
REVIEWING RANDOM MULTI-MATRIX TECHNIQUES IN NONCOMMUTATIVE GEOMETRY
Carlos I. Pérez-Sánchez, perez@thphys.uni-heidelberg.de

Institute for Theoretical Physics, University of HeidelbergRandom Tensors at CIRM 2022

REVIEWING RANDOM MULTI-MATRIX TECHNIQUES IN NONCOMMUTATIVE GEOMETRY
Carlos I. Pérez-Sánchez, perez@thphys.uni-heidelberg.de

Institute for Theoretical Physics, University of HeidelbergRandom Tensors at CIRM 2022

A «Matrix Geometry» Landscape
AIM: quantize NCG ZNCG

?
=
∫

Dirac
e−

1
h̄ Tr f (D)dD

In noncommutative geometry (or
NCG), spectral triples (A,H, D)—a ∗-
algebra A of bounded operators on
a Hilbert space H and a self-adjoint
operator D—are an abstraction of
spin manifolds that allows a non-
commutative (nc) A
ZNCG well-definable for finite rank D.
We use fuzzy or matrix geometries, as
[Barrett-Glaser J Phys A ’16]; f polynomial

Steps: I. Compute the spectral action
for fuzzy geometries; II. Define ma-
trix gauge spectral triples to add Yang-
Mills interactions; III. Renormaliza-
tion (Continuum limit?)

II. Matrix Yang-Mills Theory
arXiv:2105.01025 (in press)

spectral action on an almost-commutative (AC) manifold = M(spin geom.)×F (finite
geom.) yields Yang-Mills. The gauge fields are obtained by Morita self-fluctuations

a gauge matrix geometry = matrix spectral triple × finite spectral triple; the most general
(fluctuated) Dirac operator is (Aµ ∈ Ω1

D(MN(C)), c ∈ Mn(C)s.a)

D = ∑µ γµ⊗ (

lµ︷ ︸︸ ︷
[Lµ⊗ 1n, · ] +

aµ︷ ︸︸ ︷
[Aµ⊗ c, · ]) + γ⊗Φ +

(if flat; room for gravitation)︷ ︸︸ ︷
∑µ,ν,σ γµγνγσ ⊗ xµνσ

the operators lµ, aµ serve to define the fuzzy field strength Fµν = [lµ + aµ, lν + aν]. Here
dµ = lµ + aµ is seen as fuzzy analogue of smooth covariant derivative Dµ = ∂µ + Aµ

(Aµ, locally, the connection on SU(n)-princ. bundle)

matrix gauge spectral triples add Yang-Mills fields in the sense that

THEOREM. The following gauge matrix geometry

«flat four-dimensional Riemannian fuzzy geometry»× (Mn(C), Mn(C), DF)

has the following spectral action, if f (x) = ∑m
am
2 xm:

1
4

TrH f (D) = Sf
YM + Sf

H + Sf
g-H + Sf

2,4 + degree ≥ 5 operators

Here S2,4 are propagators and quartic terms, otherwise each sector is defined as follows:

Sf
YM := −a4

4
TrMC

N⊗n
(FµνF µν) , Sf

H := TrMC
N⊗n

fe(Φ), Sf
g-H := −a4 TrMC

N⊗n

(
dµΦdµΦ

)
.

term by term, they are the fuzzy version of SYM(A) = −1
4

∫
M Trsu(n)(FµνFµν)vol, of the

Higgs potential, and of the gauge-Higgs coupling Sg-H = −
∫

M DµH(DµH)vol

Gauge symmetry G = PU(N) × PU(n) is the fuzzy version of the C∞-gauge group
Diff(M)nMaps(M, SU(n)), and gauge invariance due to Fµν F u = uFµνu∗, u ∈ G

I. Spectral Action for a Matrix Geometry arXiv:1912.13288

Matrix geometries of signature (p, q) [Barrett, J. Math Phys. ’15] are spectral triples with A = MN(C),H = irreducible C`(p, q)-module V ⊗MN(C).

Several axioms imply D = ∑
a

γa⊗ {Xa, · }εa + ∑
a

γaγbγc⊗ {Xabc , · }εabc + . . . {A, B}± = AB± BA

chord diagrams organize the traces of γ’s, e.g. TrV(γµγνγαγρ) = dim V ·
(

+ +

µ

ν

α

ρ + +

µ

ν

α

ρ+ +

µ

ν

α

ρ
)
. For a polynomial f , the spectral action Tr f (D)

has the form N TrN P + Tr⊗2
N (Q(1)⊗Q(2)) P, Q1, Q2 ∈ C〈k〉 = C〈X1, . . . , Xk〉 (k = 2p+q−1) where, e.g. for 2d fuzzy geometries (with particular

coeffs. depending on p, q and f )

P = A2, B2, AB, ABAB, AABB, AAABAB, ABABAB, . . .
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Q(1)⊗Q(2) = insertions of ⊗ in such P’s = A⊗ A, A⊗ BAB . . .
Fig. 1 (Non-stuffed) planar «worded» maps m1 and m2; Feyman graphs of dim-2 matrix geometries

