A Yang-Mills matrix theory

String Math 2022
University of Warsaw, July 2022

Carlos Pérez-Sánchez
ITP, University of Heidelberg
perez@thphys.uni-heidelberg.de

Based on:
$1912.13288^{\mathrm{pl}} ; 2007.10914 \mathrm{pl}_{\mathrm{pl}}^{2105.01025}{ }^{\mathrm{pl}, \mathrm{de}} ; 2111.02858^{\mathrm{pl}, \mathrm{de}}$ pl TEAM Fundacja na Rzecz Nauki Polskiej
de ERC, indirectly \& DFG-Structures Excellence Cluster

Introduction

- Classical $\operatorname{SU}(n)$-Yang-Mills theory is geometrically modelled on connections on a $\operatorname{SU}(n)$ principal bundle on a smooth space M. We want to replace M by a 'quantum spacetime' model
 based on noncommutative geometry (NCG).

Introduction

- Classical $\operatorname{SU}(n)$-Yang-Mills theory is geometrically modelled on connections on a $\operatorname{SU}(n)$ principal bundle on a smooth space M. We want to replace M by a 'quantum spacetime' model
 based on noncommutative geometry (NCG).
- Why do we want $\operatorname{SU}(n)$-Yang-Mills theory on that space? The natural quantum theory to consider could be 'gravity + matter' [Donà, Eichhorn, Percacci, PRD 2014]:

Motivation

- From physics to NCG: The Standard Model from the Spectral Action

$$
\begin{aligned}
& -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{*}^{2} f^{a b c} f^{a d c} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{d}+ \\
& \frac{1}{2} i g_{s}^{2}\left(q_{i}^{\sigma} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}+G^{a} \partial^{2} G^{a}+g_{s} f^{a b c} \partial_{\mu} G^{a} G^{b} g_{\mu}^{c}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}- \\
& M^{2} W_{\mu}^{+} W_{\mu}^{-}-\frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{\omega}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}- \\
& { }_{2}^{1} \partial_{\mu} H \partial_{\mu} H-\frac{1}{2} m_{h}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-M^{2} \phi^{+} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}- \\
& \frac{1}{22_{\omega}^{2}} M \phi^{0} \phi^{0}-\beta_{h}\left[\frac{2 L^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right]+\frac{2 M^{4}}{g^{2}} \alpha_{h}- \\
& i g c_{w}\left[\partial_{\nu} Z_{\mu}^{0}\left(W_{\mu}^{-} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+\right. \\
& \left.Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-i g s_{w}\left[\partial _ { \nu } A _ { \mu } \left(W_{\mu}^{+} W_{\nu}^{-}-\right.\right. \\
& \left.W_{\nu}^{+} W_{\mu}^{-}\right)^{\nu}-A_{\nu}^{\mu}\left(W_{\mu}^{+} \partial_{\nu}^{\nu} W_{\mu}^{-}-W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu}^{\nu} W_{\mu}^{-}-\right. \\
& \left.\left.W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right]-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu} W_{\mu}^{+} W_{\nu}+ \\
& g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-\right. \\
& \left.A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left[A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-\right. \\
& \left.2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right]-g \alpha\left[H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right]-\frac{1}{8} g^{2} \alpha_{h}\left[H^{4}+\right. \\
& \left.\left(\rho^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right]- \\
& g M W_{\mu}^{+} W_{\mu}^{-} H-\frac{1}{2} g g_{c^{2}}^{M} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left[W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-\right. \\
& \left.W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right]+\frac{1}{2} g\left[W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)-\right. \\
& \left.W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right]+\frac{1}{2} g \frac{1}{\epsilon_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)-\right. \\
& i g \frac{s_{\omega}^{2}}{\omega_{\omega}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)- \\
& i g \frac{1-2 c_{m}^{2}}{2 c_{\omega}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)- \\
& { }_{4}^{1} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left[H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right]-\frac{1}{4} g^{2} \frac{1}{c_{\mu}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left[H^{2}+\left(\phi^{0}\right)^{2}+\right. \\
& \left.2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right]-\frac{1}{2} g^{2} \frac{s}{w}_{c_{w}^{2}}^{c_{\mu}} Z^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& { }_{2}^{1} i g^{2 s^{2} s_{W}^{2}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right. \\
& \left.W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-g^{2 s_{m}} c_{w}\left(2 c_{w}^{2}-\right. \\
& \text { 1) } Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}- \\
& \left.\bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-d_{j}^{\lambda} \lambda \partial \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{m} A_{\mu}\left[-\left(e^{\lambda} \wedge^{\mu} e^{\lambda}\right)+\right. \\
& \left.{ }_{3}^{2}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(d_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right]+\frac{i g}{4 c_{w}} Z_{\mu}^{0}\left[\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\right. \\
& \left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) u_{j}^{\lambda}\right)+\left(d_{j}^{\lambda} \gamma^{\mu}(1-\right. \\
& \left.\left.\left.\frac{8}{3} s_{w}^{2}-\gamma^{5}\right) d_{j}^{\lambda}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left[\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}(1+\right.\right. \\
& \left.\left.\left.\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{k}\right)\right]+\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left[\left(e^{-\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(d_{j}^{k} C_{\lambda_{k}}^{\dagger} \gamma^{\mu}(1+\right.\right. \\
& \left.\left.\left.\gamma^{5}\right) u_{j}^{\lambda}\right)\right]+\frac{i q}{2 \sqrt{2}} \frac{m_{\hat{N}}^{M}}{M}\left[-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{5}\right) e^{\lambda}\right)+\phi^{-}\left(e^{\lambda}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)\right]- \\
& \frac{g}{2} \frac{m_{i}^{\lambda}}{M}\left[H\left(\bar{e}^{\lambda} e^{\lambda}\right)+i \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)\right]+\frac{i g}{2 M \sqrt{2}} \phi^{+}\left[-m m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}(1-\right.\right. \\
& \left.\left.\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda_{k}}\left(1+\gamma^{5}\right) d_{j}^{k}\right]+\frac{i g}{2 M \sqrt{2}} \phi^{-}\left[m _ { d } ^ { \lambda } \left(d_{j}^{\lambda} C_{\lambda N}^{\dagger}(1+\right.\right. \\
& \left.\left.\gamma^{5}\right) u_{j}^{k}\right)-m_{u}^{k}\left(d_{j}^{\lambda} C_{\lambda, k}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{k}\right]-\frac{g}{2} \frac{M_{M}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)- \\
& \frac{q}{2} \frac{m_{d}^{\lambda}}{M} H\left(\vec{d}_{j}^{\lambda} d_{j}^{\lambda}\right)+\frac{i q}{2} \frac{m_{\lambda}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i q}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)
\end{aligned}
$$

