

Top-Quark

F. Kleinwor

Inhalt

Einleitung

Produktion und Zerfall

Ausblick

Literatur

Das Top-Quark

Frederick K.-F. Kleinwort

Sommerakademie Neubeuern 2008, Arbeitsgruppe 2: Physik am LHC

13. August 2008

Was uns heute erwartet

Top-Quark

F. Kleinwoi

Produktion

und Zerfall

Literatur

Inhalt Einleitung Einleitung und Grundlagen

Heutiges Wissen

2 Produktion und Zerfall an Hadron-Collidern

Top-Paarproduktion

Single-Top-Produktion

2005: erste Ergebnisse

• 2006: Erfolg

Zerfallskanäle

Beispiele von Ereignissen

3 Das Top-Quark in Genf

I HC

Warum Top-Physik?

Top-Quark

F. Kleinwor

Inhalt

Einleitung

vor 1995 lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

Einleitung und Grundlagen

Einleitung: Die Welt vor 1995

Top-Quark

F. Kleinwo

Inhalt

vor 1995
lange Suche
Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

• 1960er und 1970er Jahre: 5 Quarks experimentell gefunden

Quark	Jahr	Masse	q	t ₃
up	1964*	< 3 MeV	+2/3	+1/2
down	1964*	< 7 MeV	-1/3	-1/2
strange	1964*	pprox 95 MeV	_1/3	_1/2
charm	1974	$pprox 1.3~{\sf GeV}$	+2/3	+1/2
bottom	1977	pprox 4.2 GeV	-1/3	_1/2

•
$$q=t_3+rac{Y_w}{2}=t_3+rac{1}{6}$$
 Gell-Mann-Nishijima-Formel

^{*:} von Gell-Mann postuliert, um Experimente zu erklären.

Einleitung: Fehlt da noch eins?

Top-Quark

F. Kleinwo

Inhalt

Einleitung

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

- Annahme: Quarks haben schwachen Isospin $\frac{1}{2}$
- ullet \Rightarrow Dubletts, immer zwei Teilchen pro Generation
- Bottom-Quark war noch ohne Partner
- \Rightarrow es gibt ein schweres Teilchen mit $t_3 = +1/2$

bottom 1977
$$\approx$$
 4.2 GeV $-1/3$ $-1/2$ top \gtrsim 1 GeV $+2/3$ $+1/2$

Einleitung: Die Suche kann beginnen

Top-Quark

F. Kleinwor

Inhalt

Einleitung vor 1995

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

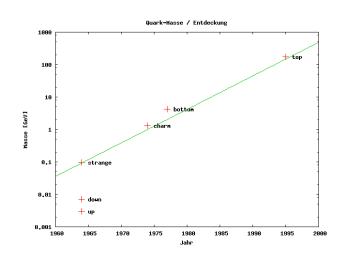


Abbildung: Quark-Massen und Jahr der Entdeckung

Die untere Massengrenze

Top-Quark

F. Kleinwor

Inhalt

Einleitung vor 1995

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

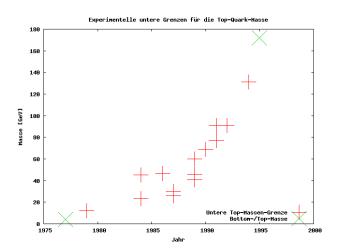
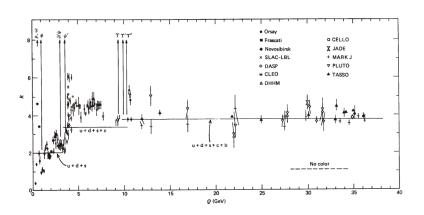


Abbildung: Experimentelle untere Grenzen an die Top-Masse

Top-Quark

F. Kleinwoi

Inhalt


Einleitung vor 1995

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

- elektromagnetisch
- e^+e^- -Streuung, R-Verhältnis

Top-Quark

F. Kleinwoi

Inhalt

Einleitung vor 1995

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

elektromagnetisch:

- e^+e^- -Streuung, R-Verhältnis
- LEP: $m_{\text{top}} \geq \frac{90}{2} \, \text{GeV}$

schwach:

- Sp \bar{p} S: $W \to tb$
- SppS: $m_{\text{top}} \geq 69 \,\text{GeV}$
- ullet indirekte Vorhersagen von $m_{
 m top}$ über Schleifen
- $\bullet \ m_{\text{top}} = f(m_W, m_Z, m_H)$

