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outline

overview • why top physics

• tops @ Tevatron, LHC and ILC

• what do we want to know

t t̄ • top production at (N)NLO

• resummation

• including the decay of top

• off-shell effects

top mass • renormalon issue with pole mass

• issue with mt from invariant mass

• ’alternative’ mt determinations

• mt @ ILC

single top • recap (resummation, decay, off-shell effects)

• definition of process

• 4-flavour scheme vs 5-flavour scheme
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forward-backward asymmetry AFB • theory vs. experiment

• Tevatron vs. LHC

• BSM effects

testing the SM • spin correlations

• anomalous couplings vs. effective theory

• Higgs and top

conclusions
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Part I

Overview
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overview

why top physics?

• top is a “free” quark
• typical hadronization time governed by Λ−1

QCD ∼ (250 MeV)−1

• top lifetime (Γt)−1 ∼ (1.4 GeV)−1

• top quark does not (quite) form bound states and decays before hadronization
does its dirty business

• top is relevant in many BSM scenarios
• top has proper Yukawa coupling yt =

√
2mt/v ∼ 1

• top plays important role in EW symmetry breaking

• a lucky coincidence !!
• top observables can be computed (hadronization not a show stopper)
• top observables can be measured (“easy” to produce)
• top observables are relevant (window for BSM)

• the top is the only quark that behaves properly!
=⇒ It’s the white sheep in a herd of black sheep

• also input for other branches of particle physics
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top pair production
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approximate (!)
expected / measured
SM cross sections in pb

Tevatron 7 TeV LHC 14 TeV LHC

t t̄ 7 160 900

q q̄ ∼ 90% ∼ 20% ∼ 10%

g g ∼ 10% ∼ 80% ∼ 90%

• cross sections are large

• tops are seen only through their decay
products t → Wb → {ℓν, q′q̄} b

• information from top quark carried over to
decay products

• the full process is still far from simple
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SM t t̄ theory status

• fully exclusive known at ∼ one-loop

electroweak corrections known [Bernreuther et.al., Kuhn et.al.]
spin correlations included [Bernreuther et.al., Melnikov et.al.]
non-factorizable corrections computed [Denner et.al., Bevilacqua et.al.]
included in MC@NLO and POWHEG [Frixione, Nason, Webber . . . . . . ]
two-loop corrections on their way . . .

• inclusive cross section(s) known at ∼ two-loop

two-loop nearly known [Czakon et.al, Moch et.al, . . .]
bound-state effects computed [Hagiwara et.al., Kiyo et.al.]
non-factorizable corrections computed [Beenakker et.al.]
resummation of logs under control [Ahrens et.al, Beneke et.al . . .]

• further processes known at one-loop:

tt̄H [Beenakker et.al] and tt̄j [Dittmaier et.al.] ; ⇒ MC@NLO and POWHEG

tt̄bb [Bredenstein et.al; Bevilacqua et.al.] and tt̄jj [Bevilacqua et.al.]

“background” processes V + jets

Adrian Signer, DPG 2012 – p. 7/63



single top production

t-channel s-channel associated production
u

d, s, b
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approximate (!)
expected / measured
SM cross sections in pb

Tevatron 7 TeV LHC 14 TeV LHC

t (t̄) “t”-ch 1.2 40 (20) 150 (100)

t (t̄) “s”-ch 0.55 2.5 (1.4) 7 (4)

t W− 0.15 8 45

b

b̄

b̄

LO 5 Flavour LO 4 Flavour

g g

cross sections not much
smaller than for tt̄

where does b come from?

precise definition of process
not obvious beyond LO
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SM single top theory status

• NLO QCD corrections, production and hadronic decay for t–, s–channel and Wt

known [Harris et.al; Campbell et.al; Cao et.al . . .]

• all channels included in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Alioli,
Nason, Re, Webber, White . . . . . . ]

• EW corrections known [Beccaria et.al; Macorini et.al]

• non-factorizable corrections known [Falgari et.al.]

• resummation of inclusive cross section [Kidonakis, Wang et.al.]

• Note: issues with definition of cross section:

s and t channel mix (beyond LO)
→ more appropriate to talk about (tJ), (tb) and (tW ) cross sections

disentangling Wt vs tt̄ non-trivial [Frixione et.al.]

= +

t − channel s − channel tt̄ or tW
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impact beyond top physics
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LEP EWWG plot from G.Watt (HepForge)

mt, but also Vtb σtt, but also single top σt/σt̄

other measurements: yt, Γt, AFB . . . mainly as test of SM (or establishing BSM)
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outline

eQ; T3; spin; SU(Nc)
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test indirect constraints

not main motivation

�
�

�
�t → Wb; pp → tt̄γ

mt (what mass?)

�




�

	
input for (EW) precision

THE measurement

�
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tt̄ production
other possibilities?

Yukawa coupling yt
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direct test of Higgs mech.
important

�
�

�
�pp → tt̄H, ILC ??