..this 'fits' in

$$
\operatorname{Tr}(f(D / \Lambda))+\frac{1}{2}\left\langle\cdot J \tilde{\xi}, D_{A} \tilde{\xi}\right\rangle
$$

Num. of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \longmapsto$ NCG \longmapsto Classical Lagrangian of the Standard Model

Motivation

- From physics to NCG: The Standard Model from the Spectral Action

Num. of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \longmapsto$ NCG $\quad \mapsto$ Classical Lagrangian of the Standard Model

Motivation

- From physics to NCG: The Standard Model from the Spectral Action

$$
\begin{aligned}
& M_{3}(\mathbb{C}) \ni \Upsilon_{e}, \Upsilon_{v}, \ldots, \Upsilon_{d} \\
& D_{F}=\left(\begin{array}{cccccccccccccccccc}
0 \\
0 & 0 & 0 & 0 & 0 & \Upsilon_{d} & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Upsilon_{R} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{L}^{T} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{e}^{T} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{\nu} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\Upsilon}_{e} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{u}^{T} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \Upsilon_{d}^{T} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\Upsilon}_{u} & 0 & 0 & 0 & 1_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \check{\Upsilon}_{d} & 0 & 0 &
\end{array}\right) \\
& \in M_{96}(\mathbb{C})_{\text {sta. }} \\
& \text { * One more nonzero entry in } D_{F} \\
& \left\langle J \psi, D_{F} \psi\right\rangle \\
& \Rightarrow \text { not observed } \\
& \text { interaction } \\
& \text { * all zeros from geometry }
\end{aligned}
$$

Numb. of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C}) \mapsto$ NCG $\quad \mapsto$ Classical Lagrangian of the Standard Model

[^0]Towards a quantum theory of noncommutative spaces
< The far distant goal is to set up a functional integral evaluating spectral

$$
\text { observables } \mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\mu \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{~d} \psi \mathrm{~d} D \quad \gg
$$

[Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]

Towards a quantum theory of noncommutative spaces
< The far distant goal is to set up a functional integral evaluating spectral

$$
\text { observables } \mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle\psi, D \psi\rangle+\rho(e, D)} \mathrm{d} e \mathrm{~d} \psi \mathrm{~d} D
$$

[Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]

$$
\begin{aligned}
& \text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral } \\
& \int_{\text {METRIC }} \mathrm{e}^{-\frac{1}{\hbar} S_{\text {EH }}[g]} \mathrm{d} g \xrightarrow{\text { Einstein-Hilbert } \rightarrow \text { spectral }} \int_{\text {DIRAC }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D \\
& \text { (hard to define for manifolds) } \\
& f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
\end{aligned}
$$

Towards a quantum theory of noncommutative spaces
< The far distant goal is to set up a functional integral evaluating spectral

$$
\text { observables } \mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{d} e \mathrm{~d} \psi \mathrm{~d} D \quad \gg
$$

[Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]

$$
\begin{aligned}
& \text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral } \\
& \int_{\text {METRIC }} \mathrm{e}^{-\frac{1}{\hbar} S_{\text {EH }}[g]} \mathrm{d} g \xrightarrow{\text { Einstein-Hilbert } \rightarrow \text { spectral }} \int_{\text {DIRAC }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D \\
& \text { (hard to define for manifolds) } \\
& f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
\end{aligned}
$$

- Possible application to (Euclidean) quantum gravity: random noncommutative geometry

Towards a quantum theory of noncommutative spaces
< The far distant goal is to set up a functional integral evaluating spectral

$$
\text { observables } \mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{d} e \mathrm{~d} \psi \mathrm{~d} D \quad \gg
$$

[Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]

$$
\begin{aligned}
& \text { functional integral } \xrightarrow[\text { paradigm shift }]{ } \text { operator integral } \\
& \begin{aligned}
& \int_{\text {METRIC }} \mathrm{e}^{-\frac{1}{\hbar} S_{\text {EH }}[g]} \mathrm{dg} \xrightarrow{\text { Einstein-Hilbert } \rightarrow \text { spectral }} \int_{\text {DIRAC }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D \\
& \text { (hard to define for manifolds) } \\
& f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
\end{aligned}
\end{aligned}
$$

