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The purpose of these lectures is to 
question

argue
annoy

make fun of
not reference 

drink beer with
...



The best single reference to supersymmetry at the weak scale is:

         S.P. Martin, “A supersymmetry primer”, hep-ph//9709356
                                                                    (updated to v6; 09/2011)

Introduction to Supersymmetry

For part of my lectures, I’ll be heavily using a nice set of two lectures on supersymmetry 
given by Steve at PreSUSY 2010 in Bonn
   http://zippy.physics.niu.edu/PreSUSY10.pdf

Aside from many comments, we’ll deviate more substantially when we get to models, 
mediation, flavor, and of course, impact of LHC searches.

In addition to using notation consistent with the Primer, this will give you an idea of what 
has not changed, and perhaps more interestingly, what has changed in just two years of 
LHC running.

Here we go! 

http://zippy.physics.niu.edu/PreSUSY10.pdf
http://zippy.physics.niu.edu/PreSUSY10.pdf


Introduction and Motivation



Good reasons to believe that the next discoveries beyond the presently known
Standard Model will involve supersymmetry (SUSY):

• A possible cold dark matter particle

• A light Higgs boson, in agreement with indirect constraints

• More generally, easy agreement with precision electroweak constraints

• Unification of gauge couplings

• Mathematical beauty

However, they are all insignificant compared to the one really good reason to
suspect that supersymmetry is real:

• The Hierarchy Problem
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An analogy: Coulomb self-energy correction to the electron’s mass

(H. Murayama, hep-ph/0002232)

If the electron is really point-like, the classical electrostatic contribution to its
energy is infinite.

Model the electron as a solid sphere of uniform charge density and radius R:

∆ECoulomb =
3e2

20πε0R

This implies a correction ∆me = ∆ECoulomb/c2 to the electron mass:

me,physical = me,bare + (1 MeV/c2)

(
0.86 × 10−15 meters

R

)
.

A divergence arises if we try to take R → 0. Naively, we might expect
R >∼ 10−17 meters, to avoid having to tune the bare electron mass to better
than 1%, for example:

0.511 MeV/c2 = −100.000 MeV/c2 + 100.511 MeV/c2.
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However, there is another important quantum mechanical contribution:

e− e− e−
+

e−

e+

e−

The virtual positron effect cancels most of the Coulomb contribution, leaving:

me,physical = me,bare

[
1 +

3α

4π
ln

(
h̄/mec

R

)
+ . . .

]

with h̄/mec = 3.9 × 10−13 meters. Even if R is as small as the Planck length
1.6 × 10−35 meters, where quantum gravity effects become dominant, this is
only a 9% correction.

The existence of a “partner” particle for the electron, the positron, is
responsible for eliminating the dangerously huge contribution to its mass.
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The “reason” for the positron’s existence can be understood from a symmetry,
namely the Poincaré invariance of quantum electrodynamics.

If we did not yet know about relativity or the positron, we would have three options:

• Assume that the electron is not point-like, and has structure at a measurable
size R >∼ 10−17 meters.

• Assume that the electron is (nearly?) point-like, and there is a mysterious
fine-tuning between the bare mass and the Coulomb correction to it.

• Predict that the electron’s symmetry “partner”, the positron, must exist.

Today we know that the last option is the correct explanation.
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The Hierarchy Problem

Potential for H , the complex scalar field that
is the electrically neutral part of the Standard
Model Higgs field, is:

V (H) = m2
H |H|2 +

λ

2
|H|4

V(H)

|H|174 GeV
|

For electroweak symmetry breaking to give the experimental mZ , we need:

〈H〉 =
√
−m2

H/λ ≈ 174 GeV

The requirement of unitarity in the scattering of Higgs bosons and longitudinal W
bosons tells us that λ is not much larger than 1. Therefore,

−(few hundred GeV)2 <∼ m2
H < 0.

However, this appears fine-tuned (in other words, incredibly and mysteriously
lucky!) when we consider the likely size of quantum corrections to m2

H .
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Contributions to m2
H from a Dirac fermion

loop:
H

λf λf

f

f

The correction to the Higgs squared mass parameter from this loop diagram is:

∆m2
H =

λ2
f

16π2

[
−2M2

UV + 6m2
f ln (MUV/mf ) + . . .

]

where λf is the coupling of the fermion to the Higgs field H .

MUV should be interpreted as the ultraviolet cutoff scale(s) at which new physics
enters to cut off the loop integrations.

So m2
H is sensitive to the largest mass scales in the theory.
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The Hierarchy Problem

Why should:

|m2
H |

M2
Planck

<∼ 10−32

if individual radiative corrections ∆m2
H are of order M2

Planck or M
2
string,

multiplied by loop factors?

The problem is present even if String Theory is wrong and some other unspecified
effects modify physics at MPlanck, or any other very large mass scale, to make
the loop integrals converge.

An incredible coincidence seems to be required to make the corrections to the
Higgs squared mass cancel to give a much smaller number.
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The systematic cancellation of loop corrections to the Higgs mass squared
requires the type of conspiracy that is better known to physicists as a symmetry.

Fermion loops and boson loops gave contributions with opposite signs:

∆m2
H = −

λ2
f

16π2
(2M2

UV) + . . . (Dirac fermion)

∆m2
H = +

λS

16π2
M2

UV + . . . (complex scalar)

SUPERSYMMETRY, a symmetry between fermions and bosons, makes the
cancellation not only possible, but automatic.

