Supersymmetrie

Jan Uphoff

Goethe-Universität Frankfurt am Main

19. August 2008

Motivation

Supersymmetrie Eigenschaften Langrangedichte der supersymmetrischen QED Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Gliederung

- Physik jenseits des Standardmodell
- Grand unification theory (GUT)
- Das Hierarchieproblem

2 Supersymmetrie

3 Eigenschaften

4 Langrangedichte der supersymmetrischen QED

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Physik jenseits des Standardmodell

Das Standardmodell (SM) ist sehr erfolgreich:

Vorhersagen weichen zum Teil weniger als 1 % ab, aber...

Probleme

- zu viele (mind. 18) freie Parameter (Massen, Kopplungen, etc.)
- Gravitation nicht inbegriffen
- Materie-Antimaterie-Asymmetrie
- GUT: Kopplungen treffen sich nicht

۲

Motivation

Supersymmetrie Eigenschaften Langrangedichte der supersymmetrischen QED Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Kopplungen in GUT

Abb.: Eichkopplungen (aus hep-ph/0012288v2)

$$\alpha_3 = \frac{g_s^2}{4\pi}$$
$$\alpha_2 = \frac{g^2}{4\pi} = \frac{\alpha}{\sin^2 \theta_W}$$
$$\alpha_1 = \frac{5}{3} \frac{g'^2}{4\pi} = \frac{5}{3} \frac{\alpha}{\cos^2 \theta_W}$$

- g_s: SU(3)_C Eichkopplung der QCD
- g: SU(2)_L Eichkopplung der Elektroschwachen WW
- g': U(1)_Y Eichkopplung der Elektroschwachen WW

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Physik jenseits des Standardmodell

Das Standardmodell (SM) ist sehr erfolgreich:

Vorhersagen weichen zum Teil weniger als 1 % ab, aber...

Probleme

- zu viele (mind. 18) freie Parameter (Massen, Kopplungen, etc.)
- Gravitation nicht inbegriffen
- Materie-Antimaterie-Asymmetrie
- GUT: Kopplungen treffen sich nicht
- Hierarchieproblem

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Das Hierarchieproblem

• SM: Gute Vorhersagen im Energiebereich

 $\mathcal{O}(M_W) \sim 100 \; {\rm GeV}$

Was passiert bei

 $\mathcal{O}(M_P) \sim 10^{19} \text{ GeV}$ oder $\mathcal{O}(M_{GUT}) \sim 10^{16} \text{ GeV}$?

• Neue Physik \rightarrow neue Teilchen

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Strahlungskorrekturen der Higgs-Boson-Masse

Strahlungskorrekturen der Higgs-Boson-Masse aufgrund von Schleifen

$$\delta m^2 \sim \int^{\Lambda} \mathrm{d}^4 \mathbf{k} \ldots \sim \lambda^2 \Lambda^2$$

Abb.: aus hep-ph/0012288v2

 \Rightarrow fine-tuning der Kopplungskonstanten über 13 Größenordnungen!

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Strahlungskorrekturen der Higgs-Boson-Masse

Abb.: Korrektur zur Higgsmasse durch (a) ein Fermion f und (b) einem Skalar S (aus hep-ph/9709356v4).

$$\begin{array}{ll} \mbox{Fermion:} & \Delta m_H \sim -|\lambda_f|^2 \Lambda^2 \\ \mbox{Boson (Skalar):} & \Delta m_H \sim + \lambda_s \ \Lambda^2 - 2\lambda_s m_s^2 \ln \frac{\Lambda}{m_s} \end{array}$$

Unterschiedliche Vorzeichen!

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Strahlungskorrekturen der Higgs-Boson-Masse

Abb.: Korrekturen heben sich auf (aus hep-ph/0012288v2).