- Possible application to (Euclidean) quantum gravity: random noncommutative geometry

Quantum superposition of geometries

Towards a quantum theory of noncommutative spaces
< The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{d} e \mathrm{~d} \psi \mathrm{~d} D \quad \gg$
[Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]

$$
\begin{aligned}
& \text { functional integral } \begin{aligned}
& \text { paradigm shift } \text { operator integral } \\
& \int_{\text {METRIC }} \mathrm{e}^{-\frac{1}{\hbar} S_{\text {EH }}[g]} \mathrm{dg} \xrightarrow{\text { Einstein-Hilbert } \rightarrow \text { spectral }} \int_{\text {DIRAC }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D \\
& \text { (hard to define for manifolds) } \\
& f: \mathbb{R} \rightarrow \mathbb{R} \text { with } f(D) \rightarrow \infty \text { at large argument }
\end{aligned}
\end{aligned}
$$

- Possible application to (Euclidean) quantum gravity: random noncommutative geometry

- Origin of noncommutative topology Connes' differential noncommutative (nc) geometry = nc topology [Gelfand, Najmark Mat. Sbornik '43] + metric [A. Connes, NCG' 94$]$ \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$
- Origin of noncommutative topology Connes' differential noncommutative $(n c)$ geometry $=$ nc topology [Gelfand, Najmark Mat. Sorrnik '43] + metric [A. Connes, NCG' 94$]$ \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$〔 \downarrow \{'noncommutative topological spaces'\} $\simeq\left\{\right.$ unital ${ }^{\text {n }}$ mative C^{*}-algebras $\}$
- arguably, the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum (ordered $\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots$) of $\Omega \subset \mathbb{R}^{d}$

$$
\#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+o\left(\Lambda^{d / 2}\right)
$$

From this, you cannot answer positively Marek Kac' 1966-question. But you can 'hear the shape of Ω ' knowing a spectral triple. [A, Connes, JCCG 2013] (and from it [Connes-van Suijekom, CMP 2021] can hear an MP3; our story today is not entirely
unrelated).

- Origin of noncommutative topology. Connes' differential noncommutative $(n c)$ geometry $=$ nc topology [Gelfand, Najmark Mat. Sbornik 43] + metric [A. Connes, NCG $\left.{ }^{9} 94\right]$ \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$」
\{'noncommutative topological spaces'\} \simeq \{unital ${ }^{\text {n }}$ matative C^{*}-algebras $\}$
- arguably, the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum (ordered $\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots$) of $\Omega \subset \mathbb{R}^{d}$

$$
\#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+\mathrm{o}\left(\Lambda^{d / 2}\right)
$$

From this, you cannot answer positively Marek Kac' 1966-question. But you can 'hear the shape of Ω ' knowing a spectral triple. [A, Connes, JNCG 2013] (and from it [Connes van Suijlekom, CMP 2021] can hear an MP3; our story today is not entirely unrelated).

- Origin of noncommutative topology Connes' differential noncommutative $(n c)$ geometry $=\mathrm{nc}$ topology [Gelfand, Najmark Mat. Sbornik '43] + metric [A. Sones, NCG' ${ }^{94]}$ \{compact Hausdorff topological spaces $\} \simeq\left\{\right.$ unital commutative C^{*}-algebras $\}$」
\{'noncommutative topological spaces'\} \simeq \{unital ${ }^{\text {n }}$ mutative C^{*}-algebras $\}$
- arguably, the 1st predecessor theorem of the spectral formalism is Weyl's law (1911) on the rate of growth of the Laplace spectrum (ordered $\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \ldots$) of $\Omega \subset \mathbb{R}^{d}$

$$
\#\left\{i: \lambda_{i} \leqslant \Lambda\right\}=\frac{\operatorname{vol}(\text { unit ball })}{(2 \pi)^{d}} \operatorname{vol} \Omega \cdot \Lambda^{d / 2}+\mathrm{o}\left(\Lambda^{d / 2}\right)
$$

From this, you cannot answer positively Marek Kac' 1966-question. But you can 'hear the shape of Ω ' knowing a spectral triple. [A, Cones, JNCG 2013] (and from it [Connesvan Suijlekom, CMP 2021] can hear an MP3; our story today is not entirely unrelated).

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

$$
\inf _{\gamma \text { as above }}\left\{\int_{\gamma} \mathrm{d} s\right\}=d(x, y)
$$

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

$$
|f(x)-f(y)|
$$

Replace spin manifold (\mathcal{M}, g) by $\left(C^{\infty}(M), L^{2}(M, \mathbb{S}), D_{M}\right)$

Connes' geodesic distance

$$
\sup _{f \in C^{\infty}(\mathcal{M})}\left\{|f(x)-f(y)|:\left\|D_{M} \circ f-f \circ D_{M}\right\| \leqslant 1\right\}
$$

Replace spin manifold (M, g) by $\left(C^{\infty}(M), L^{2}(M, S), D_{M}\right)$

Connes' geodesic distance

$\inf _{\gamma \text { as above }\{ }\left\{\int_{\gamma} \mathrm{d} s\right\}=d(x, y)=\sup _{f \in C^{\infty}(\mathcal{M})}\left\{|f(x)-f(y)|:\left\|D_{\mathcal{M}} \circ f-f \circ D_{\mathcal{M}}\right\| \leqslant 1\right\}$

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is self-adjoint
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. $*$-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is self-adjoint
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent ...