There are two complex scalars for every Dirac fermion, and λS = λ2
f .
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The cancellation is not because “all fermion loops cancel all boson loops”
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This is how supersymmetry makes the cancellation not only possible,
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Supersymmetry



Supersymmetry

A SUSY transformation turns a boson state into a fermion state, and vice versa.
So the operator Q that generates such transformations acts, schematically, like:

Q|Boson〉 = |Fermion〉; Q|Fermion〉 = |Boson〉

This means that Q must be an anticommuting spinor. This is an intrinsically
complex object, so Q† is also a distinct symmetry generator:

Q†|Boson〉 = |Fermion〉; Q†|Fermion〉 = |Boson〉

The possible forms for such theories are highly restricted by the
Haag-Lopuszanski-Sohnius extension of the Coleman-Mandula Theorem.
In a 4-dimensional theory with chiral fermions (like the Standard Model) and
non-trivial scattering, then Q carries spin-1/2 with L helicity, and Q† has
spin-1/2 with R helicity, and they must satisfy. . .
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The Supersymmetry Algebra

{Q, Q†} = P µ

{Q, Q} = {Q†, Q†} = 0

[P µ, Q] = [P µ, Q†] = 0

[T a, Q] = [T a, Q†] = 0

Here P µ = (H, !P) is the generator of spacetime translations, and T a are the
gauge generators. (This is schematic, with spinor indices suppressed for now. We
will restore them later.)

The single-particle states of the theory fall into irreducible representations of this
algebra, called supermultiplets. Fermion and boson members of a given
supermultiplet are superpartners of each other. By definition, if |Ω〉 and |Ω′〉 are
superpartners, then |Ω′〉 is equal to some combination of Q, Q† acting on |Ω〉.

Therefore, since P 2 and T a commute withQ, Q†, all members of a given
supermultiplet must have the same (mass)2 and gauge quantum numbers.
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Types of supermultiplets

Chiral (or “Scalar” or “Matter” or “Wess-Zumino”) supermultiplet:
1 two-component Weyl fermion, helicity± 1

2 . (nF = 2)
2 real spin-0 scalars = 1 complex scalar. (nB = 2)
The Standard Model quarks, leptons and Higgs bosons must fit into these.

Gauge (or “Vector”) supermultiplet:
1 two-component Weyl fermion gaugino, helicity± 1

2 . (nF = 2)
1 real spin-1 massless gauge vector boson. (nB = 2)
The Standard Model γ, Z, W±, g must fit into these.

Gravitational supermultiplet:
1 two-component Weyl fermion gravitino, helicity± 3

2 . (nF = 2)
1 real spin-2 massless graviton. (nB = 2)
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How do the Standard Model quarks and leptons fit in?

Each quark or charged lepton is 1 Dirac = 2 Weyl fermions

Electron: Ψe =

(
eL

eR

) ← two-component Weyl LH fermion

← two-component Weyl RH fermion

Each of eL and eR is part of a chiral supermultiplet, so each has a complex,
spin-0 superpartner, called ẽL and ẽR respectively. They are called the
“left-handed selectron” and “right-handed selectron”, although they carry no spin.

The conjugate of a right-handed Weyl spinor is a left-handed Weyl spinor. Define
two-component left-handed Weyl fields: e ≡ eL and ē ≡ e†R. So, there are two
left-handed chiral supermultiplets for the electron:

(e, ẽL) and (ē, ẽ∗R).

The other charged leptons and quarks are similar. We do not need νR in the
Standard Model, so there is only one neutrino chiral supermultiplet for each family:

(νe, ν̃e).
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Chiral supermultiplets of the Minimal Supersymmetric Standard Model (MSSM):

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (euL
edL) (uL dL) ( 3, 2 , 1

6
)

(×3 families) ū eu∗
R u†

R ( 3, 1, − 2
3
)

d̄ ed∗
R d†

R ( 3, 1, 1
3
)

sleptons, leptons L (eν eeL) (ν eL) ( 1, 2 , − 1
2
)

(×3 families) ē ee∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) ( eH+
u

eH0
u) ( 1, 2 , + 1

2
)

Hd (H0
d H−

d ) ( eH0
d

eH−
d ) ( 1, 2 , − 1

2
)

The superpartners of the Standard Model particles are written with a ˜ . The
scalar names are obtained by putting an “s” in front, so they are generically called
squarks and sleptons, short for “scalar quark” and “scalar lepton”.
The Standard Model Higgs boson requires two different chiral supermultiplets,Hu and
Hd. The fermionic partners of the Higgs scalar fields are called higgsinos. There
are two charged and two neutral Weyl fermion higgsino degrees of freedom.
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Why do we need two Higgs supermultiplets? Two reasons:

1) Anomaly Cancellation

f eHu
eHd

X

SM fermions

Y 3
f = 0 + 2

„
1
2

«3

+ 2

„
−1

2

«3

= 0

This anomaly cancellation occurs if and only if both H̃u and H̃d higgsinos are
present. Otherwise, the electroweak gauge symmetry would not be allowed!

2) Quark and Lepton masses
Only the Hu Higgs scalar can give masses to charge+2/3 quarks (top).
Only the Hd Higgs scalar can give masses to charge−1/3 quarks (bottom) and
the charged leptons. We will show this later.
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The vector bosons of the Standard Model live in gauge supermultiplets:

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon eg g ( 8, 1 , 0)

winos, W bosons fW± fW 0 W± W 0 ( 1, 3 , 0)

bino, B boson eB0 B0 ( 1, 1 , 0)

The spin-1/2 gauginos transform as the adjoint representation of the gauge
group. Each gaugino carries a .̃ The color-octet superpartner of the gluon is
called the gluino. The SU(2)L gauginos are called winos, and the U(1)Y

gaugino is called the bino.

However, the winos and the bino are not mass eigenstate particles; they mix with
each other and with the higgsinos of the same charge.
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Recall that if supersymmetry were an exact symmetry, then superpartners would
have to be exactly degenerate with each other. For example,

mẽL
= mẽR

= me = 0.511 MeV

mũL
= mũR

= mu

mg̃ = mgluon = 0 + QCD-scale effects

etc.

But new particles with these properties have been ruled out long ago, so:
Supersymmetry must be broken in the vacuum state chosen by Nature.

Supersymmetry is thought to be spontaneously broken and therefore hidden, the
same way that the full electroweak symmetry SU(2)L × U(1)Y is hidden from
very low-energy experiments.
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For a clue as to the nature of SUSY breaking, return to our motivation in the
Hierarchy Problem. The Higgs mass parameter gets corrections from each chiral
supermultiplet:

∆m2
H =

1

16π2
(λS − λ2

F )M2
UV + . . .