Top-Quark

F. Kleinwo

Inhalt

vor 1995

lange Suche Heutiges Wissen

Produktion und Zerfall

Ausblick

Literatur

elektromagnetisch:

• e^+e^- -Streuung, R-Verhältnis

• LEP: $m_{\rm top} \geq \frac{90}{2} \, {\rm GeV}$

schwach:

• Sp \bar{p} S: $W \to tb$

• SppS: $m_{\text{top}} \geq 69 \,\text{GeV}$

ullet indirekte Vorhersagen von $m_{
m top}$ über Schleifen

• $m_{\text{top}} = f(m_W, m_Z, m_H)$

stark:

- Tevatron: Starke Wechselwirkung → stärkere Kopplung
- ⇒ Vortrag morgen

Top-Quark

F. Kleinwo

Inhalt

Einleitung vor 1995 lange Suche Heutiges Wissen

Produktion

Aushlick

Literatur

elektromagnetisch:

• e⁺e⁻-Streuung, R-Verhältnis

• LEP: $m_{\rm top} \geq \frac{90}{2} \, {\rm GeV}$

schwach:

• Sp \bar{p} S: $W \to tb$

• SppS: $m_{\text{top}} \geq 69 \,\text{GeV}$

ullet indirekte Vorhersagen von m_{top} über Schleifen

 $\bullet \ m_{\rm top} = f(m_W, m_Z, m_H)$

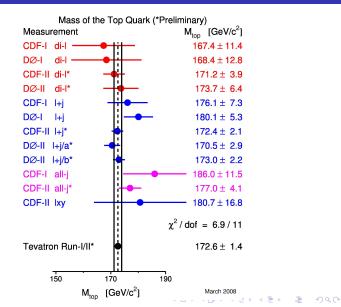
stark:

Tevatron: Starke Wechselwirkung → stärkere Kopplung

⇒ Vortrag morgen

Heutiges Wissen - Mittelwert DØ + CDF

Top-Quark


F. Kleinwort

Inhalt

Einleitung vor 1995 lange Suche

Produktion und Zerfall

Ausblick

Heutiges Wissen

Top-Quark

F. Kleinwo

Inhalt

vor 1995 lange Suche Heutiges Wis

Produktion und Zerfall

Ausblick

Literatur

Eigenschaften des Top-Quarks

- Schwerstes beobachtetes Elementarteilchen: Masse des Top-Quark: $m_t = 172.5 \pm 1.3 \pm 1.9 \, \mathrm{GeV}$ (rpp-2006)
- Sehr kurze Lebensdauer: $\tau_t \approx 4, 2 \cdot 10^{-25} s \Rightarrow$ keine Zeit für Hadronisierung ($\approx 10^{-23} s$)
- Ladung $q_t = \frac{2}{3}e$ (> 90% CL)
- Spin $s = \frac{1}{2}$

Top-Quark

F. Kleinwor

Inhalt

Einleitung

Produktion und Zerfall

Top-Paarproduktion Single-Top-Produktion 2005 2006 Zerfallskanäle

Beispiele Ausblick

Literatur

Produktion und Zerfall des Top-Quarks

Top-Paarproduktion

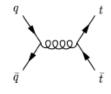
Top-Quark

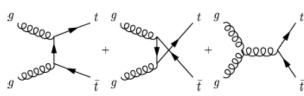
F. Kleinwoi

Inhalt

Einleitung

Produktion und Zerfall


Тор-


Paarproduktion Single-Top-

2005 2006 Zerfallskanäle

Beispiele Ausblick

$$\sigma^{t\bar{t}}(\sqrt{s}, m_t) = \sum_{i,j=q,\bar{q},g} \int dx_i dx_j f_i(x_i, \mu^2) \bar{f}_j(x_j, \mu^2) \cdot \sigma^{ij \to t\bar{t}}(\sqrt{s}, m_t^2, x_i, x_j, \alpha_s(\mu), \mu^2)$$

Top-Paarproduktion

Top-Quark

F. Kleinwor

Inhalt

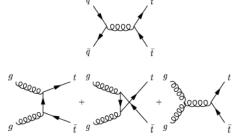
Einleitung

Produktion und Zerfall

Top-

Single-Top-Produktion 2005 2006 Zerfallskanäle

Beispiele Ausblick


Literatur

TEVATRON:

- $85\frac{n}{2}$ aus $q\bar{q}$ und 15% aus gg
- $\sigma^{t\bar{t}}(\sqrt{s}=1,96\,\text{TeV})\approx7\,\text{pb}$

LHC:

- 10% aus $q\bar{q}$ und 90% aus gg
- $\sigma^{t\bar{t}}(\sqrt{s}=14\,TeV)\approx 800pb$
- 8 Millionen *tī*-Paare pro Jahr

Top-Paarproduktion

Top-Quark

F. Kleinwor

Inhalt

Einleitung

Produktion und Zerfall

Тор-

Single-Top-Produktion 2005 2006 Zerfallskanäle

Beispiele Ausblick

Literatur

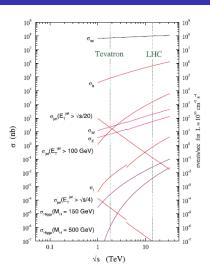


Abbildung: QCD-Vorhersagen für Wirkungsquerschnitte beim TEVATRON und LHC; σ_t steht für $t\bar{t}$ -Produktion durch starke WW

Single-Top-Produktion

Top-Quark

F. Kleinwor

Inhalt

Einleitung Produktion

und Zerfall

Paarproduktion

Single-Top-Produktion

2006 Zerfallskanäle

Beispiele Ausblick

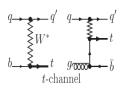
Literatur

• $p\bar{p}
ightarrow t\bar{b} + X$ (s-Kanal)

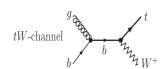
• $p\bar{p} o tq\bar{b} + X$ (t-Kanal)

Theoretischer Wirkungsquerschnitt (QCD, NLO):

TEVATRON


ullet s-Kanal: 0.88(14) ${
m pb}$

ullet t-Kanal: 1.98(30) pb


LHC

• s-Kanal: 10, 2(7) pb

• t-Kanal: 245(27) pb

Single-Top

Top-Quark

F. Kleinwor

Inhalt

Einleitung

Produktion

und Zerfall

Paarproduktion

Single-Top-

2005 2006

Zerfallskanäle Beispiele

Ausblick

Literatur

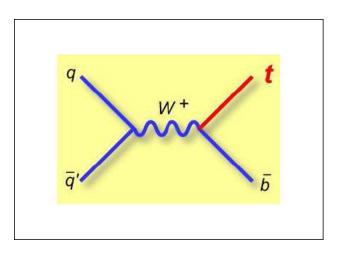


Abbildung: Single-Top-Produktion, s-Kanal

Single-Top

Top-Quark

F. Kleinwoi

Inhalt

Einleitung

Produktion und Zerfall

Top-Paarproduktion

Single-Top-

Produ

2006

Zerfallskanäle Beispiele

Ausblick

Literatur

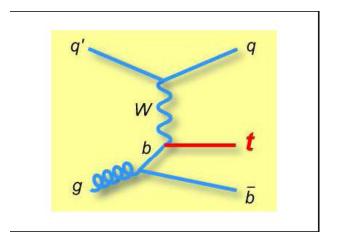


Abbildung: Single-Top-Produktion, t-Kanal

Single-Top- Produktion

Top-Quark

F. Kleinwo

Inhalt

Einleitung

Produktion und Zerfall

Paarproduktion Single-Top-

2005 2006 Zerfallskanäle Beispiele

Ausblick

- Neue Experimente der DØ-Kollaboration: einzelne Top-Quarks
- Schwache Wechselwirkung
- Signatur des einzelnen Tops = Zerfallsprodukte: Bottom, Lepton + Neutrino
- Standard-Modell: einzelnes Top wird alle 330 Millionen Kollisionen erzeugt
- Filtere Ereignisse ohne Bottom, Lepton, Neutrino heraus
- → 700 Ereignisse
- Untergrund sehr viel stärker

Die Ergebnisse der Suche (2005, DØ)

Top-Quark

F. Kleinwo

Inhalt

Einleitung Produktion

und Zerfall
TopPaarproduktion

Paarproduktio Single-Top-Produktion 2005

2006 Zerfallskanäle Beispiele

Ausblick

- \bullet "No evidence is found for electroweak production of single top quarks in $230\,\mathrm{pb}^{-1}$ of data."
- obere Grenze für Wirkungsquerschnitt:
 - s-Kanal: $\sigma \leq 6.4\,\mathrm{pb}$
 - ullet t-Kanal: $\sigma \leq 5.0\,\mathrm{pb}$

Die Ergebnisse der Suche (Dez. 2006, DØ) (1)

