Physik am LHC: Messung der Higgs-Masse

Nadine Erhard Sommerakademie Neubeuern 2008

Welches Higgs wird man finden?

- SM: 1 neutrales Higgs-Boson
- MSSM: 2 komplexe Higgs-Dupletts
 - \rightarrow 3 neutrale Higgs-Bosonen (h,A,H)
 - \rightarrow 2 geladene Higgs-Bosonen (H[±])
- Modelle mit Higgs-Tripletts: auch H^{±±}

Bedeutung der Higgs-Masse im SM

• Higgs-Potential:

$$V = \mu^2 \left| \Phi \right|^2 + \lambda \left| \Phi \right|^4$$

• Vakuumserwartungswert:

$$\left|\Phi\right|^{2} = -\frac{1}{2}\mu^{2} / \lambda$$
$$v = (-\mu^{2} / \lambda) = 2M_{W} / (e / \sin \theta_{W}) = 246GeV$$

• Higgs-Masse: $m_H = (2\lambda)^{1/2} v = \sqrt{-2\mu^2}$ λ : dimensionsloser freier Kopplungsparameter

Grenzen der Higgs-Masse im SM

• Untere Grenze:

Vakuumstabilität: $\lambda > 0$

• Obere Grenze:

Unitarität soll nicht verletzt werden, d.h. damit Wirkungsquerschnitte endlich bleiben gilt:

 $m_H < 800 \text{ GeV}$

experimentelle Grenzen der Higgs-Masse

invariante Masse

Messung der invarianten Masse

$$M = \frac{1}{c^2} \left[\left(\sum_i E_i \right)^2 - \left(\sum_i \overrightarrow{p_i} \right)^2 \right]^{1/2}$$

E_i / p_i : Energie / Impulse der Zerfallsprodukte

• Resonanz bei der Higgs-Masse

Zerfallskanäle des Higgs-Bosons

Produktionsmechanismen am LHC

Weak-Boson Fusion

Produktionswirkungsquerschnitt am LHC

Gluon Fusion: $gg \rightarrow H$

- dominanter Produktionsprozess am LHC
- Interessante Kanäle f
 ür die Messung der Higgs-Masse:
 - gg \rightarrow H \rightarrow $\gamma\gamma$
 - $gg \rightarrow H \rightarrow ZZ \rightarrow 4I$ ("golden channel")

Massenbestimmung über $H \rightarrow \gamma \gamma$

- falls 80 < m_H < 150 GeV
- LHC-Detektoren können Photonenimpulse und – energien besonders gut bestimmen
- Untergrund:
 - irreduzibel: $qq \rightarrow \gamma \gamma$
 - reduzibel: $qq \rightarrow jj, j\gamma$

Massenbestimmung über $H \rightarrow ZZ$

- falls 115 < m_H < 700
 GeV
- ~170 GeV:
 H → ZZ unterdrückt
- Signatur: 4 Leptonen mit hohen Transversalimpulsen

Massenbestimmung über $H \rightarrow ZZ$

- Irreduzibler Untergrund:
 ZZ, Zγ Kontinuum
- Zerfallsbreite wächst stark mit zunehmendem m_H: ab 300 GeV dominanter Prozess, der die Massenauflösung einschränkt

Messgenauigkeit am LHC für $H \rightarrow ZZ$ und $H \rightarrow \gamma\gamma$

- 100 400 GeV : ~
 0,1%
- Mit zunehmender Higgs-Massen wird die Zerfallsbreite größer und damit der statistische Fehler:

⇒ bei 600 GeV: ~1%

Weak-Boson Fusion: qq→qqH

- im mittleren Massen-bereich nur 20% des Gesamtproduktions-querschnitts
- dominierender Kanal am LHC für große Higgsmassen (m_H \rightarrow 1TeV)
- Interessante Kanäle f
 ür die Messung der Higgs-Masse:
 - $H \rightarrow W^+ W^-$
 - $H \rightarrow TT$
 - $H \rightarrow \gamma \gamma$

Weak-Boson Fusion (WKB): qq→qqH

interessanter Kanal, da Ereignisse spezielle Eigenschaften zeigen:

- 2 jets im vorderen Bereich des Detektors, die von den Quarks stammen, die die
 Vektorbosonen emitiert haben
- Kein Farbfluss bei Higgsproduktion ⇒ keine Jets im Zentralbereich