The corresponding formula for Higgsinos has no term proportional to M2
UV;

fermion masses always diverge at worst like ln(MUV). Therefore, if
supersymmetry were exact and unbroken, it must be that:

λS = λ2
F ,

in other words, the dimensionless (scalar)4 couplings are the squares of the
(scalar)-(fermion)-(antifermion) couplings.

If we want SUSY to be a solution to the hierarchy problem, we must demand that
this is still true even after SUSY is broken:
The breaking of supersymmetry must be “soft”. This means that it does not
change the dimensionless terms in the Lagrangian.
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“Soft” Supersymmetry Breaking



The effective Lagrangian of the MSSM is therefore:

L = LSUSY + Lsoft

• LSUSY contains all of the gauge, Yukawa, and dimensionless scalar
couplings, and preserves exact supersymmetry

• Lsoft violates supersymmetry, and contains only mass terms and couplings
with positive mass dimension.

If msoft is the largest mass scale in Lsoft, then by dimensional analysis,

∆m2
H = m2

soft

»
λ

16π2
ln(MUV/msoft) + . . .

–
,

where λ stands for dimensionless couplings. This is because∆m2
H must vanish

in the limit msoft → 0, in which SUSY is restored. Therefore, we expect that
msoft should not be much larger than roughly 1000 GeV.

This is the best reason to be optimistic that SUSY will be discovered at the
Fermilab Tevatron or the CERN Large Hadron Collider.
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This is already in some tension with LHC searches; more on this
later.

Hierarchy Problem versus Soft Supersymmetry Breaking



Constructing a Supersymmetric Lagrangian



The simplest SUSY model: a free chiral supermultiplet

The minimum particle content for a SUSY theory is a complex scalar φ and its
superpartner fermion ψ. We must at least have kinetic terms for each, so:

S =

∫
d4x (Lscalar + Lfermion)

Lscalar = −∂µφ∗∂µφ Lfermion = −iψ†σµ∂µψ

A SUSY transformation should turn φ into ψ, so try:

δφ = εψ; δφ∗ = ε†ψ†

where ε = infinitesimal, anticommuting, constant spinor, with dimension
[mass]−1/2, that parameterizes the SUSY transformation. Then we find:

δLscalar = −ε∂µψ∂µφ∗ − ε†∂µψ†∂µφ.

We would like for this to be canceled by an appropriate SUSY transformation of
the fermion field. . .
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To have any chance, δψ should be linear in ε† and in φ, and must contain one
spacetime derivative. There is only one possibility, up to a multiplicative constant:

δψα = i(σµε†)α∂µφ; δψ†
α̇ = −i(εσµ)α̇∂µφ∗

With this guess, one finds:

δLfermion = −δLscalar + (total derivative)

so the action S is indeed invariant under the SUSY transformation, justifying the
guess of the multiplicative factor. This is called the free Wess-Zumino model.

Furthermore, if we take the commutator of two SUSY transformations:

δε2(δε1φ) − δε1(δε2φ) = i(ε1σ
µε2 − ε2σ

µε1)∂µφ

Since ∂µ corresponds to the spacetime 4-momentum Pµ, this has exactly the
form demanded by the SUSY algebra discussed earlier. (More on this soon.)
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The fact that two SUSY transformations give back another symmetry (namely a
spacetime translation) means that the SUSY algebra “closes”.

If we do the same check for the fermion ψ:

δε2(δε1ψα) − δε1(δε2ψα) = i(ε1σ
µε2 − ε2σ

µε1)∂µψα

−iε1α(ε†2σ
µ∂µψ) + iε2α(ε†1σ

µ∂µψ)

The first line is expected, but the second line only vanishes on-shell (when the
classical equation of motion σµ∂µψ = 0 is satisfied). This seems like a problem,
since we want SUSY to be a valid symmetry of the quantum theory (off-shell)!

To show that there is no problem, we introduce another bosonic spin-0 field, F ,
called an auxiliary field. Its Lagrangian density is:

Laux = F ∗F

Note that F has no kinetic term, and has dimensions [mass]2, unlike an ordinary
scalar field. It has the not-very-exciting equations of motion F = F ∗ = 0.

24



The auxiliary field F does not affect the dynamics, classically or in the quantum
theory. But it does appear in modified SUSY transformation laws:

δφ = εψ

δψα = i(σµε†)α∂µφ + εαF

δF = iε†σµ∂µψ

Now the total Lagrangian

L = −∂µφ∗∂µφ − iψ†σµ∂µψ + F ∗F

is still invariant, and also one can now check:

δε2(δε1X) − δε1(δε2X) = i(ε1σ
µε2 − ε2σ

µε1)∂µX

for each of X = φ, φ∗, ψ, ψ†, F, F ∗, without using equations of motion.

So in the “modified” theory, SUSY does close off-shell as well as on-shell.
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The auxiliary field F is really just a book-keeping device to make this simple.
We can see why it is needed by considering the number of degrees of freedom
on-shell (classically) and off-shell (quantum mechanically):

φ ψ F

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 2 4 2

(Going on-shell eliminates half of the propagating degrees of freedom of the
fermion, because the Lagrangian density is linear in time derivatives, so that the
fermionic canonical momenta are not independent phase-space variables.)

The auxiliary field also plays an important role when we add interactions to the
theory, and in gaining a simple understanding of SUSY breaking.
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Supersymmetric Masses and Interactions



Masses and Interactions for Chiral Supermultiplets

The Lagrangian describing a collection of free, massless, chiral supermultiplets is

L = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi.

Question: How do we make mass terms and interactions for these fields, while
still preserving supersymmetry invariance?

Answer: choose a superpotential,

W = 1
2M ijφiφj + 1

6yijkφiφjφk.

It cannot depend on φ∗i, only the φi. It must be an analytic function of the scalar
fields treated as complex variables.

The superpotentialW contains massesM ij and couplings yijk , which must be
symmetric under interchange of i, j, k.

