PRODUCTION OF SUPERSYMMETRIC PARTICLES AT HIGH-ENERGY COLLIDERS

Tilman Plehn

- Search for the MSSM
- Production of Neutralinos/Charginos
- Stop Mixing
- Production of Stops
- R Parity violating Squarks
- Conclusions and Outlook

INTRODUCTION TO THE MSSM

Supersymmetric extension of Standard Model:

- \star fermion–boson mapping
 - \rightarrow stable scalar masses

$$-rac{\delta m^2}{m^2} \sim g^2 rac{ ilde{M}^2 - M^2}{\Lambda_{
m EW}^2} + g^2 \log rac{\Lambda_{
m EW}^2}{\Lambda_{
m P}^2}$$

- \star unification of gauge couplings
 - \rightarrow prediction of weak mixing angle
- \star possible extension to supergravity and string models

Particle Content:

		spin	charge	d.o.f.	
light quark	q_L, q_R	1/2	$2/3 \ , \ -1/3$	1+1	
squark	\tilde{q}_L, \tilde{q}_R	0	$2/3 \;, \; -1/3$	1 + 1	5 flavors
top quark	t_L, t_R	1/2	2/3	1 + 1	
top squark	\tilde{t}_L, \tilde{t}_R	0	2/3	1 + 1	mixing
gluon	G_{μ}	1	0	n-2	$\rightarrow 2$ d.o.f.
gluino	${\widetilde g}$	1/2	0	2	Majorana
gauge bosons	γ, Z	1	0	2+3	
Higgs bosons	h^o, H^o, A^o	0	0	3	
neutralinos	$ ilde{\chi}^o_i$	1/2	0	$4 \cdot 2$	Majorana
gauge bosons	W^{\pm}	1	± 1	$2 \cdot 3$	
Higgs bosons	H^{\pm}	0	± 1	2	
charginos	$ ilde{\chi}_i^{\pm}$	1/2	± 1	$2 \cdot 4$	Dirac

SUPERSYMMETRY BREAKING

Mass difference between supersymmetric partners \rightarrow soft SUSY breaking leaves masses stable:

$$\mathcal{L}_{\text{soft}} = -(m_0^2)_{ij} C_i^* C_j - \left[\frac{1}{2}(m_{1/2})_j \lambda_j \lambda_j + \text{h.c.}\right] - \left[\frac{1}{6} A_{ijk} C_i C_j C_k + B \mu H_1 H_2 + \text{h.c.}\right]$$

At a given scale:

- scalar masses m_0 for squarks and sleptons; chosen real

Universality at unification scale and ew. symmetry breaking:

- gaugino masses $m_{1/2}$
- trilinear couplings A_{ijk} ; conserving **R** charge
- complex Higgs mass parameter $B\mu$

MASS SPECTRUM

Typical features:

* light gauginos $[m_{\tilde{B}}, m_{\tilde{W}} \ll |\mu|; m_z \text{ inducing mixing}]$

$$\left(egin{array}{cccc} m_{ ilde{B}} & 0 & -m_Z s_w c_eta & m_Z s_w s_eta \ 0 & m_{ ilde{W}} & m_Z c_w c_eta & -m_z c_w s_eta \ -m_Z s_w c_eta & m_Z c_w c_eta & 0 & -\mu \ m_Z s_w s_eta & -m_Z c_w s_eta & -\mu & 0 \end{array}
ight)$$

- \star heavy gluino [gauge coupling unification] $\begin{array}{ll} m_{\tilde{B}} \sim 0.4 \; m_{1/2} \\ \\ m_{\tilde{W}} \sim 0.8 \; m_{1/2} \\ \\ \\ m_{\tilde{g}} \; \sim 2.6 \; m_{1/2} \end{array}$
- \star light mixing stop [m_t in off-diagonal terms]

$$\begin{pmatrix} m_Q^2 + m_t^2 + \left(\frac{1}{2} - \frac{2}{3}s_w^2\right)m_Z^2 c_{2\beta} & -m_t \left(A_t + \mu \cot \beta\right) \\ -m_t \left(A_t + \mu \cot \beta\right) & m_U^2 + m_t^2 + \frac{2}{3}s_w^2 m_Z^2 c_{2\beta} \end{pmatrix}$$

 \star heavy squark [approximate solution] $m_{\tilde{q}} \gtrsim 0.85 m_{\tilde{g}}$