Physik jenseits des Standardmodell Grand unification theory (GUT) Das Hierarchieproblem

Strahlungskorrekturen der Higgs-Boson-Masse

• Heben sich exakt auf, wenn

$$|\lambda_f|^2 = \lambda_s$$

• Bosonen und Fermionen gleicher Masse

und sonst gleicher Eigenschaften.

• \Rightarrow Symmetrie zwischen Fermionen und Bosonen.

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Gliederung

2 Supersymmetrie

- Einführung der Supersymmetrie
- Supersymmetrische Teilchen
- Supersymmetrie-Algebra

3 Eigenschaften

4 Langrangedichte der supersymmetrischen QED

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Neue Symmetrie

Einführung einer neuen Symmetrie: **Supersymmetrie** (SUSY)

 $Q|\text{Boson}\rangle = |\text{Fermion}\rangle$

 $Q|\text{Fermion}\rangle = |\text{Boson}\rangle$

Q: Generator der Supersymmetrie

Aus Symmetrie hervorgegangener und vorheriger Zustand bilden Multiplett: **Supermultiplett**

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Superpartner

Abb.: Jedem Teilchen aus dem SM wird ein Superpartner zugeordnet.

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Liste der supersymmetrischen Teilchen

Minimales supersymmetrisches Standardmodell (MSSM): kleinstmögliche Erweiterung des SM

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Chirale Supermultipletts des MSSM

				<i>SU</i> (3) _C ,
				$SU(2)_L,$
Namen		Spin 0	Spin 1/2	$U(1)_Y$
Squarks, Quarks	Q	$(\widetilde{u}_L \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$
$(\times 3$ Familien)	Ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$
	d	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3}, 1, \frac{1}{3})$
Sleptonen, Leptonen	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ Familien})$	ē	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, Higgsinos	H _u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}^+_u \ \widetilde{H}^0_u)$	$(1, 2, +\frac{1}{2})$
	H _d	$(H^0_d \ H^d)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2})$

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Eichsupermultipletts des MSSM

			$SU(3)_C, SU(2)_L,$
Namen	Spin 1/2	Spin 1	$U(1)_Y$
Gluino, Gluon	ĝ	g	(8 , 1 , 0)
Winos, W-Bosonen	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^{0}$	(1 , 3 , 0)
Bino, B-Boson	\widetilde{B}^{0}	B^0	(1,1,0)

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Spinore

- Dirac-Spinor: $\Psi_D = \begin{pmatrix} \psi \\ \chi \end{pmatrix}$ $(i\gamma^{\mu}\partial_{\mu} m)\Psi_D = 0$ Chiralität-Projektoren: $P_L\Psi_D = \begin{pmatrix} 0 \\ \chi \end{pmatrix}$ $P_R\Psi_D = \begin{pmatrix} \psi \\ 0 \end{pmatrix}$
- Weyl-Spinore: ψ, χ
- Majorana-Spinor: 4-Spinor aus einem Weyl-Spinor

$$\Psi_{\rm M} = \begin{pmatrix} \psi \\ -\mathrm{i}\sigma_2\psi^* \end{pmatrix}$$

Ladungskonjugation:

$$\Psi_{M,c} \equiv C_0 \Psi_M^* \equiv -i\gamma^2 \Psi_M^* \equiv \begin{pmatrix} 0 & i\sigma_2 \\ -i\sigma_2 & 0 \end{pmatrix} \Psi_M^* = \Psi_M$$

 \Rightarrow Teilchen = Antiteilchen

Einführung der Supersymmetrie Supersymmetrische Teilchen Supersymmetrie-Algebra

Supersymmetrie-Algebra

SUSY-Algebra

$$\{Q_a, Q_b^{\dagger}\} = (\sigma^{\mu})_{ab} P^{\mu}$$
$$\{Q_a, Q_b\} = \{Q_a^{\dagger}, Q_b^{\dagger}\} = 0$$
$$[P^{\mu}, Q_a] = [P^{\mu}, Q_a^{\dagger}] = 0$$