Supersymmetry is very restrictive; you cannot just do anything you want!
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gauge group has several distinct factors with different gauge couplings ga. [For instance, in the MSSM
the three factors SU(3)C , SU(2)L and U(1)Y have different gauge couplings g3, g and g′.] Since
V (φ,φ∗) is a sum of squares, it is always greater than or equal to zero for every field configuration. It
is an interesting and unique feature of supersymmetric theories that the scalar potential is completely
determined by the other interactions in the theory. The F -terms are fixed by Yukawa couplings and
fermion mass terms, and the D-terms are fixed by the gauge interactions.

By using Noether’s procedure [see eq. (3.1.17)], one finds the conserved supercurrent

Jµ
α = (σνσµψi)α ∇νφ

∗i + i(σµψ†i)α W
∗
i

− 1

2
√
2
(σνσρσµλ†a)α F

a
νρ +

i√
2
gaφ

∗T aφ (σµλ†a)α, (3.4.13)

generalizing the expression given in eq. (3.1.18) for the Wess-Zumino model. This result will be useful
when we discuss certain aspects of spontaneous supersymmetry breaking in section 7.5.

3.5 Summary: How to build a supersymmetric model

In a renormalizable supersymmetric field theory, the interactions and masses of all particles are deter-
mined just by their gauge transformation properties and by the superpotential W . By construction,
we found that W had to be a holomorphic function of the complex scalar fields φi, which are always
defined to transform under supersymmetry into left-handed Weyl fermions. In an equivalent language,
to be developed in section 4, W is said to be a function of chiral superfields [48]. A superfield is a
single object that contains as components all of the bosonic, fermionic, and auxiliary fields within the
corresponding supermultiplet, for example Φi ⊃ (φi,ψi, Fi). (This is analogous to the way in which
one often describes a weak isospin doublet or a color triplet by a multicomponent field.) The gauge
quantum numbers and the mass dimension of a chiral superfield are the same as that of its scalar
component. In the superfield formulation, one writes instead of eq. (3.2.15)

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.5.1)

which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have purposefully
avoided this extra layer of notation so far, in favor of the more pedestrian, but more familiar and
accessible, component field approach. The latter is at least more appropriate for making contact with
phenomenology in a universe with supersymmetry breaking. The specification of the superpotential is
really just a code for the terms that it implies in the Lagrangian, so the reader may feel free to think of
the superpotential either as a function of the scalar fields φi or as the same function of the superfields
Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.4.10)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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gauge group has several distinct factors with different gauge couplings ga. [For instance, in the MSSM
the three factors SU(3)C , SU(2)L and U(1)Y have different gauge couplings g3, g and g′.] Since
V (φ,φ∗) is a sum of squares, it is always greater than or equal to zero for every field configuration. It
is an interesting and unique feature of supersymmetric theories that the scalar potential is completely
determined by the other interactions in the theory. The F -terms are fixed by Yukawa couplings and
fermion mass terms, and the D-terms are fixed by the gauge interactions.

By using Noether’s procedure [see eq. (3.1.17)], one finds the conserved supercurrent

Jµ
α = (σνσµψi)α ∇νφ

∗i + i(σµψ†i)α W
∗
i

− 1

2
√
2
(σνσρσµλ†a)α F

a
νρ +

i√
2
gaφ

∗T aφ (σµλ†a)α, (3.4.13)

generalizing the expression given in eq. (3.1.18) for the Wess-Zumino model. This result will be useful
when we discuss certain aspects of spontaneous supersymmetry breaking in section 7.5.

3.5 Summary: How to build a supersymmetric model

In a renormalizable supersymmetric field theory, the interactions and masses of all particles are deter-
mined just by their gauge transformation properties and by the superpotential W . By construction,
we found that W had to be a holomorphic function of the complex scalar fields φi, which are always
defined to transform under supersymmetry into left-handed Weyl fermions. In an equivalent language,
to be developed in section 4, W is said to be a function of chiral superfields [48]. A superfield is a
single object that contains as components all of the bosonic, fermionic, and auxiliary fields within the
corresponding supermultiplet, for example Φi ⊃ (φi,ψi, Fi). (This is analogous to the way in which
one often describes a weak isospin doublet or a color triplet by a multicomponent field.) The gauge
quantum numbers and the mass dimension of a chiral superfield are the same as that of its scalar
component. In the superfield formulation, one writes instead of eq. (3.2.15)

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.5.1)

which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have purposefully
avoided this extra layer of notation so far, in favor of the more pedestrian, but more familiar and
accessible, component field approach. The latter is at least more appropriate for making contact with
phenomenology in a universe with supersymmetry breaking. The specification of the superpotential is
really just a code for the terms that it implies in the Lagrangian, so the reader may feel free to think of
the superpotential either as a function of the scalar fields φi or as the same function of the superfields
Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.4.10)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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in terms of chiral superfields, where

Using the definition eq. (4.2.3), it follows that

δε (DαS) = Dα (δεS) , δε
(
D†

α̇S
)
= D†

α̇ (δεS) . (4.3.5)

Thus the derivatives Dα and D†
α̇ are indeed supersymmetric covariant; acting on superfields, they

return superfields. This makes them useful both for defining constraints on superfields in a covariant
way, and for defining superspace Lagrangians involving anticommuting spinor coordinate derivatives.

The chiral and antichiral covariant derivatives also satisfy the useful anticommutation identities:
{
Dα, D

†
β̇

}
= 2iσµ

αβ̇
∂µ, (4.3.6)

{
Dα, Dβ

}
= 0,

{
D†

α̇, D
†
β̇

}
= 0. (4.3.7)

This has exactly the same form as the supersymmetry algebra in eqs. (4.2.14) and (4.2.15), but D,D†

should not be confused with the differential operators for supersymmetry transformations, Q̂, Q̂†. It is
also useful to note that, from eq. (4.1.27),

∫
d2θDα(anything) and

∫
d2θ†D†

α̇(anything) (4.3.8)

are each total derivatives with respect to xµ.

