REVIEWING RANDOM MULTI-MATRIX TECHNIQUES IN NONCOMMUTATIVE GEOMETRY

Carlos I. Pérez-Sánchez, perez@thphys.uni-heidelberg.de
Random Tensors at CIRM 2022
Institute for Theoretical Physics, University of Heidelberg

A «Matrix Geometry» Landscape

AIM: quantize NCG $\quad \mathcal{Z}_{\text {NCG }} \stackrel{?}{=} \int_{\text {Dirac }} \mathrm{e}^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} \mathrm{d} D$

In noncommutative geometry (or NCG), spectral triples $(\mathcal{A}, \mathcal{H}, D)$-a $*-$ algebra \mathcal{A} of bounded operators on a Hilbert space \mathcal{H} and a self-adjoint operator D-are an abstraction of spin manifolds that allows a noncommutative (nc) \mathcal{A}

- $\mathcal{Z}_{\text {NCG }}$ well-definable for finite rank D. We use fuzzy or matrix geometries, as [Barrett-Glaser J Phys A '16]; f polynomial
- Steps: I. Compute the spectral action for fuzzy geometries; II. Define matrix gauge spectral triples to add YangMills interactions; III. Renormaliza tion (Continuum limit?)

II. Matrix Yang-Mills Theory

arXiv:2105. 01025 (in press)
spectral action on an almost-commutative (AC) manifold $=M($ spin geom. $) \times F$ (finite geom.) yields Yang-Mills. The gauge fields are obtained by Morita self-fluctuations
a gauge matrix geometry $=$ matrix spectral triple \times finite spectral triple; the most general (fluctuated) Dirac operator is ($\left.\left.A_{\mu} \in \Omega_{D}^{1}\left(M_{N}(C)\right), c \in M_{n}(C)\right)_{s a}\right)$
$D=\sum_{\mu} \gamma^{\mu} \otimes(\overbrace{\left[L_{\mu} \otimes 1_{n}, \cdot\right]}^{l_{\mu}}+\overbrace{\left[A_{\mu} \otimes c, \cdot\right]}^{a_{\mu}})+\gamma \otimes \Phi+\overbrace{\sum_{\mu, v, \sigma} \gamma^{\mu} \gamma^{\gamma} \gamma^{\sigma} \otimes x_{\mu v \sigma}}^{\text {(if flat; room for gravitation) }}$

- the operators l_{μ}, a_{μ} serve to define the fuzzy field strength $\mathscr{F}_{\mu \nu}=\left[l_{\mu}+a_{\mu}, l_{\nu}+a_{\nu}\right]$. Here $d_{\mu}=l_{\mu}+a_{\mu}$ is seen as fuzzy analogue of smooth covariant derivative $D_{\mu}=\partial_{\mu}+\mathbb{A}_{\mu}$ (\mathbb{A}_{μ}, locally, the connection on SU(n)-princ. bundle)
- matrix gauge spectral triples add Yang-Mills fields in the sense that

THEOREM. The following gauge matrix geometry
«flat four-dimensional Riemannian fuzzy geometry» $\times\left(M_{n}(\mathbb{C}), M_{n}(\mathbb{C}), D_{F}\right)$ has the following spectral action, if $f(x)=\sum_{m} \frac{a_{m}}{2} x^{m}$:

$$
\frac{1}{4} \operatorname{Tr}_{\mathcal{H}} f(D)=S_{\mathrm{YM}}^{\ell}+S_{\mathrm{H}}^{\ell}+S_{\mathrm{g}-\mathrm{H}}^{\ell}+S_{2,4}^{\ell}+\text { degree } \geq 5 \text { operators }
$$