CKM element Vtb

�
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(only) direct measurement

nice

�

�

�

�
single top production

width Γt

�




�

	

SM theory accurate at 1%
(would be) really nice

�

�

�

�
only at ILC ??

anom. coupl; BSM

�
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we are desperate for it

no comment

�
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spin correlations, AFB ,
rare decays, single top
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Part II

Top Pair Production
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tree level

Compute matrix element squared M(0) ≡ A(0)A(0) ∗

g(p1)

g(p2)

q(p3)

q̄(p4)

q(p3)

q̄(p4)
g(p2)

g(p1)
q(p3)

q̄(p4)
g(p2)

g(p1)

∼ (Ta1Ta2 )i3 i4
∼ (Ta2Ta1 )i3 i4

∼ (Ta1Ta2 )i3 i4
− (Ta2Ta1 )i3 i4

colour:

A(0) = (Ta1Ta2 )i3 i4
A12(s, t, u) + (Ta2Ta1 )i3 i4

A21(s, t, u)

M(0) =
(N2

c − 1)2

4 Nc
| {z }

leading colour

“

|A12|2 + |A21|2
”

− (N2
c − 1)

4 Nc
| {z }

subleading colour

“

A12 A∗
21 + A∗

12 A21

”

Structure of (sub)amplitude: A## = ūα(p3)vβ(p4)εµ(p1)εν(p2) (aµν)αβ
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tree level

squaring the amplitude

n
µ
p

ν
. . .

+

g
µν

conventional:
X

pols

εµ(pi)ε
ν∗(pi) → −gµν +

nµ
i pν

i + pµ
i nν

i

(nipi)
− n2

i pµ
i pν

i

(nipi)2
| {z }

n
µ
i

arbitrary

;
X

pols

uα(p)ūβ(p) = (p/ + m)αβ ;

QED: can drop nµ parts, since pµ
3/4

aµν = 0

QCD: pµ
3/4

aµν 6= 0, but result independent of nµ
3/4

.

alternatively, drop nµ parts but include ghost diagrams in squaring the amplitude.

In D dimensions we get (including mass terms) e.g.

|a12|2 = −2 α2
s

s2t2

`

(D − 2)t(s + t)
`

(D − 2)s2 + 4st + 4t2
´

+ 16m4s2 + 16m2st(s + t)
´
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tree level

helicity method:

fix helicities of external particles and express amplitude in terms of spinor inner products:

〈ij〉 = 〈pi − |pj+〉 ≡ ū(pi,−)u(pj , +) ; [ij] = 〈pi + |pj−〉 ≡ ū(pi, +)u(pj ,−) ) ;

for massive quarks: p = p♭ +
m2

t

2p♭ · η
ηp then u±(p, m) =

6p + m

〈p♭ ∓ |ηp±〉
|ηp±〉

for gauge bosons use εµ(p,±) = ±〈p ± |γµ|n±〉√
2〈n ∓ |p±〉

• lightlike reference momentum nµ drops out for gauge invariant quantities

• very compact results, e.g: a12(g−1 , g−2 , t+3 , t̄+4 ) = ig2 m3
t 〈η3η4〉[12]

〈12〉〈1|3|1]〈3♭η3〉[4♭η4]

• simplifications (due to gauge cancellations) at amplitude level

• sum over all (non-vanishing) helicity configurations

|a12|2 =
X

hi

|a12(g
h1
1 , gh2

2 , qh3
3 , q̄h4

4 )|2

• have to treat external particles in 4 dimensions
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tree level

hadronic cross section

dσH1(P1)H2(P2)→tt̄ =
Z 1

0
dx1 fg/H1

(x1, µF )

Z 1

0
dx2 fg/H2

(x2, µF ) dσ̂g(x1P1)g(x2P2)→tt̄(αs(µR) . . .) + . . .

µF : factorization scale; µR: renormalization scale

fg/H1
(x1, µF ): parton distribution functions

dσ̂: hard partonic cross section, at tree level dσ̂(0) = dσ(0)

there are additional partonic processes for H1H2 → tt̄ beyond LO (qg → tt̄q)

dσH1H2→tt̄ =

Z 1

0
dx1 fg/H1

(x1)

Z 1

0
dx2 fg/H2

(x2) dσ̂gg→tt̄

+
X

q∈{u,d,c,s,(b)}

Z 1

0
dx1 fq/H1

(x1)

Z 1

0
dx2 fq̄/H2

(x2) dσ̂qq̄→tt̄ + {q ↔ q̄}
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one loop

Tree-level: dσ̂(0) = dσ(0)

1-loop: dσ̂(1) = dσ(0)
| {z }

O(α2
s)

+ dσvirt + dσreal + dσcoll

| {z }

O(α3
s)

• All O(α3
s) are (in general) divergent and only the sum is finite (for properly defined, i.e.

infrared-safe observables).

• Regularize divergences by working in D = 4 − 2ǫ dimensions:
Z

d4k → µ2ǫ
R

Z

dDk;

singularities → poles 1/ǫ (dimensional regularization).

• Other possibilities in principle, but not in practice.

