X_{\mu^{\prime}}
\end{array}
$$

We will restrict to tetrahedral interaction

$$
\begin{equation*}
I_{t}(X)=\operatorname{Tr}\left(X_{\mu} X_{\nu} X_{\mu} X_{\nu}\right) \tag{31}
\end{equation*}
$$

The model

The matrices are now required to be invariant under the action of $U(N) \times O(D)$

$$
\begin{array}{r}
X_{\mu} \rightarrow U X_{\mu} U^{\dagger} \\
X_{\mu} \rightarrow O_{\mu \mu^{\prime}} X_{\mu^{\prime}}
\end{array}
$$

We will restrict to tetrahedral interaction

$$
\begin{equation*}
I_{t}(X)=\operatorname{Tr}\left(X_{\mu} X_{\nu} X_{\mu} X_{\nu}\right) \tag{31}
\end{equation*}
$$

The action is

$$
\begin{align*}
S_{U(N) \times O(D)}\left(X_{\mu}, X_{\mu}^{\dagger}\right) & =-N D \sum_{\mu=1}^{D} \operatorname{Tr}\left(X_{\mu}^{\dagger} X_{\mu}\right) \\
& +\frac{\lambda}{4} N D^{\frac{3}{2}} \sum_{\mu, \nu=1}^{D} \operatorname{Tr}\left(X_{\mu} X_{\nu} X_{\mu} X_{\nu}\right)+\operatorname{Tr}\left(X_{\mu}^{\dagger} X_{\nu}^{\dagger} X_{\mu}^{\dagger} X_{\nu}^{\dagger}\right) \tag{32}
\end{align*}
$$

Free energy expansion

The free energy admits a large N, large D expansion given by

$$
\begin{equation*}
F_{U(N) \times O(D)}(\lambda)=\sum_{\overline{\mathcal{M}} \in \overline{\mathfrak{M}}}\left(\frac{N}{\sqrt{D}}\right)^{2-2 h(\overline{\mathcal{M}})} D^{2-l(\overline{\mathcal{M}}) / 2} \mathcal{A}_{\overline{\mathcal{M}}}(\lambda) \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
2-2 h(\overline{\mathcal{M}}) & =F-E+V \tag{34}\\
\frac{I(\overline{\mathcal{M}})}{2} & =1+h(\overline{\mathcal{M}})+E-\frac{3 V}{2}-\phi . \tag{35}
\end{align*}
$$

The melons

- Melons are defined by recursive insertion of the above elementary melons on its edges.
- Their generating function is given by

$$
\begin{equation*}
M(\lambda)=1+\lambda M(\lambda)^{4} \tag{36}
\end{equation*}
$$

Proof of melonic dominance

We have

$$
\begin{equation*}
\frac{I(\overline{\mathcal{M}})}{2}=1+h+\sum_{n \geq 1}\left(\frac{n}{2}-1\right) \phi_{2 n} \tag{37}
\end{equation*}
$$

Proof of melonic dominance

We have

$$
\begin{equation*}
\frac{I(\overline{\mathcal{M}})}{2}=1+h+\sum_{n \geq 1}\left(\frac{n}{2}-1\right) \phi_{2 n} . \tag{37}
\end{equation*}
$$

Therefore a map of vanising genus and grade has the following structure

Aparte: lower bound on grade for multi-matrix model

```
[Carrozza-Tanasa-Toriumi-Valette]
```

- Taking large N expansion gives

$$
\begin{equation*}
F=\sum_{h \geq 0} N^{2-2 h} F_{h} \tag{38}
\end{equation*}
$$

- The existence of the large D expansion is guaranteed if there exist $\eta(h)<\infty$ such that

$$
\begin{equation*}
F_{h}=\sum_{\ell \geq 0} D^{1+\eta(h)-\frac{\ell}{2}} \tag{39}
\end{equation*}
$$

Aparte: lower bound on grade for multi-matrix model

```
[Carrozza-Tanasa-Toriumi-Valette]
```

- Taking large N expansion gives

$$
\begin{equation*}
F=\sum_{h \geq 0} N^{2-2 h} F_{h} \tag{38}
\end{equation*}
$$

- The existence of the large D expansion is guaranteed if there exist $\eta(h)<\infty$ such that

$$
\begin{equation*}
F_{h}=\sum_{\ell \geq 0} D^{1+\eta(h)-\frac{\ell}{2}} \tag{39}
\end{equation*}
$$

- All models where a large D expansion is defined have $\eta(h)=h$
- In the traceless Hermitian matrix model, we cannot prove that $\eta(h)$ is bounded.