⇒ wichtiges Auswahlkriterium zum Herausfiltern von Untergrundereignissen

Massenbestimmung über $H \rightarrow WW$

- falls $m_H \sim 2 m_W$ (d.h. ca. 160 GeV)
- $H \rightarrow WW \rightarrow l\nu l\nu$
- Problem beim bestimmen der invarianten Masse: keine direkte Bestimmung der Neutrinoimpulse

Ausweg:
$$\sum p_T = 0$$

$$\Rightarrow \qquad p_{T,v} = p_{T,miss}$$

Massenbestimmung über $H \rightarrow WW$

 Rekonstruktion der transversale Masse des Higgs-Bosons:

$$m_T = \sqrt{\left(E_T^{ll} + E_T^{\nu\nu}\right)^2 - \left(\vec{p}_T^{ll} + \vec{P}_{T,miss}\right)^2}$$

• $m_H \sim 2 m_W \Rightarrow$ W-Bosonen fast in Ruhe im Ruhesystem des Higgs-Bosons $\Rightarrow m_{ll}^2 = m_{_{VV}}^2$

$$E_T^{ll} = \sqrt{(P_T^{ll})^2 + m_{ll}^2} \qquad E_T^{\nu\nu} = \sqrt{(P_{T,miss})^2 + m_{ll}^2}$$

Massenbestimmung über H \rightarrow WW

- m_{Trans} ≤ m_{invariant}
- Endpunkt der m_{Trans}-Verteilung = m_{invariant}

Massenbestimmung über $H \rightarrow \tau \tau$

- Signifikanz > 5σ für
 110 < m_H < 140 GeV
- Signatur: 2 Leptonen mit hohem Transversalimpuls
- Hauptuntergrund: Zjj(QCD): $Z \rightarrow \tau \tau$

Massenbestimmung über $H \rightarrow \tau \tau$

Rekonstruktion der invarianten Masse m_{$\tau\tau$} mittels <u>kollinearer Näherung</u> für $\tau^{\pm} \rightarrow l^{\pm} \nu_{l} \nu_{\tau}$:

Annahmen:

- Leptonenimpuls in gleiche Richtung
 wie τ: k = xp
- Fehlender Transversalimpuls P_{T,miss} nur durch Neutrinos verursacht
- Impuls groß im Vergleich zur τ-Masse

(\Rightarrow m_r vernachlässigbar)

Kollineare Näherung

Impulserhaltung:

$$p_1 + p_2 = \frac{k_1}{x_1} + \frac{k_2}{x_2} = k_1 + k_2 + P_{T,miss}$$

$$P_{T,miss} = \left(\frac{1}{x_1} - 1\right)k_{1,T} + \left(\frac{1}{x_2} - 1\right)k_{2,T}$$

⇒ τ dürfen nicht in genau in die entgegengesetzte Richtung fliegen, damit x₁ und x₂ rekonstruierbar sind

Messung von m_H=120 GeV über $H \rightarrow \tau \tau$

Invariante Masse:

$$m_{H}^{2} = m_{\tau\tau}^{2} = (p_{1} + p_{2})^{2} = 2(m_{\tau}^{2} + p_{1} \cdot p_{2}) \approx \frac{2k_{1}k_{2}}{x_{1}x_{2}}$$

- Für 8 Datensätze à 30 fb⁻¹ (d.h. ~ 3 Jahre Datennahme)
 <m_H>=(121,5 ± 5,2) GeV
- Für 10 Datensätze à 120 fb⁻¹
 <m_H>=(119,6 ± 3,0) GeV

Messgenauigkeit: 2-5%

Zusammenfassung

Zerfalls- Kanal	Higgs-Masse- Bereich [GeV]	Messgen bei 300 ft	auigkeit b ⁻¹
			E_{10}^{-1} O H WH #H(H $\rightarrow m$)
$gg \rightarrow H \rightarrow \gamma \gamma$	80 - 150	~ 0,1%	$ \begin{array}{c} \searrow \\ \blacksquare \\$
$gg \rightarrow H \rightarrow ZZ$	115 - 700	0,1 - 1%	
WBF: H $\rightarrow \tau \tau$	110 - 140	-	
WBF:	~160	0,2 - 1%	ATLAS + CMS
H→WW			10^{-4} 10^{2} 10^{3} m _µ (GeV)