• Strictly speaking, only internal momenta have to be D dimensional. There is some
freedom how to treat external particles (recall helicity method needs these to be 4

dimensional)

• different schemes (variant of dimensional regularization) possible but observable is
independent of this choice
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one loop

virtual corrections

amplitude:

A(1) = (Ta1Ta2 )i3 i4

„

Nc

2
AL

12(s, t, u) +
1

2Nc
AS

12(s, t, u) +
NF

2
AF

12(s, t, u)

«

+ {12 ↔ 21}

+ δi3i4

1

2
Tr (Ta1Ta2 )

„

Atr(s, t, u) +
NF

Nc
AF

tr(s, t, u)

«

AL
12 =

1

ǫ2

"

cs

„−s

µ2

«−ǫ

+ ct

„−t

µ2

«−ǫ

+ . . .

#

+
1

ǫ
mess(log) + finite mess(log2, Li2)

• UV singularities (1/ǫ per loop) =⇒ renormalization

• soft and final-sate collinear sing. (1/ǫ per loop) =⇒ combine with real corrections

• soft-collinear singularities (1/ǫ2 per loop) =⇒ combine with real corrections

• initial-sate collinear sing. (1/ǫ per loop) =⇒ combine with collinear counterterm dσcoll
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one loop

virtual corrections

“squaring” the amplitude:

Att̄ = A(0)
tt̄

| {z }

∼αs

+A(1)
tt̄

| {z }

∼α2
s

+ . . . =⇒ M(0) = |A(0)
tt̄

|2 ∼ α2
s and M(1) = 2 Re

“

A(1)
tt̄

A(0) ∗
tt̄

”

∼ α3
s

the “same” diagram with a different cut is part of the real corrections

M(0)(gg → tt̄g) = |A(0)
tt̄g

|2 ∼ α3
s

Adrian Signer, DPG 2012 – p. 19/63



one loop

Real corrections

dσreal =
X

āi

Z

dΦ3(p1, p2; p3, p4, p5)〈M(0)(a1, a2; ā3, ā4, ā5)〉

processes: M(0)(g, g; t, t̄, g), but also new partonic channels M(0)(q, g; t, t̄, q) etc.
calculation of M(0) as for tree-level.

M(0) has no 1/ǫ poles, but has (non-integrable) singularities in some regions of phase
space.

Z

dΦn−1

0

@M(0) −
X

sing

Mappr

1

A

| {z }

finite

+

Z

dΦn−1

X

sing

Mappr

| {z }

use dim reg
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one loop

Real corrections naive example (e.g. gluon g soft, x ∼ energy)

A(g, g, t, t̄, g)
g→0∼ 1

〈pg〉A(g, g, t, t̄) + Arem ∼ 1√
x
A(g, g, t, t̄) + Arem

M(g, g, t, t̄, g) ∼ 1

x
M(g, g, t, t̄) +

1√
x
Mrem

Z

dΦD
3 M(g, g, t, t̄, g) =

Z

dΦ4
3

„

M(g, g, t, t̄, g) − 1

x
M(g, g, t, t̄)

«

| {z }

term 1

+

Z

dΦD
3

1

x
M(g, g, t, t̄)

| {z }

term 2

term 1: evaluate numerically in 4 dimensions, square root singularities !

term 2:
Z

x−ǫ 1

x

Z

dΦ4
2 M(g, g, t, t̄) = −1

ǫ

Z

dΦ4
2 M(g, g, t, t̄)

there are several well established (and automatised) general procedures

=⇒ FKS, Dipole subtraction . . .
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two loop

nnlo contributions

A(2)
tt̄ · A(0)∗

tt̄

A(0)
tt̄gg · A

(0)∗
tt̄gg

A(1)
tt̄ · A(1)∗

tt̄

A(0)
tt̄g · A

(1)∗
tt̄g

• at NNLO there are double real, virtual, real-virtual and one-loop squared contributions

• separate parts have singularities 1/ǫn with n ≤ 4

• singularities cancel in the sum of all contributions

• no general procedure yet for double-real integration, but many partial results

• qq̄ → tt̄ total cross section known (numerically) at NNLO [Czakon et al.]
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tt̄ total cross section

• total cross section (LHC dominated by σ̂gg, beyond LO we also need σ̂qg )

σ̂ij = σ̂
(0)
ij

»

1 +
αs

4π
σ̂

(1)
ij +

α2
s

(4π)2
σ̂

(2)
ij + . . .

–

• NLO QCD (and EW) corrections known [Dawson et.al.; Beenakker et.al.; Kao,
Wackeroth, Bernreuther et.al; Kühn, Scharf, Uwer . . .]