Dipoles and chains

There are two types of dipoles

Figure: U-dipole

Figure: O-dipole

Their respective generating function are given by

$$
\begin{align*}
& D_{O}(t)=U(t)=t M(t)^{4}=M(t)-1 \tag{40}\\
& D_{U}(t)=2 U(t) \tag{41}
\end{align*}
$$

Dipoles and chains

There are two types of dipoles

Figure: U-dipole

Figure: O-dipole

Their respective generating function are given by

$$
\begin{align*}
& D_{O}(t)=U(t)=t M(t)^{4}=M(t)-1 \tag{40}\\
& D_{U}(t)=2 U(t) \tag{41}
\end{align*}
$$

$$
\begin{equation*}
B(t)=\frac{9 U^{2}}{1-3 U}-\frac{U^{2}}{1-U}-\frac{4 U^{2}}{1-2 U}=\frac{(4-6 U) U^{2}}{(1-U)(1-2 U)(1-3 U)} \tag{42}
\end{equation*}
$$

Schemes are maps obtained by
(1) Replacing every melonic submap with an edge,
(2) Replacing every maximal chain (resp. dipole) with a chain-vertex (resp. dipole-vertex), i.e. a 4-point vertex where we only keep track of the pairing of the half-edges by drawing them on the same side.

Theorem

The set $\mathbb{M S}_{h, I}$ of scheme of genus h and grade I is finite.

Sketch of proof

$$
\begin{equation*}
\frac{I(\overline{\mathcal{M}})}{2}=1+h+\sum_{n \geq 1}\left(\frac{n}{2}-1\right) \phi_{2 n} . \tag{43}
\end{equation*}
$$

- Cycles of length 2 correspond to O-dipoles.

Sketch of proof

$$
\begin{equation*}
\frac{I(\overline{\mathcal{M}})}{2}=1+h+\sum_{n \geq 1}\left(\frac{n}{2}-1\right) \phi_{2 n} \tag{43}
\end{equation*}
$$

- Cycles of length 2 correspond to O-dipoles.
- Cycles of length 4 are more involved..

Self-intersecting cycles of length 4

Self-intersecting cycles of length 4

We first prove a weaker version of the theorem

Theorem

The set ${\tilde{M} \mathbb{S}_{h, l} \text { of scheme of genus } h \text { and grade I without self-intersecting }}$ 4 -cycles is finite.

Reinserting self-intersecting cycles of length 4

Double insertion of 4-si cycles

Double insertion of 4-si cycles

We are saved!

Dominant schemes

Theorem

A rooted dominant scheme of genus $h>1$ has $2 h-1$ broken chains which are all separating. Such scheme has the structure of a binary plane tree where:

- Each edge corresponds to a broken chain-vertex
- Each node corresponds to one of the seven 6-point subgraph:

- The root of the tree corresponds to the root of the map
- Each of the g leaves is one of the following two graph

Double scaling limit

$$
\begin{equation*}
\kappa^{-1}=L^{2} \frac{1}{\left(\frac{4}{5}+t_{c} \frac{6}{5}\right)\left(1+6 t_{c}\right)} \frac{8}{27}\left(1-\frac{t}{t_{c}}\right) \tag{45}
\end{equation*}
$$

The contribution of a dominant scheme reads

$$
\begin{equation*}
G_{d o m}^{g}(t)=\frac{4}{3} L\left(\frac{\frac{4}{5}+t_{c} \frac{6}{5}}{1+6 t_{c}}\right)^{\frac{1}{2}} \kappa^{g-\frac{1}{2}} \tag{46}
\end{equation*}
$$

Summing over the trees, then over the genus we finally get

$$
\begin{equation*}
G_{2}^{D S}(t)=4 / 3+\frac{2}{3} \frac{1}{L}\left(\frac{\frac{4}{5}+t_{c} \frac{6}{5}}{1+6 t_{c}}\right)^{\frac{1}{2}} \frac{1-\sqrt{1-4 \kappa}}{\kappa^{\frac{1}{2}}} \tag{47}
\end{equation*}
$$

Conclusion

Conclusion

- Schemes are a powerful tool to enumerate specific families of graphs.

Conclusion

- Schemes are a powerful tool to enumerate specific families of graphs.
- The techniques used for tensor models can be applied to tensor-matrix models with few tweaks.

Conclusion

- Schemes are a powerful tool to enumerate specific families of graphs.
- The techniques used for tensor models can be applied to tensor-matrix models with few tweaks.
- These combinatorial methods are harder to apply to model with a reduced symmetry group.

Conclusion

- Schemes are a powerful tool to enumerate specific families of graphs.
- The techniques used for tensor models can be applied to tensor-matrix models with few tweaks.
- These combinatorial methods are harder to apply to model with a reduced symmetry group.

Some open questions:

- Can we make these techniques less dependant on the model (e.g. symmetry group, interactions..) ?
- Can we obtain the same results without using diagrammatic methods ?

Thank you for your attention!