4.4 Chiral superfields

To describe a chiral supermultiplet, consider the superfield Φ(x, θ, θ†) obtained by imposing the con-
straint

D†
α̇Φ = 0. (4.4.1)

A field satisfying this constraint is said to be a chiral (or left-chiral) superfield, and its complex conjugate
Φ∗ is called antichiral (or right-chiral) and satisfies

DαΦ
∗ = 0. (4.4.2)

These constraints are consistent with the transformation rule for general superfields because of eq. (4.3.5).
To solve the constraint eq. (4.4.1) in general, it is convenient to define

yµ ≡ xµ + iθ†σµθ, (4.4.3)

and change coordinates on superspace to the set:

yµ, θα, θ†α̇. (4.4.4)

In terms of these variables, the chiral covariant derivatives have the representation:

Dα =
∂

∂θα
− 2i(σµθ†)α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i(θ†σµ)α

∂

∂yµ
, (4.4.5)

D†α̇ =
∂

∂θ†α̇
, D†

α̇ = − ∂

∂θ†α̇
. (4.4.6)

Equation (4.4.6) makes it clear that the chiral superfield constraint eq. (4.4.1) is solved by any function
of yµ and θ only and not θ†. Therefore, one can expand:

Φ = φ(y) +
√
2θψ(y) + θθF (y), (4.4.7)

34
super-W



Superspace Interlude

Steve Martin’s “Primer” (v1-v5) emphasized that supersymmetric Lagrangians can
be obtained entirely in terms of components fields with a “scalar superpotential”
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generalizing the expression given in eq. (3.1.18) for the Wess-Zumino model. This result will be useful
when we discuss certain aspects of spontaneous supersymmetry breaking in section 7.5.

3.5 Summary: How to build a supersymmetric model

In a renormalizable supersymmetric field theory, the interactions and masses of all particles are deter-
mined just by their gauge transformation properties and by the superpotential W . By construction,
we found that W had to be a holomorphic function of the complex scalar fields φi, which are always
defined to transform under supersymmetry into left-handed Weyl fermions. In an equivalent language,
to be developed in section 4, W is said to be a function of chiral superfields [48]. A superfield is a
single object that contains as components all of the bosonic, fermionic, and auxiliary fields within the
corresponding supermultiplet, for example Φi ⊃ (φi,ψi, Fi). (This is analogous to the way in which
one often describes a weak isospin doublet or a color triplet by a multicomponent field.) The gauge
quantum numbers and the mass dimension of a chiral superfield are the same as that of its scalar
component. In the superfield formulation, one writes instead of eq. (3.2.15)

W = LiΦi +
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which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have purposefully
avoided this extra layer of notation so far, in favor of the more pedestrian, but more familiar and
accessible, component field approach. The latter is at least more appropriate for making contact with
phenomenology in a universe with supersymmetry breaking. The specification of the superpotential is
really just a code for the terms that it implies in the Lagrangian, so the reader may feel free to think of
the superpotential either as a function of the scalar fields φi or as the same function of the superfields
Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.4.10)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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It is easiest to divide the variation of Lint into several parts, which must cancel separately. First,
we consider the part that contains four spinors:

δLint|4−spinor =

[

−1

2

δW ij

δφk
(εψk)(ψiψj)−

1

2

δW ij

δφ∗k (ε†ψ†k)(ψiψj)

]

+ c.c. (3.2.7)

The term proportional to (εψk)(ψiψj) cannot cancel against any other term. Fortunately, however, the
Fierz identity eq. (2.20) implies

(εψi)(ψjψk) + (εψj)(ψkψi) + (εψk)(ψiψj) = 0, (3.2.8)

so this contribution to δLint vanishes identically if and only if δW ij/δφk is totally symmetric under
interchange of i, j, k. There is no such identity available for the term proportional to (ε†ψ†k)(ψiψj).
Since that term cannot cancel with any other, requiring it to be absent just tells us that W ij cannot
contain φ∗k. In other words, W ij is holomorphic (or complex analytic) in the complex fields φk.

Combining what we have learned so far, we can write

W ij = M ij + yijkφk (3.2.9)

where M ij is a symmetric mass matrix for the fermion fields, and yijk is a Yukawa coupling of a scalar
φk and two fermions ψiψj that must be totally symmetric under interchange of i, j, k. It is therefore
possible, and it turns out to be convenient, to write

W ij =
δ2

δφiδφj
W (3.2.10)

where we have introduced a useful object

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.2.11)

called the superpotential. This is not a scalar potential in the ordinary sense; in fact, it is not even
real. It is instead a holomorphic function of the scalar fields φi treated as complex variables.

Continuing on our vaunted quest, we next consider the parts of δLint that contain a spacetime
derivative:

δLint|∂ =
(
iW ij∂µφj ψiσ

µε† + iW i ∂µψiσ
µε†

)
+ c.c. (3.2.12)

Here we have used the identity eq. (2.18) on the second term, which came from (δFi)W i. Now we can
use eq. (3.2.10) to observe that

W ij∂µφj = ∂µ

(
δW

δφi

)
. (3.2.13)

Therefore, eq. (3.2.12) will be a total derivative if

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk , (3.2.14)

which explains why we chose its name as we did. The remaining terms in δLint are all linear in Fi or
F ∗i, and it is easy to show that they cancel, given the results for W i and W ij that we have already
found.
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There is an elegant formalism to derive all of the results using superfields.
(and has many advantages, e.g. to understand what SUSY breaking terms are “soft”, etc.). 

        [The “Primer” v6 (2011/09) has a new chapter (Ch 4) devoted to 
          superfields in superspace.]

Most SUSY theorists, however, work with “superfields” in “superspace” where 
interactions are manifestly supersymmetric.  The superspace superpotential is:

where

Using the definition eq. (4.2.3), it follows that

δε (DαS) = Dα (δεS) , δε
(
D†

α̇S
)
= D†

α̇ (δεS) . (4.3.5)

Thus the derivatives Dα and D†
α̇ are indeed supersymmetric covariant; acting on superfields, they

return superfields. This makes them useful both for defining constraints on superfields in a covariant
way, and for defining superspace Lagrangians involving anticommuting spinor coordinate derivatives.

The chiral and antichiral covariant derivatives also satisfy the useful anticommutation identities:
{
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∂µ, (4.3.6)

{
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}
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†
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}
= 0. (4.3.7)

This has exactly the same form as the supersymmetry algebra in eqs. (4.2.14) and (4.2.15), but D,D†

should not be confused with the differential operators for supersymmetry transformations, Q̂, Q̂†. It is
also useful to note that, from eq. (4.1.27),

∫
d2θDα(anything) and

∫
d2θ†D†

α̇(anything) (4.3.8)

are each total derivatives with respect to xµ.