σ̂
(1)
ij =

a
(1,−1)
ij

β
| {z }

Coulomb

+ b
(1,2)
ij log2 β + b

(1,1)
ij log β

| {z }

soft gluon

+ c
(1)
ij

• NNLO QCD corrections not (yet) fully known [Czakon et.al, Moch et.al, Beneke et.al,
Ahrens et.al, Körner et.al. . . . (Hathor)]

σ̂
(2)
ij =

#

β2
+

# log2 β + # log β + #

β
| {z }

Coulomb

+ # log4 β + # log3 β + . . .
| {z }

soft gluon

+ c
(2)
ij

• problematic terms from threshold and soft gluon region
q

1 − 4m2
t /s ≡ β → 0
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resummation

enhancements from special kinematic regions =⇒ order by order in αs not sufficient

• in threshold region
q

1 − 4m2
t /s ≡ β → 0

• “bound state” effects (αs/β)n, can be resummed [Fadin, Khoze; Hagiwara et.al,
Kiyo et.al, Beneke et.al]

• resummation of soft logs αn
s log2n β, initially to NLL now NNLL and partly NNNLL

[Bonciani, Catani, Mangano, Mitov, Nason, Czakon et.al., Beneke et.al., Ahrens
et.al., Kidonakis, . . . . . .]

• note: cross section not necessarily dominated by small β, can use different
resummation parameter (done at NNLL)
• standard: β → 0 ⇒ αn

s lnm β with m < 2n

• invariant mass: 1 − z ≡ 1 − M2/ŝ → 0 ⇒ αn
s

lnm(1−z)
(1−z)

with m < 2n − 1

• SPI: s4 ≡ p2
X − m2

t → 0 ⇒ αn
s

lnm(s4/mt)
s4

with m < 2n − 1

• recover total cross section by integration
⇒ treatment of formally subleading terms are numerically relevant

• approximate “NNLO” cross section [Aliev et.al. (Hathor), Ahrens et.al, Beneke et.al,
Kidonakis . . .]
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resummation

structure of higher-order corrections: hard, Coulomb and soft

study either in Mellin space σtt̄(N) ≡
Z 1

0
dρ ρN−1σtt̄(ρ) with ρ ≡ s

4m2
t

or directly in momentum space via SCET

cross section factorizes (into product in Mellin space and convolution in SCET)

σtt̄ = σ
(h)

tt̄
⊗ σ

(Coul)

tt̄
| {z }

(αs/β)n

⊗ σ
(s)

tt̄
|{z}

log β

σ
(Coul)
tt̄

only in threshold expansion, but σtt̄ at LHC/Tev not dominated by small β.

inverse Mellin transform needs prescription to avoid Landau pole, or re-expansion of
resummed expression to certain order in perturbation theory
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pt at Tevatron

comparison fixed-order vs. resummed cross section for pt [Ahrens et al. 1103.0550]

fixed order resummed

NNLOapprox

NLO

LO

s = 1.96 TeV

y

0 50 100 150 200 250 300
0

10

20

30

40

50

60

NLO + NNLL

NLL

s = 1.96 TeV

y

0 50 100 150 200 250 300
0

10

20

30

40

50

60

• no large numerical shift in distributions

• scale dependence substantially reduced =⇒ more reliable predictions

• error estimate via scale dependence more questionable than ever
• scale dependence enters via logs, but higher-order terms also have constants
• scale dependence is an estimate of importance of missing logs
• higher-order logs can be predicted and resummed, but constants are still missing
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yt at Tevatron

comparison fixed-order vs. resummed cross section for yt [Ahrens et al. 1103.0550]

fixed order resummed

NNLOapprox

NLO

LO

s = 1.96 TeV

-2 -1 0 1 2
0

1

2

3

4

5
NLO + NNLL

NLL

s = 1.96 TeV

-2 -1 0 1 2
0

1

2

3

4

5

• similar picture as for pt distribution

• neither resummation nor approximate (!!) NNLO have a large effect

• NLO prediction seems to be fairly reliable but full NNLO still missing!!

• impact on AFB =⇒ later
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tt̄ invariant mass

Resummation of logs: for invariant mass [Ahrens et.al. arXiv:1003.5827]

NLO 

LO

NNLO, leading 

350 400 450 500
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tt̄ total cross section

bound-state effects

• near threshold Coulomb potential is dominating effect:

colour singlet: V (r) ≃ −αs
CF

r
attractive

colour octet: V (r) ≃ −αs
CF − CA/2

r
repulsive

• for Γt → 0 collections of bound states (as for bottom), for Γt ≃ 1.4 GeV a single
“bump” in invariant mass remains.

• resummation of (α/β)n (from Coulomb potential → “bound-state” effects) [Hagiwara
et.al., Kiyo et.al.] results in modification of invariant mass spectrum

• effect small for colour octet, i.e. Tevatron (qq̄ is pure octet at LO), but “large” (for a
theorist) at the LHC

• “bump” is impossible to be seen, but there is an effect on total cross section (threshold

expansion σ
(Coul)
tt̄

)
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tt̄ threshold at linear collider

Top threshold scan at linear collider

top pair produced near threshold

E ≡
√

s − 2m ≪ m

non-relativistic → NRQCD

V

e−

e+

t

t̄

√
s ≃ 2mt

• lifetime for top τ ≃ 1/Γt ≃ 5 × 10−25 s

• typical hadronization time τhad ≃ 1/ΛQCD ≃ 2 × 10−24 s

• τ < τhad ⇒ top decays before it forms hadrons

• Schrödinger eq:
„

∆

m2
− αs CF

r
+ δV − (E+iΓt)