III. Functional Renormalization: Multimatrix Models (multitraces)
Ann. Henri Poincaré 22 (2021), 3095–3148 (arXiv:2007.10914) as well as arXiv:2111.02858

PHYSICS BIT

Quantum theories «flow with energy t = log N». The effective action ΓN[X]
describes the theory at scale N, microscopic information on scales > N is
washed away. Also, Γ generates 2-edge-connected or 1PI graphs [folklore]

LANGUAGE

Let X = (X1, . . . , Xd) ∈ MN(C)d
s.a and C

(N)

〈d〉 = C〈X〉 or «words»

[Rota-Sagan-Stein+Voiculescu] nc-derivative ∂X : C〈d〉 → C⊗2
〈d〉 sums over replacements

of X in a word by ⊗, except at the ends of the word, where one adds 1:

∂A(PAAR) = P⊗ AR + PA⊗ R ,
but ∂A(ALGEBRA) = 1⊗ LGEBRA + ALGEBR⊗ 1 .

Also ∂A on traces yields the cyclic derivative: ∂A Tr(PAAR) = ARP+ RPA, for
instance. The nc-Hessian is the matrix with entries Hessa,b Tr P = ∂Xa∂Xb Tr P.
EXAMPLE. Hess{Tr(ABAB)} reads then

(
∂A ◦ ∂A ∂A ◦ ∂B

∂B ◦ ∂A ∂B ◦ ∂B

)
Tr(
︷ ︸︸ ︷
ABAB) = 2

( ︷ ︸︸ ︷
B⊗ B

+︷ ︸︸ ︷
AB⊗ 1 + 1⊗ BA

BA⊗ 1 + 1⊗ AB︸ ︷︷ ︸
+

A⊗ A︸ ︷︷ ︸
)

the presence of multitraces (see Fig. 2) extends this algebra to B = A(N)

d =
C⊗2
〈d〉⊕C�2

〈d〉 with the product ? given by

(U⊗W) ? (P⊗Q) = PU⊗WQ , (U�W) ? (P⊗Q) = U�PWQ ,
(U⊗W) ? (P�Q) = WPU�Q , (U�W) ? (P�Q) = Tr(WP)U�Q

for P, Q, U, W ∈ C〈d〉. Traces: TrB(P⊗Q) = Tr P Tr Q, TrB(P � Q) = Tr(PQ).
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ḡ3

ḡ4
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Fig. 2 Examples of graphs. From left to right: a graph of a 4-matrix model whose effective vertex is
Tr(BDBD7)Tr(A3DACDBACDADB). Next two graphs are both 1-loop (in the QFT sense) but only the one in the middle also in

the topological sense. The latter is a contribution to Hessa,b O1 ? Hessb,c O2 ? Hessc,d O3 ? Hessd,a O4

RENORMALIZATION GROUP: HOW DO WORDS FLOW

ΓN = ∑i ḡi Tr Pi + ∑i ḡi,j Tr⊗2(Q1,i ⊗Q2,j) + . . . , cf. I.

unrenormalized couplings ḡi, ḡi,j, . . . depend on N,
renormalized: gi = αi(N)ḡi(N), gi,j = αi,j(N)ḡi,j(N), . . .
THEOREM.(«FRG for multiMM») Wetterich eq. holds

∂tΓN[X] =
1
2

TrMd(B)

(
∂tRN

Hess ΓN[X] + RN

)
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RHS ∈ C[[{gi, gi,j, . . .}i,j,...]][[{Oi, Oi,j, . . .}i,j,...]], only a
formal series for the time being, is understood as a
geometric series in Hess ΓN ∈ Md(A(N)

d , ?)

LHS determines the β-functions βw = ∂t[gw(N)],
which are determined from [Ow]RHS
EXAMPLE. Modulo η = ∂tZ-coeffs, up to double-traces and cubic
terms:

β(gABBA)− gABBA(2η + 1) ∼
︷ ︸︸ ︷
gAAAA × gABBA +

︷ ︸︸ ︷
gBBBB × gABBA +

︷ ︸︸ ︷
(gABAB)

2 +
︷ ︸︸ ︷
(gABBA)

2

(2, 0)-geometry: β-functions for 48 operators are found
and numerically solved: among ∼ 600 real-valued
solutions, the unique one with a single relevant
direction yields gcrit.

AAAA = 1.002 · gKazakov Zinn-Justin
AAAA ∼ 1/4π
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A one-loop diagram in a simple case

where “all legs are pointing outwards”
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1N ⊗ cycl. outer word w (w ∈ C〈n〉)

Fig. 3 How the one-loop structure of the FRG is encoded in Md(Ad, ?).
Left: Unrenormalized interactions ḡi appearing in a k-th power of the Hessian.

Right: The contribution to the βw-function, w formed by reading off clockwise the legs.

To download poster: https://www.thphys.uni-heidelberg.de/∼perez/carlos.html