4.4 Chiral superfields

To describe a chiral supermultiplet, consider the superfield Φ(x, θ, θ†) obtained by imposing the con-
straint

D†
α̇Φ = 0. (4.4.1)

A field satisfying this constraint is said to be a chiral (or left-chiral) superfield, and its complex conjugate
Φ∗ is called antichiral (or right-chiral) and satisfies

DαΦ
∗ = 0. (4.4.2)

These constraints are consistent with the transformation rule for general superfields because of eq. (4.3.5).
To solve the constraint eq. (4.4.1) in general, it is convenient to define

yµ ≡ xµ + iθ†σµθ, (4.4.3)

and change coordinates on superspace to the set:

yµ, θα, θ†α̇. (4.4.4)

In terms of these variables, the chiral covariant derivatives have the representation:

Dα =
∂

∂θα
− 2i(σµθ†)α

∂

∂yµ
, Dα = − ∂

∂θα
+ 2i(θ†σµ)α

∂

∂yµ
, (4.4.5)

D†α̇ =
∂

∂θ†α̇
, D†

α̇ = − ∂

∂θ†α̇
. (4.4.6)

Equation (4.4.6) makes it clear that the chiral superfield constraint eq. (4.4.1) is solved by any function
of yµ and θ only and not θ†. Therefore, one can expand:

Φ = φ(y) +
√
2θψ(y) + θθF (y), (4.4.7)
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The superpotential W = M ijφiφj + yijkφiφjφk determines
all non-gauge masses and interactions.

Both scalars and fermions have squared mass matrix MikMkj .

The interaction Feynman rules for the chiral supermultiplets are:

Yukawa interactions:
j k

i

−iyijk

j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMinynjk

i j

k "

−iyijnyk!n
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gauge group has several distinct factors with different gauge couplings ga. [For instance, in the MSSM
the three factors SU(3)C , SU(2)L and U(1)Y have different gauge couplings g3, g and g′.] Since
V (φ,φ∗) is a sum of squares, it is always greater than or equal to zero for every field configuration. It
is an interesting and unique feature of supersymmetric theories that the scalar potential is completely
determined by the other interactions in the theory. The F -terms are fixed by Yukawa couplings and
fermion mass terms, and the D-terms are fixed by the gauge interactions.

By using Noether’s procedure [see eq. (3.1.17)], one finds the conserved supercurrent

Jµ
α = (σνσµψi)α ∇νφ

∗i + i(σµψ†i)α W
∗
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− 1

2
√
2
(σνσρσµλ†a)α F

a
νρ +

i√
2
gaφ

∗T aφ (σµλ†a)α, (3.4.13)

generalizing the expression given in eq. (3.1.18) for the Wess-Zumino model. This result will be useful
when we discuss certain aspects of spontaneous supersymmetry breaking in section 7.5.

3.5 Summary: How to build a supersymmetric model

In a renormalizable supersymmetric field theory, the interactions and masses of all particles are deter-
mined just by their gauge transformation properties and by the superpotential W . By construction,
we found that W had to be a holomorphic function of the complex scalar fields φi, which are always
defined to transform under supersymmetry into left-handed Weyl fermions. In an equivalent language,
to be developed in section 4, W is said to be a function of chiral superfields [48]. A superfield is a
single object that contains as components all of the bosonic, fermionic, and auxiliary fields within the
corresponding supermultiplet, for example Φi ⊃ (φi,ψi, Fi). (This is analogous to the way in which
one often describes a weak isospin doublet or a color triplet by a multicomponent field.) The gauge
quantum numbers and the mass dimension of a chiral superfield are the same as that of its scalar
component. In the superfield formulation, one writes instead of eq. (3.2.15)

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.5.1)

which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have purposefully
avoided this extra layer of notation so far, in favor of the more pedestrian, but more familiar and
accessible, component field approach. The latter is at least more appropriate for making contact with
phenomenology in a universe with supersymmetry breaking. The specification of the superpotential is
really just a code for the terms that it implies in the Lagrangian, so the reader may feel free to think of
the superpotential either as a function of the scalar fields φi or as the same function of the superfields
Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.4.10)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.5.1) (with Li = 0) were listed in eqs. (3.2.18),
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Supersymmetric Gauge Theories

A gauge or vector supermultiplet contains physical fields:

• a gauge boson Aa
µ

• a gaugino λa
α.

The index a runs over the gauge group generators [1, 2, . . . , 8 for SU(3)C ;
1, 2, 3 for SU(2)L; 1 for U(1)Y ].

Suppose the gauge coupling constant is g and the structure constants of the
group are fabc. The Lagrangian for the gauge supermultiplet is:

L = − 1
4
F µν

a F a
µν − iλ†aσµ∇µλa + 1

2
DaDa

where Da is a real spin-0 auxiliary field with no kinetic term, and

∇µλa ≡ ∂µλa − gfabcAb
µλc
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The auxiliary field Da is again needed so that the SUSY algebra closes on-shell.
Counting fermion and boson degrees of freedom on-shell and off-shell:

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

To make a gauge-invariant supersymmetric Lagrangian involving both gauge and
chiral supermultiplets, one must turn the ordinary derivatives into covariant ones:

∂µφi → ∇µφi = ∂µφi + igAa
µ(T aφ)i

∂µψi → ∇µψi = ∂µψi + igAa
µ(T aψ)i

One must also add three new terms to the Lagrangian:

L = Lgauge + Lchiral −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)

+g(φ∗T aφ)Da.

You can check (after some algebra) that this full Lagrangian is now invariant under
both SUSY transformations and gauge transformations.
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Supersymmetric gauge interactions

The following interactions are dictated by ordinary gauge invariance alone:

φ φ∗ φ φ∗ ψ ψ† λ λ†

SUSY also predicts interactions that have gauge coupling strength, but are not
gauge interactions in the usual sense:

ψi

λa

φ∗j

−i
√

2ga(T a)i
j

λ†a

φi ψ†j

−i
√

2ga(T a)i
j

φi φj

φ∗k φ∗!