Quantum Groups

> Spectral triples
von Neumann
(A, H, D)
C*-algebras

NCG

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is self-adjoint
- for each $a \in A_{M},\left[D_{M}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent . . .

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- The 'commutative case' motivates

$$
\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}
$$

Quantum Groups

Spectral triples
von Neumann C^{*}-algebras

Commutative spectral triples

A spin manifold M yields $\left(A_{M}, H_{M}, D_{M}\right)$

- $A_{M}=C^{\infty}(M)$ is a comm. $*$-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is self-adjoint
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent ...

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- The 'commutative case' motivates Connes'

$$
\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}
$$

- Reconstruction Theorem: Roughly formulated, states that commutative spectral triples ${ }^{+ \text {axioms }}$ are always Riemannian manifolds [A, Connes, JNCG ' 13] after efforts by $[\mu$. Figueroa, $]$. Gracia-Bondia-. Varilly, A.

Commutative spectral triples

 There exists a $(A, H, D)=$ Aspinmanifold M yields- $\left(A_{M}, H_{M}, D_{M}\right)$- $A_{M}=C^{\infty}(M)$ is a comm. *-algebra
- $H_{M}:=L^{2}(M, \mathbb{S})$ a repr. of A_{M}
- $D_{M}=-\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\omega_{\mu}\right)$ is self-adjoint
- for each $a \in A_{\mathcal{M}},\left[D_{\mathcal{M}}, a\right]$ is bounded, and in fact $\left[D_{M}, x^{\mu}\right]=-\mathrm{i} \gamma^{\mu}$
- D_{M} has compact resolvent ...

abstract
A^{2} spectral triple (A, H, D) consists of
- a $*$-algebra A commutative
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that $[D, a]$ is bounded for each $a \in A$
- The 'commutative case' motivates

$$
\Omega_{D}^{1}(A):=\left\{\sum_{\text {(finite) }} b[D, a] \mid a, b \in A\right\}
$$

- Reconstruction Theorem: Roughly formulated, states that commutative spectral triples ${ }^{+ \text {axioms }}$ are always Riemannian manifolds [A, Connes, JNCG $\left.{ }^{1} 13\right]$ after efforts by $[\mu$. Figueroa, $]$. Gracia-Bondia-. Varilly, A.

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action is given by
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]
for a bump function f, \wedge a scale. It's computed with heat kernel expansion
[P. Gilkey,J. Diff. Geom. '75]

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action is given by
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action is given by
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]
for a bump function f, \wedge a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. '75]
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)$

- applications require (A, H, D) to have a reality $\mathrm{J}: H \rightarrow H$ antiunitary ${ }^{+}$axioms , implementing a right A-action on H

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action is given by
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $\left.C M P^{\prime} 97\right]$
for a bump function f, \wedge a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. '75]
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)$
- applications require (A, H, D) to have a reality $\mathrm{J}: H \rightarrow H$ antiunitary ${ }^{\text {axioms }}$, implementing a right A-action on H
- connections: if S^{G} is a G-invariant functional on M

$$
\begin{gathered}
S^{G} \leadsto S^{\operatorname{Maps}(M, G)} \\
\mathrm{d} \leadsto \mathrm{~d}+\mathbb{A} \quad \mathbb{A} \in \Omega^{1}(M) \otimes \mathfrak{g} \\
\mathbb{A}^{\prime}=u \mathbb{A} u^{-1}+u \mathrm{~d} u^{-1} \quad u \in \operatorname{Maps}(\mathcal{M}, G)
\end{gathered}
$$

NCG toolkit in high energy physics

- On a spectral triple (A, H, D) the (bosonic) classical action is given by
$S(D)=\operatorname{Tr}_{H} f(D / \Lambda)$ [Chamseddine-Connes $C M P$ '97]
for a bump function f, \wedge a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. '75]
- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $\left(C^{\infty}\left(A_{F}\right), H_{M} \otimes H_{F}, D_{M} \otimes 1_{F}+\gamma_{5} \otimes D_{F}\right)$
- applications require (A, H, D) to have a reality $\mathrm{J}: H \rightarrow H$ antiunitary ${ }^{\text {axioms }}$, implementing a right A-action on H
- connections: if S^{G} is a G-invariant functional on M

$$
\begin{aligned}
S^{G} & \leadsto S^{\operatorname{Maps}(M, G)} \\
\mathrm{d} & \leadsto \mathrm{~d}+\mathbb{A} \quad \mathbb{A} \in \Omega^{1}(M) \otimes \mathfrak{g}
\end{aligned}
$$

$$
\mathbb{A}^{\prime}=u \mathbb{A} u^{-1}+u \mathrm{~d} u^{-1} \quad u \in \operatorname{Maps}(M, G)
$$