Here $S_{2,4}$ are propagators and quartic terms, otherwise each sector is defined as follows:

$$
S_{\mathrm{YM}}^{f}:=-\frac{a_{4}}{4} \operatorname{Tr}_{M_{N \otimes n}^{C}}\left(\mathscr{F}_{\mu v} \mathscr{F}^{\mu \nu}\right), \quad S_{\mathrm{H}}^{f}:=\operatorname{Tr}_{M_{N \otimes n}^{C}} f_{\mathrm{e}}(\Phi), \quad S_{g-\mathrm{H}}^{f}:=-a_{4} \operatorname{Tr}_{M_{N \otimes n}^{C}}\left(d_{\mu} \Phi d^{\mu} \Phi\right) .
$$ Higgs potential, and of the gauge-Higgs coupling $S_{g-\mathrm{H}}=-\int_{M} D_{\mu} H\left(\overline{\left.D^{\mu} H\right)}\right.$ vol - Gauge symmetry $\mathcal{G}=\operatorname{PU}(N) \times \operatorname{PU}(n)$ is the fuzzy version of the C^{∞}-gauge group $\operatorname{Diff}(M) \ltimes \operatorname{Maps}(M, \operatorname{SU}(n))$, and gauge invariance due to $\mathscr{F}_{\mu v} \mapsto \mathscr{F}^{u}=u \mathscr{F}_{\mu \nu} u^{*}, u \in \mathcal{G}$

I. Spectral Action for a Matrix Geometry

arXiv:1912.13288

- Matrix geometries of signature (p, q) [Barett, J. Math Phys. '15] are spectral triples with $\mathcal{A}=M_{N}(\mathbb{C}), \mathcal{H}=$ irreducible $\mathbb{C} \ell(p, q)$-module $V \otimes M_{N}(\mathbb{C})$.

$$
\text { Several axioms imply } D=\sum_{a} \gamma^{a} \otimes\left\{X_{a r} \cdot\right\}_{\epsilon_{a}}+\sum_{a} \gamma^{a} \gamma^{b} \gamma^{c} \otimes\left\{X_{a b c}, \cdot\right\}_{\epsilon_{a b c}}+\ldots \quad\{A, B\}_{ \pm}=A B \pm B A
$$

 has the form $N \operatorname{Tr}_{N} P+\operatorname{Tr}_{N}^{\otimes 2}\left(Q_{(1)} \otimes Q_{(2)}\right) P, Q_{1}, Q_{2} \in \mathbb{C}_{\langle k\rangle}=\mathbb{C}\left\langle X_{1}, \ldots, X_{k}\right\rangle\left(k=2^{p+q-1}\right)$ where, e.g. for 2 d fuzzy geometries (with particular coeffs. depending on p, q and f)
$P=A^{2}, B^{2}, A B, A B A B, A A B B, A A A B A B, A B A B A B$,
$Q_{(1)} \otimes Q_{(2)}=$ insertions of \otimes in such $P^{\prime} \mathrm{s}=A \otimes A, A \otimes B A B$.
Fig. 1 (Non-stuffed) planar «worded» maps m_{1} and m_{2}; Feyman graphs of dim- 2 matrix geometries

III. Functional Renormalization: Multimatrix Models (multitraces)

Physics bit

Quantum theories «flow with energy $t=\log N$ ». The effective action $\Gamma_{N}[\mathbb{X}]$ describes the theory at scale N, microscopic information on scales $>N$ is washed away. Also, Γ generates 2-edge-connected or 1PI graphs [folklore]
LANGUAGE

- Let $\mathbb{X}=\left(X_{1}, \ldots, X_{d}\right) \in M_{N}(\mathbb{C})_{\text {s.a }}^{d}$ and $\mathbb{C}_{\langle d\rangle}^{(N)}=\mathbb{C}\langle\mathbb{X}\rangle$ or «words»
- [Rota-Sagan-Stein+Voiculescu] nc-derivative $\partial_{X}: \mathbb{C}_{\langle d\rangle} \rightarrow \mathbb{C}_{\langle d\rangle}^{\otimes 2}$ sums over replacements of X in a word by \otimes, except at the ends of the word, where one adds 1 :

$$
\partial_{A}(P A A R)=P \otimes A R+P A \otimes R,
$$

$$
\text { but } \quad \partial_{A}(A L G E B R A)=1 \otimes L G E B R A+A L G E B R \otimes 1 .
$$