−ig2
a(T ak

i T a!
j +T a!

i T ak
j )

These interactions are entirely determined by supersymmetry and the
gauge group. Experimental measurements of the magnitudes of these
couplings will provide an important test that we really have SUSY.
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Soft SUSY-breaking Lagrangians

It has been shown that the quadratic sensitivity to MUV is still absent in SUSY
theories with these SUSY-breaking terms added in:

Lsoft = − 1
2 (Ma λaλa + c.c.) − (m2)i

jφ
∗jφi

−
(

1
2bijφiφj + 1

6aijkφiφjφk + c.c.
)
,

They consist of:

• gaugino massesMa,

• scalar (mass)2 terms (m2)j
i and bij ,

• (scalar)3 couplings aijk
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Building Supersymmetric Models



How to build a SUSY Model:

• Choose a gauge symmetry group.
(In the MSSM, this is already done: SU(3)C × SU(2)L × U(1)Y .)

• Choose a superpotentialW ; must be invariant under the gauge symmetry.
(In the MSSM, this is almost already done: Yukawa couplings are dictated by
the observed fermion masses.)

• Choose a soft SUSY-breaking Lagrangian, or else choose a method for
spontaneous SUSY breakdown.
(This is where almost all of the unknowns and arbitrariness in the MSSM are.)

Let us do this for the MSSM now, and then explore the consequences.
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The Superpotential for the Minimal SUSY Standard Model:

WMSSM = ˜̄uyuQ̃Hu − ˜̄dydQ̃Hd − ˜̄eyeL̃Hd + µHuHd

The objects Hu, Hd, Q̃, L̃, ˜̄u, ˜̄d, ˜̄e appearing here are the scalar
fields appearing in the left-handed chiral supermultiplets. Recall that
ū, d̄, ē are the conjugates of the right-handed parts of the quark and
lepton fields.

The dimensionless Yukawa couplings yu, yd and ye are 3 × 3

matrices in family space. Up to a normalization, and higher-order
quantum corrections, they are the same as in the Standard Model.

We need both Hu and Hd, because terms like ˜̄uyuQ̃H∗
d and

˜̄dydQ̃H∗
u are not analytic, and so not allowed in the superpotential.
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6 The Minimal Supersymmetric Standard Model

In sections 3 and 5, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

6.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (6.1.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (6.1.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βεαβ, where
εαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βεαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in eq. (6.1.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

holomorphic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables,
as shown in section 3.2. We can also see from the form of eq. (6.1.1) why both Hu and Hd are
needed in order to give Yukawa couplings, and thus masses, to all of the quarks and leptons. Since
the superpotential must be holomorphic, the uQHu Yukawa terms cannot be replaced by something
like uQH∗

d . Similarly, the dQHd and eLHd terms cannot be replaced by something like dQH∗
u and

eLH∗
u. The analogous Yukawa couplings would be allowed in a general non-supersymmetric two Higgs

doublet model, but are forbidden by the structure of supersymmetry. So we need both Hu and Hd,
even without invoking the argument based on anomaly cancellation mentioned in the Introduction.

The Yukawa matrices determine the current masses and CKM mixing angles of the ordinary quarks
and leptons, after the neutral scalar components of Hu and Hd get VEVs. Since the top quark, bottom
quark and tau lepton are the heaviest fermions in the Standard Model, it is often useful to make an
approximation that only the (3, 3) family components of each of yu, yd and ye are important:

yu ≈




0 0 0
0 0 0
0 0 yt



 , yd ≈




0 0 0
0 0 0
0 0 yb



 , ye ≈




0 0 0
0 0 0
0 0 yτ



 . (6.1.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+

u H0
u), Hd = (H0

d H
−
d ), u3 = t, d3 = b, e3 = τ ], so:

WMSSM ≈ yt(ttH
0
u − tbH+

u )− yb(btH
−
d − bbH0

d)− yτ (τντH
−
d − ττH0

d)

+µ(H+
u H

−
d −H0

uH
0
d). (6.1.3)

The minus signs inside the parentheses appear because of the antisymmetry of the εαβ symbol used to
tie up the SU(2)L indices. The other minus signs in eq. (6.1.1) were chosen (as a convention) so that
the terms ytttH0

u, ybbbH
0
d , and yτττH0

d , which will become the top, bottom and tau masses when H0
u

and H0
d get VEVs, each have overall positive signs in eq. (6.1.3).
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In the approximation that only the t, b, τ Yukawa couplings are included:

yu ≈

0

BB@

0 0 0

0 0 0

0 0 yt

1

CCA ; yd ≈

0

BB@

0 0 0

0 0 0

0 0 yb

1

CCA ; ye ≈

0

BB@

0 0 0

0 0 0

0 0 yτ

1

CCA

the superpotential becomes

WMSSM ≈ yt(t̄tH
0
u − t̄bH+

u ) − yb(b̄tH
−
d − b̄bH0

d)

−yτ (τ̄ ντH−
d − τ̄ τH0

d ) + µ(H+
u H−

d − H0
uH0

d)

Here the ˜ are omitted to reduce clutter, and Q3 = (t b); L3 = (ντ τ);
Hu = (H+

u H0
u); Hd = (H0

d H−
d ) ū3 = t̄; d̄3 = b̄; ē3 = τ̄ .

The minus signs are arranged so that if the neutral Higgs scalars get positive
VEVs 〈H0

u〉 = vu and 〈H0
d〉 = vd, and the Yukawa couplings are defined

positive, then the fermion masses are also positive:

mt = ytvu; mb = ybvd; mτ = yτvd.
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Actually, the most general possible superpotential would also include:

W∆L=1 = 1
2λijkLiLj ēk + λ′

ijkLiQj d̄k + µ′
iLiHu

W∆B=1 = 1
2λ′′

ijkūid̄j d̄k

These violate lepton number (∆L = 1) or baryon number (∆B = 1).