Motivation	Massen der Sparticles
Supersymmetrie	GUT im MSSM
Eigenschaften	Beispiele für Massen
Langrangedichte der supersymmetrischen QED	R-Parität

Gliederung

2 Supersymmetrie

3 Eigenschaften

- Massen der Sparticles
- GUT im MSSM
- Beispiele für Massen
- R-Parität

4 Langrangedichte der supersymmetrischen QED

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Massenentartung

Aus SUSY-Algebra: $[P^{\mu}, Q] = 0$. Also kommutiert Q auch mit dem Massenoperator $M^2 = P^2$ \Rightarrow Massen der Teilchen in einem Supermultiplett sind gleich.

Problem: Sparticles müssten entdeckt worden sein! **Lösung**: Supersymmetrie ist entweder *spontan* oder *explizit gebrochen*.

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Massenentartung

Hierarchieproblem: Massen in Supermultipletts gleich

SUSY-Brechung: Massen nicht mehr gleich. Damit Hierarchieproblem immer noch gelöst

$$\sum_{Bosonen} m^2 - \sum_{Fermionen} m^2 = M_{SUSY}^2$$

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Massenentartung

Korrektur der Higgsmasse nicht größer als Higgsmasse selbst

$$\Rightarrow M_{SUSY} \sim 10^3\,{\rm GeV} = 1\,{\rm TeV}$$

Sparticles haben Massen der Ordnung $1\,{\rm TeV}$ \Rightarrow Im Bereich, was am LHC detektiert werden kann.

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Kopplungen im SM und MSSM

Abb.: Kopplungen im SM und MSSM (aus hep-ph/0012288v2)

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Mischung der Zustände

Namen	Spin	P_R	Eicheigenzustände	Masseneigenzust.
Higgs-Bosonen	0	+1	$H^0_u H^0_d H^+_u H^d$	$h^0 H^0 A^0 H^{\pm}$
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(gleich)
Squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(gleich)
			$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{\nu}_e$	(gleich)
Sleptonen	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(gleich)
			$\widetilde{\tau}_L \ \widetilde{\tau}_R \ \widetilde{\nu}_{\tau}$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ uu}_ au$
Neutralinos	1/2	-1	$\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}^0_u \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
Charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^{+}_{u} \widetilde{H}^{-}_{d}	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
Gluino	1/2	-1	ĝ	(gleich)

Motivation Masse Supersymmetrie GUT i Eigenschaften Beispi Langrangedichte der supersymmetrischen QED R-Pari

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Beispiele für Massen

Abb.: Schematisches Massenspektrum für "minimal supergravity model" (aus hep-ph/9709356v4).

Massen der Sparticles GUT im MSSM Beispiele für Massen R-Parität

Beispiele für Massen

Abb.: Schematisches Massenspektrum für "minimal GMSB"-Modell (aus hep-ph/9709356v4).

Motivation	Massen der Sparticles
Supersymmetrie	GUT im MSSM
Eigenschaften	Beispiele für Massen
Langrangedichte der supersymmetrischen QED	R-Parität
Eigenschaften	Beispiele für Massen
Langrangedichte der supersymmetrischen QED	R-Parität

R-Parität

SUSY erhält Leptonen- (L) oder Barionenzahl (B) nicht.

Neue Quantenzahl: R-Parität

$$P_R = (-1)^{3B-L+2S}$$

- Alle Teilchen aus SM haben $P_R = +1$
- Alle Sparticles haben $P_R = -1$

Motivation	assen der Sparticles
Supersymmetrie GL	UT im MSSM
Eigenschaften Be	eispiele für Massen
Langrangedichte der supersymmetrischen QED R-	Parität

R-Parität-Erhaltung:

- Sparticles werden nur paarweise erzeugt.
- Leichtestes Sparticles (*LSP*: lightest supersymmetric particle)
 z.B. Neutralino N
 ₁ ist stabil.
 Wenn neutral. wechselwirkt es nur schwach
 - Kandidat für dunkle Materie
 - LSP trägt ohne Wechselwirkung hohe Energie aus Detektor