TEVATRON SEARCHES

squarks/gluinos

$$\tilde{q} \longrightarrow q \tilde{\chi}_{j}^{0}, q' \tilde{\chi}_{j}^{+} \longrightarrow \text{jets} + \not\!\!\!E_{T} [+\gamma] + \cdots$$

 $\tilde{g} \longrightarrow q \bar{q} \tilde{\chi}_{j}^{0}, q' \bar{q} \tilde{\chi}_{j}^{+} \longrightarrow \text{jets} + \not\!\!\!E_{T} [+\gamma] + \cdots$

gluinos

$$\tilde{g} \longrightarrow q' \bar{q} \tilde{\chi}_j^+ \longrightarrow \text{jets} + \not\!\!\!E_T + \ell^{\pm} + \cdots$$

 \rightarrow like-sign leptons

neutralinos/charginos

stops

$$\tilde{t}_1 \longrightarrow c \tilde{\chi}_1^0 + \cdots$$
 $\rightarrow \text{ mixing angle in BR}$

* all limits strongly dependent on cascade decays
 complete set of possible decays necessary
 supergravity or gauge mediation scenarios only for first guess

NEUTRALINO/CHARGINO PRODUCTION

Leading order cross section:

$$\frac{d\hat{\sigma}}{dt} \left(q\bar{q} \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} \right) = \frac{1}{4N_{c}} \left[4 C_{ss} \frac{t_{i}t_{j} + u_{i}u_{j} \mp 2sm_{i}m_{j}}{(s - m_{Z}^{2})^{2}} - 8 C_{st} \frac{t_{i}t_{j} \mp sm_{i}m_{j}}{(s - m_{Z}^{2})(t - m_{\tilde{q}}^{2})} - 8 C_{st} \frac{u_{i}u_{j} \mp sm_{i}m_{j}}{(s - m_{Z}^{2})(u - m_{\tilde{q}}^{2})} + 4 C_{tu} \left(\frac{t_{i}t_{j}}{(t - m_{\tilde{q}}^{2})^{2}} + \frac{u_{i}u_{j}}{(u - m_{\tilde{q}}^{2})^{2}} \mp \frac{2sm_{i}m_{j}}{(t - m_{\tilde{q}}^{2})(u - m_{\tilde{q}}^{2})} \right) \right]$$

Neutralino production mechanism

- s channel [Drell–Yan like] $Z \tilde{\chi} \tilde{\chi}$ coupling to higgsinos
- t, u channel $q \tilde{q} \tilde{\chi}$ coupling to gauginos

Next-to-leading order cross section:

- \star Real/virtual SUSY-QCD corrections
- \rightarrow LO factorization scale dependence bad measure for theoretical error \rightarrow improvement of error bars
- $\rightarrow K \equiv \sigma_{\rm NLO} / \sigma_{\rm LO}$ $\rightarrow \text{ improvement of central value}$

REGULARIZATION AND SUPERSYMMETRY

Dimensional regularization breaks supersymmetry

e.g. non-abelian gauge theory [Jack & Jones]:

$$\delta_S \mathcal{L}[W^a_\mu, \lambda^a, D] \xrightarrow{n \to 4} 0$$

 \rightarrow preserved Ward identity contains $\delta_S \mathcal{L}$

$$0 = \langle \int d^n x \left[J^\mu \, \delta_S W_\mu + \bar{j} \, \delta_S \lambda + \bar{j}_D \, \delta_S D + \delta_S \mathcal{L} \right] \rangle$$

 \rightarrow Dimensional Regularization can be rendered consistent with SUSY

Yukawa coupling in supersymmetric limit:

$$Y(qqh) = Y(\tilde{q}\tilde{q}h) \left[1 + \frac{g^2}{16\pi^2} C(r) \right] = Y(q\tilde{q}\tilde{h}) \left[1 + \frac{3g^2}{32\pi^2} C(r) \right]$$

different behavior of scalar and fermion masses $Y \equiv mg$

* difference removed by finite 'renormalization' [Martin & Vaughn]

 \star check by comparison of Green's functions with dimensional reduction

ON-SHELL SINGULARITIES

NLO $\tilde{\chi}\tilde{\chi}$ production includes ~ $G_F^2\alpha_s$:

$$gq \to \tilde{q}^* \chi_i \to q\chi_j \chi_i$$
$$gq \to \tilde{q}\chi_i \cdot BR(\tilde{q} \to q\chi_j)$$

pair production associated production

(1) Possible inclusion of finite widths:

- double counting of pair and associated production
- breaking of gauge invariance of σ without Γ
- dependence on unknown physical widths
- (2) Splitting into on-shell and off-shell squark:

$$\frac{d\sigma}{dM^2} = \sigma \left(gq \to \tilde{q}\chi_i\right) \frac{m_{\tilde{q}}\Gamma_{\tilde{q}}/\pi}{(M^2 - m_{\tilde{q}}^2)^2 + m_{\tilde{q}}^2\Gamma_{\tilde{q}}^2} \operatorname{BR}\left(\tilde{q} \to q\chi_j\right) + \mathcal{O}\left(\frac{1}{M^2 - m_{\tilde{q}}^2}\right)$$
$$\longrightarrow \sigma \left(gq \to \tilde{q}\chi_i\right) \operatorname{BR}\left(\tilde{q} \to q\chi_j\right) \,\delta(M^2 - m_{\tilde{q}}^2) + \mathcal{O}\left(\frac{1}{M^2 - m_{\tilde{q}}^2}\right)$$

- cross section in narrow widths approximation

- \star divergences removed from $\sigma_{\chi\chi}$
- \star treatment compatible with experimental Monte-Carlos

via

PRODUCTION CROSS SECTIONS

Only $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^- \tilde{\chi}_1^+$ visible at the Tevatron Whole set of processes at the LHC [higgsino cross sections suppressed]

NLO scale dependence good measure for theoretical uncertainty

General [mass independent] K factor for all LHC processes, but huge effects due to destructive interference

STOP PRODUCTION

Leading order cross section:

$$\hat{\sigma}_{LO}[q\bar{q} \to \tilde{t}_j\bar{\tilde{t}}_j] = \frac{\alpha_s^2\pi}{s} \frac{2}{27}\beta^3$$
$$\hat{\sigma}_{LO}[gg \to \tilde{t}_j\bar{\tilde{t}}_j] = \frac{\alpha_s^2\pi}{s} \left\{\beta\left(\frac{5}{48} + \frac{31m_{\tilde{t}_j}^2}{24s}\right) + \left(\frac{2m_{\tilde{t}_j}^2}{3s} + \frac{m_{\tilde{t}_j}^4}{6s^2}\right)\log\left(\frac{1-\beta}{1+\beta}\right)\right\}$$

- diagonal cross section function of final state mass
- factor $1/(2n_f)$ compared to light-flavor squarks
- -t, u channel gluino exchange missing compared to light-flavor squarks
- non-diagonal production via one loop amplitude; calculated for decoupled gluinos \rightarrow suppressed

$$\hat{\sigma}_{\infty} = \frac{\alpha_s^4 \beta \sin^2(4\tilde{\theta})}{256\pi s} \frac{37}{54} \left| m_{\tilde{t}_1}^2 C_0(s; m_{\tilde{t}_1}) - (\tilde{t}_1 \to \tilde{t}_2) \right|^2$$

Next-to-leading order cross section

- * LO cross section strongly dependent on renormalization/factorization scale \rightarrow large theoretical uncertainty
- \star NLO dependence on additional mixing and mass parameters?

MSSM STOP MIXING

LO stop mass matrix diagonalized by $\tilde{\theta}_0$

NLO contribution $\Sigma_{ij} = \Sigma_{ji}$: $t_{j} = \sum_{g} t_{j}$

Mixing absorbed into wave function renormalization:

$$\begin{split} \tilde{t}_{1,2} &= Z^{-1/2} \ \tilde{t}_{1,2}^{0} \\ &= Z_{\mathrm{D}}^{-1/2} \ \mathcal{R}(-\delta \tilde{\theta}) \ \left[\mathcal{R}(\tilde{\theta}_{0}) \ \tilde{t}_{R,L}^{0} \right] \qquad \text{with } \Sigma = \Sigma^{T} \ [CP] \\ &= Z_{\mathrm{D}}^{-1/2} \ \mathcal{R}(\tilde{\theta}_{0} - \delta \tilde{\theta}) \ \tilde{t}_{R,L}^{0} \end{split}$$

written as propagator diagonalization:

$$D_{\rm ren}^{-1}(Q^2) \sim Z_{\rm D}^{-1/2} \mathcal{R}(\tilde{\theta}_0 - \delta\tilde{\theta})^{-1} \left[Q^2 \ 1 - \mathcal{M}_{LR} - \operatorname{Re} \Sigma(Q^2) \right] \mathcal{R}(\tilde{\theta}_0 - \delta\tilde{\theta}) \ Z_{\rm D}^{-1/2T}$$