- given (A, H, D) and a Morita equivalent algebra $B\left(\right.$ i.e. $\left.\operatorname{End}_{A}(E) \cong B\right)$ yields new ($B, E \otimes_{A} H$, new D 's). For $A=B$, in fact a tower

$$
\left\{\left(A, H, D+\omega \pm J \omega J^{-1}\right)\right\}_{\omega \in \Omega_{D}^{1}(A)}
$$

$$
\begin{aligned}
D_{\omega} & \mapsto \operatorname{Ad}(u) D_{\omega} \operatorname{Ad}(u)^{*}=D_{\omega_{u}} \\
\omega & \mapsto \omega_{u}=u \omega u^{*}+u\left[D, u^{*}\right] \quad u \in \mathcal{U}(A)
\end{aligned}
$$

Main Result

Matrix Yang-Mills functional only using spectral triples [CP 2105.01025 Ann. Henri Poincare $233^{222]}$. This obeys spectral triple axioms (unlike e.g. [Alekseev, Recknagel, Schomerus, JHEP, oo]) and quantisation leads to a pure matrix model.

Organisation

Аıм: Make sense of

$$
\mathcal{Z}=\int_{\text {Dİас }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D
$$

- Plane ($\hbar, 1 / N, 0)$ of 'base geometries'
- Plane $(\hbar, 0, F)=\lim _{N \rightarrow \infty}(\hbar, 1 / N, F)$
- Plane $(0,1 / N, F)=\lim _{\hbar \rightarrow 0}(\hbar, 1 / N, F)$ of classical geometries
[CP 2105.01025]

Organisation

1 Matrix Geometries
[J. Barrett, J. Math. Phys. 2015]
2 Dirac ensembles [J. Barrett, L. Glaser, J. Phys. A 2016] and how to compute the spectral action [CP 1912.13288]

3 Gauge matrix spectral triples (this talk) [CP 2105.01025]

4 Functional Renormalisation [CP 2007.10914] and [CP 2111.02858] (not this talk)

II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
. . . +axioms (omitted) that can be solved for D...

II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
\ldots. . +axioms (omitted) that can be solved for $D \ldots$
- Fixing conventions for γ 's, D in even dimensions: $[J$. Barrett, J. Math. Phys. '15]

$$
D=\sum_{J} \Gamma_{\text {s.a. }}^{J} \otimes\left\{H_{J}, \cdot\right\}+\sum_{J} \Gamma_{\text {anti: }}^{J} \otimes\left[L_{J}, \cdot\right]
$$

multi-index J monot. increasing, $|J|$ odd, $H_{j}^{*}=H_{J}, L_{j}^{*}=-L_{J}$

II. Fuzzy Geometries and Multimatrix Models

A fuzzy geometry of signature (p, q), so $\eta=\operatorname{diag}\left(+_{p},-_{q}\right)$, consists of

- $A=M_{N}(\mathbb{C})$
- $H=\mathbb{S} \otimes M_{N}(\mathbb{C})$, with \mathbb{S} a $\mathbb{C} \ell(p, q)$-module
. . . +axioms (omitted) that can be solved for D...
- Fixing conventions for γ 's, D in even dimensions: $[$. Barrett, J. Math. Phys. '15]

$$
D=\sum_{J} \Gamma_{\text {s.a. }}^{J} \otimes\left\{H_{J}, \cdot\right\}+\sum_{J} \Gamma_{\text {anti: }}^{J} \otimes\left[L_{J}, \cdot\right]
$$

multi-index J monot. increasing, $|J|$ odd, $H_{j}^{*}=H_{J}, L_{j}^{*}=-L_{J}$

- Examples: [J. Barrett, L. Glaser, J. Phys. A 2016]

$$
\begin{aligned}
& -D_{(1,1)}=\gamma^{1} \otimes[L, \cdot]+\gamma^{2} \otimes\{H, \cdot\} \\
& -D_{(0,4)}=\sum_{\mu} \gamma^{\mu} \otimes\left[L_{\mu}, \cdot\right]+\gamma^{\hat{\mu}} \otimes\left\{H_{\hat{\mu}}, \cdot\right\} \quad(\hat{\mu}=\text { omit } \mu \text { from }(0123))
\end{aligned}
$$

so we will get double traces from $\operatorname{Tr}_{H}=\operatorname{Tr}_{S} \otimes \operatorname{Tr}_{M_{N}(\mathbb{C})}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{N}^{\otimes 2}$

Notation: $\operatorname{Tr}_{V} X$ is the trace on operators $X: V \rightarrow V, \operatorname{Tr}_{V} 1=\operatorname{dim} V$. So $\operatorname{Tr}_{N} 1=N$ but $\operatorname{Tr}_{M_{N}(\mathbb{C})}(1)=N^{2}$.

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

([CP 1912.13288] appeared two weeks after [Sati-Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too)

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{C}}$, and a tool to organize the first trace is chord diagrams:

([CP 1912.13288] appeared two weeks after [Sati-Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too)
- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

([CP 1912.13288] appeared two weeks after [Sati-Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too)

- for dimension- d geometries, the combinatorial formula [cp ${ }^{19]}$ reads

$$
\begin{aligned}
& \left.\times\left(\sum_{\Upsilon \in \mathscr{P}_{2 t}} \operatorname{sgn}\left(I_{\Upsilon}\right) \times \operatorname{Tr}_{N}\left(K_{l_{\Upsilon c}}\right) \times \operatorname{Tr}_{N}\left[\left(K^{T}\right)_{l_{\Upsilon}}\right]\right)\right\} \\
& \mathscr{P}_{2 t}=2^{\{1, \ldots, 2 t\}}, K_{l}^{*}= \pm K_{l}, \operatorname{sgn}\left(I_{\Upsilon}\right) \in \mathbb{Z}_{2}
\end{aligned}
$$