Top-Quark

F. Kleinwo

Inhalt

Einleitung

Produktion und Zerfall

Paarproduktion
Single-TopProduktion
2005

Zerfallskanäle Beispiele

Ausblick

- "we have performed a search for single top quark production using $0.9\,{\rm fb}^{-1}$ of data"
- "We find an excess of events over the background prediction"
- Signifikanz von 3.4 Standardabweichungen
- → "interpret it as evidence for single top quark production"

Die Ergebnisse der Suche (Dez. 2006, DØ) (2)

Top-Quark

F. Kleinwo

Inhalt

Einleitung Produktion

und Zerfall

Top-Paarproduktion

Single-Top-Produktion

2005

Zerfallskanäle Beispiele

Ausblick

Literatur

• Wirkungsquerschnitt: $\sigma = 4.9(14)\,\mathrm{pb}$

• $0.68 < |V_{tb}| \le 1$ @ 95 % C.L.

ullet Standardmodell 3 Quarks: $|V_{tb}|pprox 1$

Top-Zerfall

Top-Quark

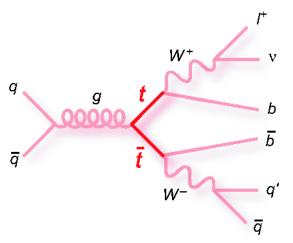
F. Kleinwort

Inhalt

Einleitung

Produktion und Zerfall

Top-Paarproduktion Single-Top-Produktion


2006 Zerfallskanäle Beispiele

Ausblick

Literatur

Das Top zerfällt zu 99,8% zu Wb

 \Rightarrow Die Endzustände hängen vom Zerfall des W ab

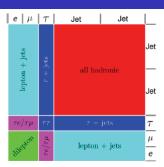
Top-Endzustände

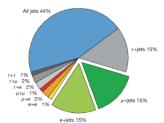
Top-Quark

F. Kleinwor

Inhalt

Einleitung


Produktion und Zerfall


Top-Paarproduktion Single-Top-Produktion

2005 2006

Zerfallskanäle Beispiele

Ausblick

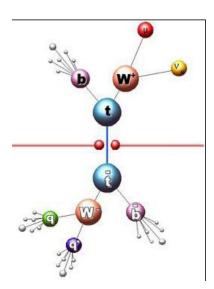
Top-Zerfall

Top-Quark

F. Kleinwo

Inhalt

Ü


Produktion und Zerfall

Paarproduktion Single-Top-Produktion 2005 2006

Zerfallskanäle

Beispiele

Ausblick

Beispiele (1)

Top-Quark

F. Kleinwo

Inhalt

Einleitung

Produktion und Zerfall

Top-Paarproduktion Single-Top-Produktion

2005 2006

Zerfallskanäle Beispiele

Ausblick

Literatur

Collision in Calorimeter

Abbildung: Detektor (unten), Lego-Plot (oben)

Beispiele (2)

Top-Quark

F. Kleinwort

Inhalt

Einleitung

Produktion

und Zerfall
TopPaarproduktion
Single-TopProduktion

2005 2006 Zerfallskanäle

Beispiele

Ausblick Literatur

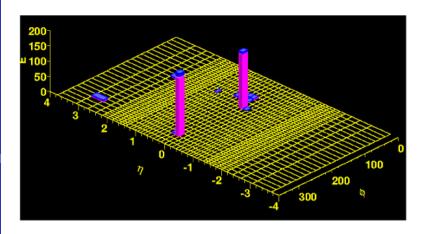


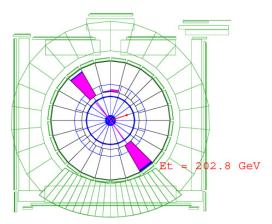
Abbildung: zwei Elektronen im Lego-Plot

Beispiele (3)

Top-Quark

F. Kleinwo

Inhalt


Einleitung

Produktion und Zerfall

Top-Paarproduktion Single-Top-Produktion 2005 2006

Zerfallskanäle Beispiele

Ausblick

Top-Quark

Inhalt

Produktion und Zerfall

Ausblick

LHC Warum Top-Physik?

Literatur

Ausblick: Das Top-Quark in Genf

Ausblick: Top-Quark am LHC

Top-Quark

Inhalt

Einleitung

Produktion und Zerfall

Ausblick

Top-Physik?