«

G(~r, ~r ′, E) = δ(~r − ~r ′)

• poles (bound states) become a bump (would-be bound state)

• position of bump ⇒ determination of mass

• height and width of bump ⇒ determination of Γt

• typical scale: µ ≃ 2 m v ≃ 2

„

m
q

E2 + Γ2
t

«1/2

& 30 GeV ⇒ perturbation theory
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tt̄ threshold at linear collider

Top threshold scan at linear collider [Pineda, AS]

no resummation of log v with resummation of log v
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NNLL

• normalization of cross section much more stable after resummation

• smaller scale dependence, smaller size of corrections

• potential to measure (well defined) top mass to an accuracy of δmt ≃ 50 MeV

• potential for a precise measurement of Γt and maybe even the Yukawa coupling
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tt̄ threshold at linear collider

measurement of Higgs-Yukawa potential → yt ?? treating Higgs as “new physics”

e−

e+

t

t̄

⇔ VY

e−

e+

t

t̄

yt

yt

VY = − y2
t

4π

e−mh r

r

σ
tt
  
(p

b
)

Ecm (GeV)

abcde
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1.25

measurement of Γt [Frey et.al.]

• Γt affects shape of threshold scan

• different curves correspond to
Γt/ΓSM

t = (a) 0.5, (b) 0.8, (c) 1.0,
(d) 1.2, and (e) 1.5

• before (top) and after (bottom)
bremsstrahlung corrections
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tt̄ threshold at LHC/Tev
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threshold “scan” at Tevatron/LHC [Hagiwara et al. 0804.1014]

Tevatron LHC

Vo = −α (CF − CA/2)

r
Vs = −α CF

r
repulsive attractive

colour octet colour singlet
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tt̄ threshold at LHC/Tev

Top “threshold scan” at LHC [Kiyo et al. 0812.091]

including all channels and parton-distribution functions:

Tevatron LHC
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this bump cannot be seen directly but has some (small) impact on the total cross section
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qq̄ → tt̄ at NNLO

total cross section, σ
(2)
qq̄ computed numerically [Bärnreuther, Czakon, Mitov]

σ̂ij = α2
s

h

σ
(0)
ij + αs

“

σ
(1,0)
ij + σ

(1,1)
ij log(µ2/m2)

”

+ α2
s

“

σ
(2,0)
ij + σ

(2,1)
ij log(µ2/m2) + σ

(2,2)
ij log2(µ2/m2)

”i

 2
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σ t
o
t 
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b
]

mtop[GeV]

tt+X (Tevatron)

MSTW2008(68c.l.) LO; NLO; NNLO
LO; NLO; NNLO; NNLO+NNLL

Independent µF,R scale variation

CDF, L=4.6fb
-1

D0, L=5.4fb
-1
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qq̄ → tt̄ at NNLO

total cross section [Bärnreuther, Czakon, Mitov]

σ
(2,i)
ij expanded in β corresponds to threshold expansion [Beneke et.al.]

σ
(2,0)
qq̄ = σ

(0)
qq̄

"

k(2,0)

β2
+

2
X

n=0

k(1,n)

β
logn β +

4
X

n=0

k(0,n) logn β

#
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partonic NNLO x Flux

qq −> tt+X

MSTW2008NNLO(68c.l.)

Approx NNLO, Leading Born
Approx NNLO, Exact Born

Exact NNLO
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tt̄ + 2 jets

many partonic processes, up to 6-point interals: (tree level ∼ α4
s(µ) !! )

gg → tt̄qq̄ gq → tt̄gq qq̄ → tt̄qq̄ qq′ → tt̄qq′

e.g: invariant mass of top pair [Bevilacqua et al. 1108.2851]
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differential cross sections

more detailed questions

=⇒ mt

=⇒ decay

• cuts on decay products (missing ET , rapidity and pt of leptons etc. )

• testing decay of top (spin correlations)

• non-factorizable corrections (off-shell effects)

• colour connection between decay products and proton remnants
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off-shell effects

include decay of top and W , gg → W+b W− b̄

double resonant single resonant non-resonant

• calculation available by two groups [Bevilacqua et al; Denner et. al]

• complex mass scheme for treatment of intermediate unstable particles
m2

t → µ2
t ≡ m2

t − imtΓt

• requires integrals with complex masses

• treatment of W (with leptonic decay): also resonant or non-resonant
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W+b W−b̄ final state

top quark Meb distribution distribution for 8 TeV LHC [Denner et al. 1203.6803]

• off-shell effects (from top) small in general

• can be enhanced at kinematic boudaries ( at LO: M2
eb < m2

t − M2
W )
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W+b W−b̄ final state

Meb distribution for 8 TeV LHC [Denner et al. 1207.5018]
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• off-shell effects (from W ) small except in specal (but possibly important) kinematic
regions (mt measurement)
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Part III

Top Mass
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top mass

Problem 1: conceptual problem with pole mass; O(ΛQCD)

The pole mass has an intrinsic uncertainty of order ΛQCD in perturbation theory
(infrared sensitivity, renormalon ambiguity)

consider (fictitious) meson:

M
| {z }

well def. pole mass

= mQ
|{z}

pert. ambiguity

+ mq + V (q2)
| {z }

pert. ambiguity

There is a principal limitation of the usefulness of the pole mass: δmt > ΛQCD

• can be solved in principle by using other (short-distance) mass definitions

• highly relevant for mt determinations at linear collider [Beneke et.al, Hoang et.al]

• probably (??) not relevant for LHC

mt sensitive

observable

EW precision

observable

mpole

msd
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scheme dependence

Problem 2: scheme dependence

• mt has no meaning, unless you precisely specify what you mean by it

• quark mass definition is not unique, it is simply a theoretical parameter

• different definitions (schemes) are possible and widely used e.g.
mpole, m, mPS, m1S, mDR . . .

• for each (acceptable) scheme s1 the mass ms1 can be related to the bare mass m0 by
divergent relations to any order in perturbation theory

m
(i)
s1 = m0 (1 + αs d

(1)
s1 + α2

s d
(2)
s1 + . . . + αi

s d
(i)
s1 )

• the masses in two (acceptable) schemes s1 and s2 are related by finite relations

m
(i)
s1 = m

(i)
s2 (1 + αs f

(1)
s1,s2 + α2

s f
(2)
s1,s2 + . . . + αi

s f
(i)
s1,s2 )

• at tree level, all mass definitions are equal, but the higher-order coefficients can be

numerically large, e.g. relating m
(3)
pole to m(3):

172.5 GeV ≃ (162.0 + 8.0 + 1.9 + 0.6) GeV
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scheme dependence

observable O, mass scheme s1

Oexp = O
(0)
s1 (ms1 . . .)

| {z }

determination of m
(0)
s1

+ αs O
(1)
s1 (ms1 . . .)

| {z }

determination of m
(1)
s1

=m
(0)
s1

(1+c
(1)
s1 αs)

+ α2
s O

(2)
s1 (ms1 . . .)

| {z }

determination of m
(2)
s1

=m
(0)
s1

(1+c
(1)
s1 αs+c

(2)
s1 α2

s)

+ . . .

• working at order αn
s , the determinations of ms2 by

• using mass scheme s2 directly in determination above
• using mass scheme s1 as above and then converting ms1 to ms2

are different at order αn+1
s

• to get a reliable top-mass determination we either have to work to very high order in
perturbation theory or use a scheme were the corrections are not large.
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top mass

Problem 2: how to relate mexp to pole mass; O(Γt)

• mX determination by requiring Oth(mX)
!
= Oexp, in principle for any scheme X and

any (mass sensitive and well measurable) observable O

• in practice limitation through lack of higher-order terms in Oth

• mt measurements through kinematics of decay products are basically tree-level
determinations

• pick a scheme where higher-order corrections are small, i.e. pole scheme =⇒
mt extracted using decay products is “something like” the pole mass

• the issue is not (and never was) whether this mass mexp is the pole mass or MS

mass, but what the precise relation between mexp and mpole is

• care has to be taken when interpreting mexp
??
= mpole

however mexp
!!
= mpole + O(Γt) is fine. (Note: non-factorizable corrections have been

computed and seem to be small [Denner et.al., Bevilacqua et.al.])

• alternative ways to measure mt, using different O, where higher-order corrections are
known, e.g. total cross section [Langenfeld et.al] or other choices [Melnikov et.al.]

• the ultimate mt determination with δmt ∼ 100 MeV from threshold scan at ILC.
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tt̄ top mass

determination of m(m) through cross section [Langenfeld, Moch, Uwer]

compare σtot expressed in terms of pole and MS mass (for µF ∈ {0.5, 1, 2} × mt)
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• MS scheme more reliable (bands overlap, smaller uncertainty)

• direct extraction of MS mass m(m) with δm ≃ 3 GeV

• PDF uncertainties etc... ??
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tt̄ top mass

Compare direct vs. indirect determination of pole mass [Alekhin, Djouadi, Moch]