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED
V V P S

Gliederung

- 2 Supersymmetrie
- 3 Eigenschaften
- 4 Langrangedichte der supersymmetrischen QED
 - Wess-Zumino-Modell
 - Wess-Zumino-Modell mit Wechselwirkungen
 - Photon & Photino
 - SUSY-QED

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Verschiedene Spinore

	skalares Teilchen	Superpartner
Spin	0	1/2
Freiheitsgrade (on-shell)	2	2 (Weyl-Spinor)

• Dirac-Spinor:
$$\Psi_D = \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$
 $(i\gamma^{\mu}\partial_{\mu} - m)\Psi_D = 0$

- Weyl-Spinore: $\psi, \ \chi$
- Dirac-Gleichungen:

$$\sigma^{\mu}P_{\mu}\psi = m\chi \qquad \quad \bar{\sigma}^{\mu}P_{\mu}\chi = m\psi$$

• Lagrangian: $\mathcal{L}_{\text{Dirac}} = \overline{\Psi}_D \left(i \gamma^\mu \partial_\mu - m \right) \Psi_D$ = $\psi^\dagger i \sigma^\mu \partial_\mu \psi + \chi^\dagger i \overline{\sigma}^\mu \partial_\mu \chi - m \left(\psi^\dagger \chi + \chi^\dagger \psi \right)$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Wess-Zumino-Modell

• Lagrangedichte:

$$\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \chi^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} \chi$$

• Dimensionen:

$$[\mathcal{L}] = M^4, \quad [\partial_\mu] = M \quad \Rightarrow \quad [\Phi] = M, \quad [\chi] = M^{3/2}$$

• SUSY-Transformationen:

$$\delta_{\xi} \Phi \sim \xi \chi$$
$$\delta_{\xi} \chi \sim \xi \Phi$$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

SUSY-Transformationen

einsetzen liefert: \mathcal{L} ist invariant unter SUSY-Transformationen

Motivation	Wess-Zumino-Modell
Supersymmetrie	Wess-Zumino-Modell mit Wechselwirkungen
Eigenschaften	Photon & Photino
Langrangedichte der supersymmetrischen QED	SUSY-QED

Hilfsfeld F

Freiheitsgrade	ϕ	χ	F
on-shell $(n_B = n_F = 2)$	2	2	0
off-shell $(n_B = n_F = 4)$	2	4	2

- Hilfsfeld F mit $\mathcal{L}_F = F^{\dagger}F$
- Langrangian:

$$\mathcal{L}_{\rm WZ, free} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \chi^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \chi + F^{\dagger} F$$

• Transformationen:

$$\delta_{\xi}F = -i\xi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\chi$$

$$\delta_{\xi}\chi = -i\sigma^{\mu}(i\sigma_{2}\xi^{*})(\partial_{\mu}\Phi) + \xi F$$

$$\delta_{\xi}\Phi = \xi^{T}(-i\sigma_{2})\chi$$

 $\ensuremath{\mathcal{L}}$ ist wieder invariant unter SUSY-Transformationen

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Wess-Zumino-Modell mit Wechselwirkungen

• Lagrangian:
$$\mathcal{L}_{\mathrm{WZ}} = \mathcal{L}_{\mathrm{WZ,free}} + \mathcal{L}_{\mathrm{WZ,int}}$$
 mit

$$\mathcal{L}_{\mathrm{WZ,free}} = \partial_{\mu} \Phi_{i}^{\dagger} \partial^{\mu} \Phi_{i} + \chi_{i}^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} \chi_{i} + F_{i}^{\dagger} F_{i}$$