Also ∂_{A} on traces yields the cyclic derivative: $\partial_{A} \operatorname{Tr}(P A A R)=A R P+R P A$, for instance. The $n c$-Hessian is the matrix with entries $\operatorname{Hess}_{a, b} \operatorname{Tr} P=\partial_{X_{a}} \partial_{X_{b}} \operatorname{Tr} P$ EXAMPLE. Hess $\{\operatorname{Tr}(A B A B)\}$ reads then

$$
\left(\begin{array}{l}
\partial^{A} \circ \partial^{A} \\
\partial^{B} \circ \partial^{A} \\
\partial^{B} \circ \partial^{B} \circ \partial^{B}
\end{array}\right) \operatorname{tr}(\overbrace{(A B A B}^{\mathbb{X}})=2(\underbrace{\overbrace{B \otimes B}^{B A \otimes 1+1 \otimes A B}}_{\mathbb{X}+\mathbb{X}} \overbrace{A_{\mathbb{X}}^{\mathbb{X}}}^{\mathbb{X} \otimes 1+1 \otimes B A})
$$

- the presence of multitraces (see Fig. 2) extends this algebra to $\mathcal{B}=\mathcal{A}_{d}^{(\mathbb{N})}=$ $\mathbb{C}_{\langle d\rangle}^{\otimes 2} \oplus \mathbb{C}_{\langle d\rangle}^{\boxtimes 2}$ with the product \star given by

$$
(U \otimes W) \star(P \otimes Q)=P U \otimes W Q, \quad(U \boxtimes W) \star(P \otimes Q)=U \boxtimes P W Q
$$

$$
(U \otimes W) \star(P \boxtimes Q)=W P U \boxtimes Q, \quad(U \boxtimes W) \star(P \boxtimes Q)=\operatorname{Tr}(W P) U \boxtimes Q
$$

for $P, Q, U, W \in \mathbb{C}_{\langle d\rangle}$. $\operatorname{Traces} \operatorname{Tr}_{\mathcal{B}}(P \otimes Q)=\operatorname{Tr} P \operatorname{Tr} Q, \operatorname{Tr}_{\mathcal{B}}(P \boxtimes Q)=\operatorname{Tr}(P Q)$.

Renormalization Group: how do words flow - $\Gamma_{N}=\sum_{i} \bar{g}_{i} \operatorname{Tr} P_{i}+\sum_{i} \bar{g}_{i, j} \operatorname{Tr}^{\otimes 2}\left(Q_{1, i} \otimes Q_{2, j}\right)+\ldots$, cf. I. - unrenormalized couplings $\bar{g}_{i}, \bar{g}_{i, j}, \ldots$ depend on N, renormalized: $g_{i}=\alpha_{i}(N) \bar{g}_{i}(N), g_{i, j}=\alpha_{i, j}(N) \bar{g}_{i, j}(N)$ THEOREM.(«FRG for multiMM») Wetterich eq. holds
$\partial_{t} \Gamma_{N}[\mathbb{X}]=\frac{1}{2} \operatorname{Tr}_{M_{d}(\mathcal{B})}\left(\frac{\partial_{t} R_{N}}{\operatorname{Hess} \Gamma_{N}[\mathbb{X}]+R_{N}}\right)$
$\cdot \operatorname{RHS} \in \mathbb{C}\left[\left[\left\{g_{i}, g_{i, j}, \ldots\right\}_{i, j, \ldots}\right]\right]\left[\left[\left\{O_{i}, O_{i, j}, \ldots\right\}_{i, \ldots}, \ldots\right]\right]$, only a formal series for the time being, is understood as a geometric series in Hess $\Gamma_{N} \in M_{d}\left(\mathcal{A}_{d}^{(N)}, \star\right)$

- LHS determines the β-functions $\beta_{w}=\partial_{t}\left[g_{w}(N)\right]$, which are determined from $\left[O_{w}\right]$ RHS
EXAMPLE. Modulo $\eta=\partial_{t} Z$-coeffs, up to double-traces and cubic terms:
$\beta\left(g_{A B B A}\right)-g_{A B B A}(2 \eta+1) \sim \overbrace{g_{A A A A} \times g_{A B B A}+}+\overbrace{g_{B B B} \times g_{A B B A}+}+\overbrace{\left(g_{A B A B}\right)^{2}}+\overbrace{\left(g_{A B B A}\right)^{2}}$
- $(2,0)$-geometry: β-functions for 48 operators are found and numerically solved: among ~ 600 real-valued solutions, the unique one with a single relevant direction yields $g_{A A A A}^{\text {crit. }}=1.002 \cdot g_{A A A A}^{\text {Kazako Ziinn-Justin }} \sim 1 / 4 \pi$