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

([CP 1912.13288] appeared two weeks after [Sati-Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too)

- for dimension- d geometries, the combinatorial formula [cp ${ }^{19]}$ reads

- $\operatorname{Tr}_{H}=\operatorname{Tr}_{\mathbb{S}} \otimes \operatorname{Tr}_{M_{N}^{\mathbb{C}}}$, and a tool to organize the first trace is chord diagrams:

$$
\operatorname{Tr}_{\mathbb{S}}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}\right)=\operatorname{dim} \mathbb{S}\left(\eta^{\mu_{1} \mu_{2}} \eta^{\mu_{3} \mu_{4}}+(-) \eta^{\mu_{1} \mu_{3}} \eta^{\mu_{2} \mu_{4}}+\eta^{\mu_{2} \mu_{3}} \eta^{\mu_{1} \mu_{4}}\right)
$$

([CP 1912.13288] appeared two weeks after [Sati-Schreiber, 1912.10425] who relate fuzzy spaces to chord diagrams too)

- for dimension- d geometries, the combinatorial formula [CP ${ }^{19]}$ reads

$$
\begin{aligned}
& \frac{1}{\operatorname{dim} \mathbb{S}} \operatorname{Tr}\left(D^{2 t}\right)=\sum_{\substack{\text { if } J \in \Lambda_{d}, \mathrm{dx}^{\prime} \neq 0 \text { on } \mathbb{R}^{d} \\
\triangleleft}}^{I_{l_{2} \in \Lambda_{d}^{-}}} \underset{\substack{\chi \in \mathrm{CD}_{2 n} \\
2 n=\sum_{i}\left|l_{i}\right|}}{\sum^{\text {decorated chord diags }}} \\
& \left.\times\left(\sum_{\Upsilon \in \mathscr{P}_{2 t}} \operatorname{sgn}\left(I_{\Upsilon}\right) \times \operatorname{Tr}_{N}\left(K_{l_{\Upsilon c}}\right) \times \operatorname{Tr}_{N}\left[\left(K^{T}\right)_{I_{\Upsilon}}\right]\right)\right\} \\
& \mathscr{P}_{2 t}=2^{\{1, \ldots, 2 t\}}, K_{l}^{*}= \pm K_{l}, \operatorname{sgn}(\mid r) \in \mathbb{Z}_{2}
\end{aligned}
$$

Multimatrix models with multi-traces

- The chord-diagram description holds in general dimension and signature [CP '19]

$$
\begin{aligned}
\mathcal{Z} & =\int_{D_{\text {IRAC }}} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D \quad(\hbar=1) \\
& =\int_{M_{p, q}} \mathrm{e}^{-N \operatorname{Tr}_{N} P-\operatorname{Tr}_{N}^{\otimes 2}\left(Q_{(1)} \otimes Q_{(2)}\right)} \mathrm{d} \mathbb{X}_{\text {LeB }}
\end{aligned}
$$

- $\mathbb{X} \in M_{p, q}=$ products of $\mathfrak{s u}(N)$ and \mathcal{H}_{N}
- $\mathrm{d} \mathbb{X}_{\text {LeB }}$ is the Lebesgue measure on $M_{p, q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k\rangle}=\mathbb{C}\langle\mathbb{X}\rangle$ nc-polynomials
- $\mathcal{Z}_{\text {formal }}$ leads to colored ribbon graphs

Multimatrix models with multi-traces

- The chord-diagram description holds in general dimension and signature [CP '19]

$$
\begin{aligned}
\mathcal{Z} & =\int_{\text {DiRAC }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D \quad(\hbar=1) \\
& =\int_{M_{p, q}} \mathrm{e}^{-N \operatorname{Tr}_{N} P-\operatorname{Tr}_{N}^{\otimes 2}\left(Q_{(1)} \otimes Q_{(2)}\right)} \mathrm{d} \mathbb{X}_{\text {LeB }}
\end{aligned}
$$

- $\mathbb{X} \in M_{p, q}=$ products of $\mathfrak{s u}(N)$ and \mathcal{H}_{N}
- $\mathrm{d} \mathbb{X}_{\text {LeB }}$ is the Lebesgue measure on $M_{p, q}$
- $P, Q_{(i)}$ in $\mathbb{C}_{\langle k\rangle}=\mathbb{C}\langle\mathbb{X}\rangle$ nc-polynomials
- $\mathcal{Z}_{\text {formal }}$ leads to colored ribbon graphs

- Multitrace: 'touching interactions’ [Klebanov, PRD '95], wormholes [Ambjorn-Jurkiewicz-Loll-Vernizzi, JHEP ‘01], 'stuffed maps' [G. Borot Ann. Inst. Henri Poincaré Comb. Phys. Interact. '14], AdS/CFT [Witten, hep-th/0112258]
- Ribbon graphs: Enumeration of maps [Brezin, Itzykson, Parisi, Zuber, CMP '78], here 'face-worded'