• Allgemeinste Wechselwirkung:

$$egin{aligned} \mathcal{L}_{\mathrm{WZ,int}} &= W_i(\Phi, \Phi^\dagger) F_i - rac{1}{2} W_{ij}(\Phi, \Phi^\dagger) \chi_i \cdot \chi_j + \mathrm{h.c.} \ \mathrm{mit} & W_i &= M_{ij} \Phi_j + rac{1}{2} y_{ijk} \Phi_j \Phi_k \ W_{ij} &= M_{ij} + y_{ijk} \Phi_k \end{aligned}$$

- Aus Bewegungsgleichung: $F_i = -W_i^{\dagger}$
- $\mathcal{L}_{WZ} = \partial_{\mu} \Phi_{i}^{\dagger} \partial^{\mu} \Phi_{i} + \chi_{i}^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \chi_{i} |W_{i}|^{2} \frac{1}{2} (W_{ij} \chi_{i} \cdot \chi_{j} + h.c.)$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Wess-Zumino-Modell mit Wechselwirkungen

Nur ein skalares und ein fermionisches Feld:

$$\begin{split} \mathcal{L}_{\mathrm{WZ}} &= \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \chi^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} \chi - |W_{\Phi}|^{2} - \frac{1}{2} \left(W_{\Phi\Phi} \quad \chi \cdot \chi + \mathrm{h.c.} \right) \\ &= \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + \chi^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} \partial_{\mu} \chi \\ &- |M|^{2} \Phi^{\dagger} \Phi - \frac{1}{2} \left(M \chi \cdot \chi + \mathrm{h.c.} \right) \\ &- \frac{1}{2} y^{*} M \Phi (\Phi^{\dagger})^{2} - \frac{1}{2} y M^{*} \Phi^{2} \Phi^{\dagger} \\ &- \frac{1}{4} |y|^{2} \Phi^{2} (\Phi^{\dagger})^{2} \\ &= \lambda_{s} \\ &- \frac{1}{2} (y \Phi \quad \chi \cdot \chi + \mathrm{h.c.}) \qquad \Rightarrow \lambda_{s} = |\lambda_{f}|^{2} \end{split}$$

Motivation	Wess-Zumino-Modell
Supersymmetrie	Wess-Zumino-Modell mit Wechselwirkungen
Eigenschaften	Photon & Photino
Langrangedichte der supersymmetrischen QED	SUSY-QED

Photon & Photino

	Photon	Superpartner
Spin	1	1/2
Freiheitsgrade (on-shell)	2	2 (Weyl Spinor)

• Lagrangian:

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}+\mathrm{i}\lambda^{\dagger}ar{\sigma}^{\mu}\partial_{\mu}\lambda$$

mit $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

• Transformationen

$$\delta_{\xi} A^{\mu} = \xi^{\dagger} \bar{\sigma}^{\mu} \lambda + \lambda^{\dagger} \bar{\sigma}^{\mu} \xi$$
$$\delta_{\xi} \lambda = \frac{i}{2} \sigma^{\mu} \bar{\sigma}^{\nu} \xi F_{\mu\nu}$$

Motivation	Wess-Zumino-Modell
Supersymmetrie	Wess-Zumino-Modell mit Wechselwirkungen
Eigenschaften	Photon & Photino
Langrangedichte der supersymmetrischen QED	SUSY-QED

Hilfsfeld D

Freiheitsgrade	A_{μ}	λ	D
on-shell $(n_B = n_F = 2)$	2	2	0
off-shell $(n_B = n_F = 4)$	3	4	1

• Lagrangian:

$$\mathcal{L}_{\rm Eich} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathrm{i} \lambda^\dagger \bar{\sigma}^\mu \partial_\mu \lambda + \frac{1}{2} D^2$$

• Transformationen

$$\delta_{\xi}D = -i\left(\xi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\lambda - (\partial_{\mu}\lambda)^{\dagger}\bar{\sigma}^{\mu}\xi\right)$$
$$\delta_{\xi}\lambda = \frac{i}{2}\sigma^{\mu}\bar{\sigma}^{\nu}\xi F_{\mu\nu} + \xi D$$
$$\delta_{\xi}A^{\mu} = \xi^{\dagger}\bar{\sigma}^{\mu}\lambda + \lambda^{\dagger}\bar{\sigma}^{\mu}\xi$$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Kopplung der Eichfelder