Tevatron

CDF&D0 ABM11 JR09 MSTW08 NN21

mMS
t (mt) 162.0 +2.3

−2.3
+0.7
−0.6 163.5 +2.2

−2.2
+0.6
−0.2 163.2 +2.2

−2.2
+0.7
−0.8 164.4 +2.2

−2.2
+0.8
−0.2

mpole
t 171.7 +2.4

−2.4
+0.7
−0.6 173.3 +2.3

−2.3
+0.7
−0.2 173.4 +2.3

−2.3
+0.8
−0.8 174.9 +2.3

−2.3
+0.8
−0.3

(mpole
t ) 169.9 +2.4

−2.4
+1.2
−1.6 171.4 +2.3

−2.3
+1.2
−1.1 171.3 +2.3

−2.3
+1.4
−1.8 172.7 +2.3

−2.3
+1.4
−1.2

LHC

ATLAS&CMS ABM11 JR09 MSTW08 NN21

mMS
t (mt) 159.0 +2.1

−2.0
+0.7
−1.4 165.3 +2.3

−2.2
+0.6
−1.2 166.0 +2.3

−2.2
+0.7
−1.5 166.7 +2.3

−2.2
+0.8
−1.3

mpole
t 168.6 +2.3

−2.2
+0.7
−1.5 175.1 +2.4

−2.3
+0.6
−1.3 176.4 +2.4

−2.3
+0.8
−1.6 177.4 +2.4

−2.3
+0.8
−1.4

(mpole
t ) 166.1 +2.2

−2.1
+1.7
−2.3 172.6 +2.4

−2.3
+1.6
−2.1 173.5 +2.4

−2.3
+1.8
−2.5 174.5 +2.4

−2.3
+2.0
−2.3

• with errors δmt ∼ 2 − 3 GeV renormalon problems are not main issue.

• if δmt . 1 GeV must not use pole mass
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Part IV

Single Top

Adrian Signer, DPG 2012 – p. 49/63



single top

basic processes

t − channel s − channel W t (or H− t) production

classification of physical processes is not that straightforward

approximate (!) expected / measured SM cross sections in pb

Tevatron 7 TeV LHC 14 TeV LHC

t (t̄) “t”-ch 1.2 40 (20) 150 (100)

t (t̄) “s”-ch 0.55 2.5 (1.4) 7 (4)

t W− 0.15 8 45
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SM single top

more detailed questions

• NLO corrections in production

• resummation of soft logs → “N”NLO corrections

• top decay, at LO/NLO, spin correlations

• off-shell effects / non-factorizable corrections

• initial b quark and mb effects : 5 flavour scheme vs. 4-flavour scheme

• matching to parton showers
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theory status

• fully differential NLO QCD corrections for t–, s–channel and Wt known
[Harris et.al; Sullivan; Zhu . . .]

• resummation at NNLL of inclusive cross section [Kidonakis; Wang et.al.]
→ “poor man’s” NNLO corrections

• top decay added, with NLO corrections in production and decay [Campbell et.al; Cao
et.al]

→ issues with definition of channel
→ spin correlations

• EW corrections known in SM and MSSM [Beccaria et.al; Macorini et.al]
effect small, a few %

• non-factorizable corrections known [Falgari et.al]
→ effects small, except at kinematic boundaries

• 4-flavour vs. 5-flavour scheme [Campbell et.al]
→ generally good agreement at NLO

• all channels (including t H−) included in MC@NLO and POWHEG [Frixione,Frederix,
Laenen, Motylinski, Alioli, Nason, Re, Webber, White . . . . . . ]

• BSM effects (e.g. anomalous trilinear couplings) included in WHIZARD
→ interference with background diagrams on its way [Bach, Kilian, Ohl. . .]
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resummed cross section

s-channel: Kidonakis [1001.5034]

• resummation in moment space

• s4 ≡ (pa + pb − p1)2 − m2
t = s + t + u − m2

t for s4 → 0 ⇒

αn
s L2n−1 ≡ αn

s [log2n−1(s4/m2
t )/s4]+

• NLL → NNLO: α2
s L3 and α2

s L2 NLLOapprox/NLO ∼10% increase
NNLL → NNLO: also α2

s L1 and α2
s L0 NLLOapprox/NLO further 3-4% increase

• soft limit good approximation for Tevatron and LHC

• damping factors (to limit soft gluon contributions away from threshold) improve soft
approximation

• “best” predictions, MSTW2008 NNLO pdf:

Kidonakis mt = 173 GeV Zhu et.al. mt = 173.2 GeV

σTeV = 0.523+0.001+0.030
−0.005−0.028 pb σTeV = 0.467+0.01

−0.01 pb

σLHC 7 = 3.17+0.06+0.13
−0.06−0.10 pb σLHC 7 = 2.81+0.16

−0.10 pb
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resummed cross section

s-channel: Zhu, Li, Wang, Zhang [1006.0681]

• resummation via SCET

• different definition of resummation variable s4 ≡ (pa + pb − pt)2

also includes hard-collinear logarithms

• soft/coll limit good approximation for Tevatron, not very good for LHC
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resummed cross section

t-channel: Kidonakis [1103.2792] vs Wang, Li, Zhu, Zhang [1010.4509]

• similar technical (moments vs SCET) and physical (resummation kinematics and
virtual contribution) differences as for s-channel

• soft gluon approximation not considered reliable

• results for mt = 173 GeV and MSTW2008 NNLO pdf

Kidonakis Wang et.al.