\& intersection num. of ψ-classes [Kontsevich, CMP, '92]

$$
\begin{aligned}
& \sum_{a_{1}+\ldots+a_{n}=\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{g, n}} \psi_{1}^{a_{1}} \cdot \psi_{2}^{a_{2}} \cdots \psi_{n}^{a_{n}} \prod_{j=1}^{n} \frac{\left(2 a_{j}-1\right)!!}{s_{j}^{2 a_{j}+1}} \\
& =\sum_{G \text { trivalent of type }(g, n)} \frac{2^{2 g-2+n}}{\# \operatorname{Aut}(G)} \prod_{e \in G} \frac{1}{s_{L(e)}+s_{R(e)}}
\end{aligned}
$$

III. Yang-Mills-Higgs matrix theory

Definition [CP 2105.01205]. We define a gauge matrix spectral triple $G_{f} \times F$ as the spectral triple product of a fuzzy geometry G_{f} with a finite geometry $F=\left(A_{F}, H_{F}, D_{F}\right), \operatorname{dim} A_{F}<\infty$.

Lemma-Definition [CP 2105.01025]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is

$$
D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+\jmath_{\mu}\right)}^{D_{\text {gauge }}}+\overbrace{\gamma \otimes \Phi}^{D_{\text {Higgs }}}, \quad a_{\mu}=\text { 'gauge potential', } x_{\mu}=\text { spin connection? }
$$

The field strength is given by

$$
\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}^{d_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]
$$

Lemma-Definition [CP 2105.01025]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is
$D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+\gamma_{\mu}\right)}^{D_{\text {gauge }}}+\overbrace{\gamma \otimes \Phi}^{D_{\text {Higgs }}}, \quad a_{\mu}=$ 'gauge potential', $x_{\mu}=$ spin connection?
The field strength is given by

$$
\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}^{d_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]
$$

Lemma. The gauge group $\mathrm{G}(A) \cong \mathrm{PU}(N) \times \mathrm{PU}(n)$ acts as follows

$$
\mathrm{F}_{\mu \nu} \mapsto \mathrm{F}_{\mu \nu}^{u}=u \mathrm{~F}_{\mu \nu} u^{*} \text { for all } u \in \mathrm{G}(A)
$$

Lemma-Definition [CP 2105.01025]. Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$
F=\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)
$$

and G_{f} Riemannian $(d=4)$ fuzzy geometry on $M_{N}(\mathbb{C})$, whose fluctuated Dirac op. is
$D_{\omega}=\sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes\left(\ell_{\mu}+a_{\mu}\right)+\gamma^{\hat{\mu}} \otimes\left(x_{\mu}+s_{\mu}\right)}^{\text {Dgauge }}+\overbrace{\gamma \otimes \Phi}^{D_{\text {Higgs }}}, \quad a_{\mu}=$ 'gauge potential', $x_{\mu}=$ spin connection?
The field strength is given by

$$
\mathscr{F}_{\mu \nu}:=[\overbrace{\ell_{\mu}+a_{\mu}}^{d_{\mu}}, \ell_{\nu}+a_{\nu}]=:\left[\mathrm{F}_{\mu \nu}, \cdot\right]
$$

Lemma. The gauge group $\mathrm{G}(A) \cong \mathrm{PU}(N) \times \mathrm{PU}(n)$ acts as follows

$$
\mathrm{F}_{\mu \nu} \mapsto \mathrm{F}_{\mu \nu}^{u}=u \mathrm{~F}_{\mu \nu} u^{*} \text { for all } u \in \mathrm{G}(\mathrm{~A})
$$

The content of the quadratic-quartic Spectral Action ...

Meaning

Derivation
Gauge potential
Covariant derivative

Random matrix case, flat $d=4$ Riem.
$\mathrm{Tr}=$ TRACE OF ops. $M_{N} \otimes M_{n} \rightarrow M_{N} \otimes M_{n}$

$$
\ell_{\mu}=\left[L_{\mu} \otimes 1_{n}, \cdot\right]
$$

$$
a_{\mu}=\left[A_{\mu}, \cdot\right]
$$

$$
d_{\mu}=\ell_{\mu}+a_{\mu}
$$

Smooth operator
∂_{i}
\mathbb{A}_{i}
$\mathbb{D}_{i}=\partial_{i}+\mathbb{A}_{i}$

Meaning

Derivation
Gauge potential
Covariant derivative

Field strength

Yang-Mills action
Higgs field
Higgs potential
Gauge-Higgs coupling

Random matrix case, flat $d=4$ Riem.

$$
\operatorname{Tr}=\text { TRACE OF OPS. } M_{N} \otimes M_{n} \rightarrow M_{N} \otimes M_{n}
$$

$$
\begin{array}{cc}
\ell_{\mu}=\left[L_{\mu} \otimes 1_{n}, \cdot\right] & \partial_{i} \\
a_{\mu}=\left[A_{\mu}, \cdot\right] \\
d_{\mu}=\ell_{\mu}+a_{\mu} & \mathbb{A}_{i} \\
{\left[d_{\mu}, d_{\nu}\right]=\overbrace{\left[\ell_{\mu}, \ell_{\nu}\right]}^{\neq 0}+} & {\left[D_{i}, \mathbb{D}_{j}\right]=\overbrace{\left[\partial_{i}, \partial_{j}\right]}^{\equiv 0}+} \\
{\left[\ell_{\mu}, a_{\nu}\right]-\left[\ell_{\nu}, a_{\mu}\right]+\left[a_{\mu}, a_{\nu}\right]} & \partial_{i} \mathbb{A}_{j}-\partial_{j} \mathbb{A}_{i}+\left[\mathbb{A}_{i}, \mathbb{A}_{j}\right]
\end{array}
$$

$$
-\frac{1}{4} \operatorname{Tr}\left(\mathscr{F}_{\mu \nu} \mathscr{F}^{\mu \nu}\right)
$$

$$
\varnothing
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(f_{2} \Phi^{2}+f_{4} \Phi^{4}\right) \\
& -\operatorname{Tr}\left(d_{\mu} \Phi d^{\mu} \Phi\right)
\end{aligned}
$$