$$\rightarrow \quad \delta\tilde{\theta}(Q^2) = -\operatorname{Re} \Sigma_{12}(Q^2) / (m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2)$$

$$\rightarrow \quad \tilde{\theta}(Q'^2) - \tilde{\theta}(Q^2) \propto \frac{\cos(2\tilde{\theta})}{m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2} \operatorname{Re} \left[B(Q'^2, m_{\tilde{g}}, m_t) - B(Q^2, m_{\tilde{g}}, m_t) \right]$$

Virtual stop state \rightarrow complex continuation

Running mixing angle:

- \star symmetry $\tilde{t}_1 \leftrightarrow \tilde{t}_2$ restored
- \star possible measurements in decays
- * numerical difference between schemes small
 Bartl et al., Djouadi et al.

PRODUCTION CROSS SECTION

NLO cross section almost independent of additional parameters

- $\rightarrow \tilde{t}_1$ and \tilde{t}_2 the same
- \rightarrow no dependence on SUSY scenario [however: cascade decays]

Tevatron K factor strongly mass dependent due to fraction of incoming quarks/gluons

Scale dependence strongly reduced in NLO \rightarrow improvement of mass bounds not only for K > 1

m(t₁) [GeV

Addendum: R Parity violating Squarks

Soft SUSY breaking \rightarrow three-scalar interaction \rightarrow leptoquark-like superfield couplings $\lambda' \cdot LQ\overline{D}$ $\rightarrow \mathbf{R} = (-1)^{3B+L+2S}$ conservation

Broken **R** parity:

 $eq \rightarrow \tilde{q}$ HERA production $q\bar{q}/gg \rightarrow \tilde{q}\bar{\tilde{q}}$ Tevatron production

- soft breaking coupling parameter λ' free [running]
- SU(3) gauge couplings fixed as for stop
- \rightarrow QCD corrections to HERA process and Tevatron cross section fixed

1.25 1.2 1.15 $\sqrt{s} = 300 \text{ GeV}$ $\mu = m(\hat{q})$ 1.05 CTEQ3M 1.05 IGV 170 180 190 200 210 220 230 240 250 m(\hat{q}) [GeV] $m(\hat{q})$ [GeV] $m(\hat{q})$ [GeV] $m(\hat{q})$ [CTEQ3M $\chi = 27 \text{ eV}$ $m(\hat{q})$ [GeV]

280

m(q)[GeV]

 $K[eq \rightarrow \tilde{q}+X]$

Combined analysis of $BR(\tilde{q} \rightarrow eq)$:

$m_{\tilde{q}} = 200 \mathrm{GeV}$	$e^+d \to \tilde{c}$	$e^+d \to \tilde{t}$	$e^+s \to \tilde{t}$
HERA: $\lambda' \sqrt{BR}$	$\sim 0.017 \cdots 0.025$	$\sim 0.025 \cdots 0.033$	$\sim 0.15 \cdots 0.25$
APV: λ'	$\lambda' \lesssim 0.055$	$\lambda' \lesssim 0.055$	
LEP: λ'			$\lambda' \lesssim 0.6$
	$BR \gtrsim 0.2 \cdots 0.4$	$\mathrm{BR}\gtrsim0.2\cdots0.4$	$BR \gtrsim 0.05 \cdots 0.2$
Tevatron: BR	$BR \lesssim 0.5 \cdots 0.7$	$BR \lesssim 0.5 \cdots 0.7$	$BR \lesssim 0.5 \cdots 0.7$
	\rightarrow heavy gauginos	\rightarrow heavy gauginos	

CONCLUSIONS AND OUTLOOK

Processes in next-to-leading order SUSY QCD:

- Stop cross sections at hadron colliders
- Neutralino/Chargino cross sections at hadron colliders

Results:

- * QCD corrections to stop cross sections between -10% and +50%
- * QCD corrections to neutralino/chargino cross sections around +30% [up to interference effects]
- \star Scale dependence small in NLO

Conclusions & Outlook:

- \star NLO stop cross sections only mildly dependent on mixing angle and internal masses
- ★ Corrections to neutralino/chargino cross section non-negligiable and dependent on scenario
- \implies NLO analyses at upgraded Tevatron and LHC

CDF Preliminary