σTeV = 1.04+0.00
−0.02 ± 0.06 pb σTeV = 0.982 pb

σLHC 7 = 41.7+1.6
−0.2 ± 0.8 pb σLHC 7 = 40.9+0.1

−0.1 pb

σLHC 14 = 151+4
−1 ± 3 pb σLHC 7 = 152.4+0.4

−1.0 pb

• better numerical agreement than for s-channel

• resummation effects decrease scale dependence
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resummed cross section

W t and H− t: Kidonakis [1005.4451]

• resummed cross section re-expanded:

σ(2) = σ(0)α2
s

0

B

@
c3L3 + c2L2

| {z }

NLL

+ c1L1 + c0L0

| {z }

NNLL

1

C

A

• soft gluons claimed to be dominant

• damping factors applied

• NLO → ’N’NLO: 8% increase at 7 TeV LHC

• mt = 173 GeV, MSTW2008 NNLO pdf: σ(t W−) = 7.8 ± 0.2+0.5
−0.6 pb

• scale variation error < pdf error

• similar analysis for H− t: corrections NLO → ’N’NLO: 15-20%, depending on mH

Adrian Signer, DPG 2012 – p. 56/63



adding top decay

• new issue: definition of process, e.g t-channel

Ares AEWbg AQCDbg

• it is an “irrelevant coincidence” at LO that
|Ares + AEWbg + AQCDbg|2 = |Ares + AEWbg|2 + |AQCDbg|2

• shouldn’t we define a proper observable (to which AQCDbg contributes) with proper
final states (e.g. b-jets), rather than try to subtract |AQCDbg|2 ?

• similar comment regarding distinction between s-channel and t-channel

= +

t − channel s − channel

• mixing but no interference at NLO (another “irrelevant coincidence”), beyond NLO
there is interference
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adding top decay

• this issue is particularly acute for W t and has been studied extensively [Kersevan
et.al; Tait; Belyaev et.al; Campbell et.al; Frixione et.al]

⇔

Abg?
tt ANLO

Wt

• possible remedies
• invariant mass (anti-) cut |MWb − mt|2 ≫ Γt

• pb
T < pveto

T (hard b tend to come from t decay)
• Diagram removal A(Wt) + A(tt) → A(Wt)

• Diagram subtraction

|A(Wt) + A(tt)|2 → |A(Wt)|2 + 2Re(A(Wt)A∗
(tt)) + |A(tt)|2 − |̃A(tt)|

2

• using b-jet rather than b-parton allows to define (at least theoretically) clean
observables

Adrian Signer, DPG 2012 – p. 58/63



off-shell effects

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al;
Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but usually neglected at hadron colliders:

• they seem to be more difficult to compute (not really)

• they are generally small [Beenakker et.al; Pittau]
• resonant → non-resonant propagator unless E . Γ is small (soft)
• cancellations for “inclusive” observables [Fadin, Khoze, Martin]

• include off-shell effects: consistently combine non-factorizable with propagator
corrections:
[Falgari et.al] e.g. transverse mass: MT =

X

Jb,ℓ,ν

|pT |2 − (
X

Jb,ℓ,ν

~pT )2

LHC 7 TeV

LO
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off-shell effects

effective-theory inspired calculation (hard/soft through method of region)

real amplitude:
+

Ag
prod ⊗P ⊗A0

dec + A0
prod ⊗ P ⊗Ag

dec

corrections to production (soft and coll singularities):
Z

dΦn+1

˛

˛

˛Ag
prod ⊗P ⊗A0

dec

˛

˛

˛

2
plus (hard) virtual corrections for t-production is IR finite

corrections to decay (soft and coll singularities):
Z

dΦn+1

˛

˛

˛A0
prod ⊗P ⊗Ag

dec

˛

˛

˛

2
combined with (hard) virtual correction for decay is IR finite

non-factorizable corrections (soft singularities only):
Z

dΦn+1 2 Re
“

A0
prod ⊗P ⊗Ag

dec

” “

Ag
prod ⊗ P ⊗A0

dec

”∗
plus soft virtual is IR finite
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4FS vs 5FS

4-flavour scheme vs. 5-flavour scheme

Q̄m

QM

B∗

n − flav scheme

Qm=0

QM

(n + 1) − flav scheme

B∗

b /∈ p: 4 flavour scheme b ∈ p: 5 flavour scheme

∃b̄ @ LO ∄b̄ @ LO

only 1 log µ2
f/m2

b @ NLO log µ2
f /m2

b resummed

mb effects can be included mb = 0 for initial state

• Comparison 4F vs 5F for single top at NLO [Campbell et.al]:

• Generally good agreement already at NLO

• A detailed single-top analysis POWHEG vs aMC@NLO in 4F (and 4F vs 5F including
parton showers) is under way [Frederix, Re, Torrielli]
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4FS vs 5FS

4-flavour scheme vs. 5-flavour scheme

• general analysis 4F vs 5F [Maltoni, Ridolfi, Ubiali (1203.6393)]

• resummation of log µ2
f /m2

x numerically not very important (except for x large)

• scale in log suppressed through phase space
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tools

tools (no claim for completeness!)

• resummed total cross sections available
• for s- and t-channel by two groups
• for W t, H t by one group

• several fixed-order NLO calculations (including decay and spin correlations) available

• off-shell effects at NLO available

• all channels (s-, t-, W t, H t) implemented in POWHEG and MC@NLO

• t-channel in 4 flavour scheme (very soon) available in POWHEG and (a)MC@NLO

• all channels (s-, t-, W t, H t) available in WHIZARD
• up to 6 final state partons at LO
• including “background” diagrams
• BSM models implemented
• including interface to shower
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