Smooth operator

$$
-\frac{1}{4} \int_{M} \operatorname{Tr}_{\mathfrak{s u}(n)}\left(\mathbb{F}_{i j} \mathbb{F}^{i j}\right) \mathrm{vol}
$$

$$
h
$$

$$
\begin{gathered}
\int_{M}\left(f_{2}|h|^{2}+f_{4}|h|^{4}\right) \mathrm{vol} \\
-\int_{M}\left|\mathbb{D}_{i} h\right|^{2} \mathrm{vol}
\end{gathered}
$$

Conclusion

- spectral triple \equiv spin manifiold, after relaxing commutativity
- spin $M \times\{$ finite spectral triple $\} \equiv$ almost-commutative (reproduces classical Standard Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP ${ }_{19]}$ computes spectral action

Conclusion

- spectral triple \equiv spin manifiold, after relaxing commutativity
- spin $M \times\{$ finite spectral triple $\} \equiv$ almost-commutative ${ }_{\text {(reproduces classical Standard }}$ Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP 19] computes spectral action
- fuzzy \times finite $=$ gauge matrix spectra triple, it is $\mathrm{PU}(n)$-Yang-Mills(-Higgs) if the fin. geom. algebra is $M_{n}(\mathbb{C})$; partition func. is a k-matrix model, k large.

Gaußians

$$
\mathcal{Z}_{\text {CAUGE Matrix }}=\int_{\text {Diracs }} \mathrm{e}^{-\operatorname{Tr}_{H} f(D)} \mathrm{d} D=\int_{\text {base } \times \text { MM } \times \text { Higgs }} \mathrm{e}^{-S_{\text {gauge }}-S_{H}-S_{\text {gauge -H }}-S_{\star}} \mathrm{d} \mu_{\mathrm{G}}(L) \mathrm{d} \mu_{\mathrm{G}}(A) \mathrm{d} \Phi
$$

- small step towards [Eq. 1.892, Cones Marcolli, NCG, QFT and motives, 2007]

$$
\begin{aligned}
& \text { with (L, } \\
& \text { motives, 2007] }
\end{aligned}
$$

< The far distant goal is to set up a functional integral evaluating spectral observables $\mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{d} \psi \mathrm{d} D \quad \gg$

Conclusion

- spectral triple \equiv spin manifiold, after relaxing commutativity
- spin $M \times\{$ finite spectral triple $\} \equiv$ almost-commutative ${ }_{\text {(reproduces clasical Standard }}$ Model, but hard to quantize)
- fuzzy or matrix geometry \approx finite spectral triple $+\mathbb{C} \ell$-action; [CP 19] computes spectral action
- fuzzy \times finite $=$ gauge matrix spectra triple, it is $\operatorname{PU}(n)$-Yang-Mills(-Higgs) if the fin. geom. algebra is $M_{n}(\mathbb{C})$; partition func. is a k-matrix model, k large.

$$
\begin{array}{r}
\mathcal{Z}_{\text {cavce markix }}=\int_{\text {DiRacs }} \mathrm{e}^{-\operatorname{Tr}_{\mathrm{H}} f(D)} \mathrm{d} D=\int_{\text {base } \times Y M \times \text { Higgs }} \mathrm{e}^{-S_{\text {gauge }}-S_{H}-S_{\text {gauge }-H}-S_{\Phi}} \mathrm{d} \mu_{\mathrm{G}}(L) \mathrm{d} \mu_{\mathrm{G}}(A) \mathrm{d} \Phi \\
\text { with }(\mathrm{L}, \mathrm{~A}, \phi) \in[\mathfrak{s u}(N)]^{\times 4} \times\left[\mathcal{N}_{N, n}^{\text {gauge }}\right]^{\times 4} \times \mathscr{N}_{N, n}^{\text {Higgs }}
\end{array}
$$

- small step towards [Eq. 1.892, Connes Marcolli, NCG, QFT and motives, 2007]
< The far distant goal is to set up a functional integral evaluating spectral

$$
\begin{gathered}
\text { observables } \mathscr{S} \quad\langle\mathscr{S}\rangle=\int \mathscr{S} \mathrm{e}^{-\operatorname{Tr} f(D / \Lambda)-\frac{1}{2}\langle J \psi, D \psi\rangle+\rho(e, D)} \mathrm{de} \mathrm{~d} \psi \mathrm{~d} D \quad \gg \\
\text { dziękuję้ bardzo za uwagę (i.e. thanks) }
\end{gathered}
$$

[^0]: [Connes-Lott, Null. Phys. B '91; . . . Chamseddine-Connes-Marcolli ATMP '07 (Euclidean); J. Barrett J. Math. Phys. '07 (Lorenzian), Connes-Chamseddine JHEP '12]