If both types of couplings were present,
and of order 1, then the proton would
decay in a tiny fraction of a second
through diagrams like this: uR

uR

dR s̃∗
R

p+

{

}
π+

νe

uR

d∗
L

ν∗
e

λ′′∗
112 λ′

112

Many other proton decay modes, and other experimental limits on B and L

violation, give strong constraints on these terms in the superpotential.

One cannot simply require B and L conservation, since they are already known
to be violated by non-perturbative electroweak effects. Instead, in the MSSM, one
postulates a new discrete symmetry called Matter Parity, also known as R-parity.
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Baryon and Lepton Number Violating Terms 



Matter parity is a multiplicatively conserved quantum number defined as:

PM = (−1)3(B−L)

for each particle in the theory. All quark and lepton supermultiplets carry
PM = −1, and the Higgs and gauge supermultiplets carry PM = +1. This
eliminates all of the dangerous∆L = 1 and ∆B = 1 terms from the
superpotential, saving the proton.

R-parity is defined for each particle with spin S by:

PR = (−1)3(B−L)+2S

This is exactly equivalent to matter parity, because the product of (−1)2S is
always +1 for any interaction vertex that conserves angular momentum.

However, particle within the same supermultiplet do not carry the same R-parity.
All of the known Standard Model particles and the Higgs scalar bosons carry
PR = +1, while all of the squarks and sleptons and higgsinos and gauginos
carry PR = −1.
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R-parity

- All superpartners are odd under R-parity. 

in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
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R-parity

R-parity
Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u

u

d s̃∗R

p+





}
π0

u

u∗

e+

λ′′∗
112 λ′

112

assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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R-parity

Lightest R-odd supersymmetric particle “LSP” is stable:Lightest SuperPartner (LSP) is stable

- Neutral LSP a natural candidate for WIMP dark 
matter. 
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If neutral, the LSP is a natural candidate for WIMP dark matter.



R-paritySUSY at colliders

• Superpartners must be pair produced!

Production

SM particles
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SUSY at colliders

- long decay chain.

- jets, leptons, missing ET ....

- Nice signal, good discovery potential. 

LSP, DM candidate

Lightest superpartner (LSP)
Neutral and stable. 
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Superpartners must be pair-produced at colliders!

leaving two LSPs at the end of superpartner decay chains:



The Lightest SUSY Particle as Cold Dark Matter

Recent results in experimental cosmology suggest the existence of cold dark
matter with a density:

ΩCDMh2 = 0.11 ± 0.02 (WMAP)

where h = Hubble constant in units of 100 km/(sec Mpc).

A stable particle which freezes out of thermal equilibrium will have Ωh2 = 0.11

today if its thermal-averaged annihilation cross-section is, roughly:

〈σv〉 = 1 pb

As a crude estimate, a weakly interacting particle that annihilates with a
characteristic mass scale M will have

〈σv〉 ∼
α2

M2
∼ 1 pb

(150 GeV
M

)2

So, a stable, weakly interacting particle with mass of order 100 GeV is a likely
candidate. In particular, a neutralino LSP (Ñ1) may do it, if R-parity is conserved.
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Figure 1: The three bands show the contribution to Ωh2 from pure Bino LSP with 0.3 <
M1/mẽR

< 0.9 (red band), Higgsino LSP with 1.5 < mt̃/µ < ∞ (blue band) and Wino LSP
with 1.5 < m!̃L

/M2 < ∞ (green band).

but early enough not to upset the nucleosynthesis predictions. The final relic abundance will

of course depend on the initial gravitino density or, ultimately, on TRH .

1.3 Wino

The Wino can be the LSP in anomaly mediation [18, 19]. In the case of pure state, the

dominant annihilation is into gauge bosons, with a contribution from fermion–antifermion

channel through scalar exchange. Coannihilation among the different states in the Wino

weak triplet is important. In the limit in which the Wino mass M2 is larger than MW , the

effective annihilation cross section and the Wino contribution to Ω are well approximated

by (see appendix A)

〈σeffv〉 =
3g4

16πM2
2

, (6)

ΩW̃ h2 = 0.13
(

M2

2.5TeV

)2

. (7)
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One example of a “true” WIMP candidate, i.e., has full-strength SU(2) weak 
interactions, is the neutral “Wino”, with a thermally-averaged annihilation rate

This annihilation cross section gives a thermal abundance of

Generically, the “WIMP miracle” yields a ≈ TeV-mass WIMP.   (more on this later)

The LSP could be Dark Matter                                                         



The Soft SUSY-breaking Lagrangian for the MSSM

LMSSM
soft = − 1

2

(
M3g̃g̃ + M2W̃ W̃ + M1B̃B̃

)
+ c.c.

−
(
˜̄uau Q̃Hu − ˜̄dad Q̃Hd − ˜̄eae L̃Hd

)
+ c.c.

−Q̃† m2
Q̃

Q̃ − L̃† m2
L̃

L̃ − ˜̄um2
˜̄u

˜̄u† − ˜̄dm2
˜̄d

˜̄d
†
− ˜̄em2

˜̄e
˜̄e†

−m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c.) .

The first line gives masses to the MSSM gauginos (gluino g̃, winos W̃ , bino B̃).
The second line consists of (scalar)3 interactions.
The third line is (mass)2 terms for the squarks and sleptons.
The last line is Higgs (mass)2 terms.

If SUSY is to solve the Hierarchy Problem, we expect:

M1, M2, M3, au, ad, ae ∼ msoft;

m2
Q̃

, m2
L̃
, m2

˜̄u
, m2

˜̄d
, m2

˜̄e
, m2

Hu
, m2

Hd
, b ∼ m2

soft

where msoft <∼ 1 TeV.

43The exact number is sparticle-dependent
(and been, perhaps not surprisingly, an upwardly moving target)



The soft SUSY-breaking Lagrangian of the MSSM contains 105 new parameters
not found in the Standard Model.

Most of what we do not already know about SUSY is expressed
by the question: “How is supersymmetry broken?”

Many proposals have been made.

The question can be answered experimentally by discovering the pattern of Higgs
and squark and slepton and gaugino masses, because they are the main terms in
the SUSY-breaking Lagrangian.
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