- LHC-Start: 2. Hälfte 2008 (noch 27 Tage)
- höhere Luminosität, höhere Energie $\sqrt{s_{IHC}} = 14 \, TeV$
- → deutlich höhere Top-Quark-Produktion
- Wirkungsquerschnitt: $6 \, \mathrm{pb} \rightarrow 800 \, \mathrm{pb}$
- 8 Millionen $t\bar{t}$ -Paare pro Jahr
- neue physikalische Erkenntnisse durch präzisere Messungen
- 7iel: $\Delta m = 1 GeV$

Top-Quark

Inhalt

Einleitung
Produktion
und Zerfall

Ausblick

Literatur

Das Außnahme(?)-Lepton

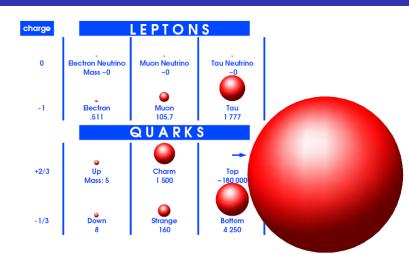


Abbildung: Lepton-Massen im Vergleich

Neue Physik?

Top-Quark

F. Kleinwo

Inhalt

Einleitung

Produktion und Zerfall

Ausblick LHC

Warum

Top-Physik

- Strahlungskorrekturen zur W-Masse setzen m_W , m_H und m_t in Verbindung
- ullet $\Delta m_W \propto m_t^2$ und $\Delta m_W \propto \ln(m_H^2)$

Abbildung: Strahlungskorrekturen zur W-Masse

Neue Physik?

Top-Quark

F. Kleinwor

Inhalt

Einleitung

Produktion und Zerfall

Ausblick

Warum

Literatur

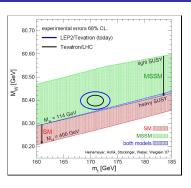


Abbildung: Abhängigkeit der Higgs-Masse von der Top- und W-Masse im SM und SMMS

- zur Überprüfung von SUSY-Theorien wird ebenfalls die Top-Masse benötigt
- Top guter Kandidat um in SUSY-Teilchen überzugehen

Neue Physik?

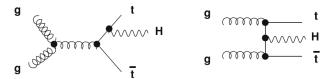
Top-Quark

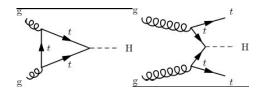
F. Kleinwor

Inhalt

Einleitung

Produktion und Zerfall


Ausblick


LHC

Top-Physik

Literatur

• Assoziiertes Higgs bei Gluon-Fusion, $t\bar{t}$ -Produktion

Top-Quark

F. Kleinwor

Inhalt

inleitung

Produktion und Zerfall

Ausblick

Litoratu

Literatur & Ende

Literatur

Top-Quark

F. Kleinwo

Inhalt

Einleitung

Produktion und Zerfall

Ausblick

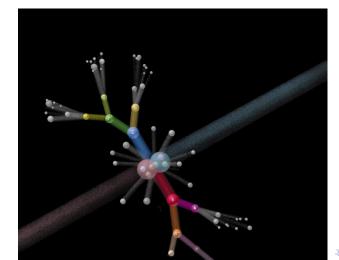
- Gell-Mann: A Schematic Model of Baryons and Mesons, Phys Lett 1964
- DØ + CDF: Observation of Top Quark (Production in ρ̄̄̄ Collisions with the Collider Detector at Fermilab), PRL 1995
- DØ: Search for single top quark production in $p\bar{p}$ collisions at \sqrt{s} =1.96 TeV, 2005
- DØ: Experimental Discriminationbetween Charge 2e/3 Top Quark and Charge 4e/3 Exotic Quark Production Scenarios, PRL 2007
- lacktriangle DØ: Evidence for Production of Single Top Quarks and First Direct Measurement of $|V_{tb}|$, PRL 2007
- A. Quadt: Habilitation
- Particle Data Group: Review 2006
- O Scientific American, Sept. 1997: The Discovery of the Top Quark (CDF)
- http://*.fnal.gov

Ende

Top-Quark

F. Kleinwor

Inhalt


Finleitun

Produktion und Zerfall

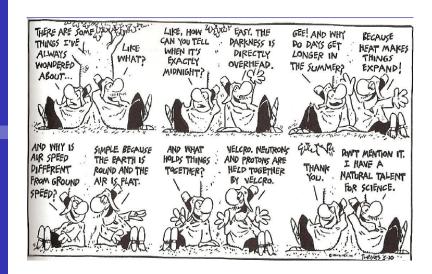
Ausblick

Literatur

Vielen Dank für eure Aufmerksamkeit! Fragen?

What holds things together

Top-Quark


F. Kleinwoi

Inhalt

Einleitung

Produktion und Zerfall

Ausblick