• Kopplung der Eichfelder:

$$\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + \mathrm{i} q A^{\mu}$$

• Lagrangian:

$$\begin{split} \mathcal{L}_{\text{gekoppelt}} &= \mathcal{L}_{\text{WZ}} + \mathcal{L}_{\text{Eich}} \\ &= (D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi + \chi^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} D_{\mu} \chi \\ &- |W_{\Phi}|^2 - \frac{1}{2} \left(W_{\Phi \Phi} \quad \chi \cdot \chi + \mathrm{h.c.} \right) \\ &- \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathrm{i} \lambda^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \lambda + \frac{1}{2} D^2 \end{split}$$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Fehlende Wechselwirkungen

• Fehlende Wechselwirkungen:

$$egin{split} \mathcal{L}_{ ext{ges}} &= \mathcal{L}_{ ext{gekoppelt}} + \mathcal{L}_{ ext{int,WZ}\leftrightarrow ext{Eich}} \ \mathcal{L}_{ ext{int,WZ}\leftrightarrow ext{Eich}} &= -\sqrt{2}q\left[\left(\Phi^{\dagger}\chi
ight)\cdot\lambda + ext{h.c.}
ight] - q\Phi^{\dagger}\Phi D \end{split}$$

- Transformationen ändern sich entsprechend
- Bewegungsgleichung: $D = q \Phi^{\dagger} \Phi$

Motivation Wess-Zumino-Modell Wess-Zumino-Modell Wess-Zumino-Modell UNES-Zumino-Model Model mit Wechselwirkungen Eigenschaften SUSY-QED SUSY-QED

SUSY-QED

$$egin{aligned} \mathcal{L}_{ ext{QED}} &= -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} \ &+ \chi^\dagger \mathrm{i} ar{\sigma}^\mu D_\mu \chi \end{aligned}$$

$$\begin{split} \mathcal{L}_{\mathrm{SUSY-QED}} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathrm{i} \lambda^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \lambda \\ &+ \chi^{\dagger} \mathrm{i} \bar{\sigma}^{\mu} D_{\mu} \chi + (D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \\ &- |W_{\Phi}|^{2} - \frac{1}{2} \left(W_{\Phi \Phi} \quad \chi \cdot \chi + \mathrm{h.c.} \right) \\ &- \sqrt{2} q \left[\left(\Phi^{\dagger} \chi \right) \cdot \lambda + \mathrm{h.c.} \right] - \frac{1}{2} q \left(\Phi^{\dagger} \Phi \right)^{2} \end{split}$$

Wess-Zumino-Modell Wess-Zumino-Modell mit Wechselwirkungen Photon & Photino SUSY-QED

Zusammenfassung

- bisher keine experimentellen Hinweise für SUSY
- LHC wird Sparticles wahrscheinlich finden, wenn sie existieren
- löst Hierarchieproblem, GUT
- liefert Kandidat für dunkle Materie
- ist in den meisten Stringmodellen enthalten

Motivation	Wess-Zumino-Modell
Supersymmetrie	Wess-Zumino-Modell mit Wechselwirkungen
Eigenschaften	Photon & Photino
Langrangedichte der supersymmetrischen QED	SUSY-QED

Vielen Dank für die Aufmerksamkeit.

Literatur

- Aitchison Supersymmetry and the MSSM: An Elementary Introduction (hep-ph/0505105v1)
- Martin A Supersymmetry Primer (hep-ph/9709356v4)
- Drees Theory and Phenomenology of Sparticles
- Kazakov Beyond the Standard Model (hep-ph/0012288v2)
- Plehn Supersymmetry (Skript)
- Müller Einführung Supersymmetrie (Skript)