DETERMINING THE HIGGS SELF COUPLING AT THE LHC

Tilman Plehn

(with Uli Baur and David Rainwater)

HIGGS BOSONS AT THE LHC

The Missing Piece

- multitude of observable channels in gluon and weak boson fusion
- measurement of Higgs mass $(H \rightarrow \tau \tau, \gamma \gamma)$ measurement of couplings (minimize theory input) determination of Higgs coupling structure (possibly spin)
- Higgs potential: $V = -\lambda v^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2$ relationship between mass and self coupling: $\lambda = m_H^2/(2v^2)$?
- \Rightarrow Higgs pair production

One-Loop Amplitude $gg \to HH$

- single off-shell Higgs production
- destructive interference with continuum graphs
- convenient effective theory $\mathcal{L}_{\text{eff}} \sim H^n G_{\mu\nu} G^{\mu\nu}$

(links ggHH vertex to gluon self energy for $m_H \ll m_t$)

WHAT DO OTHERS SAY?

Rate at TESLA: $e^+e^- \rightarrow ZHH$

- \rightarrow very limited number of events
- \rightarrow low Higgs mass, decays $H \rightarrow b\bar{b}$ [Castanier, Gay, Lutz, Orloff]
- \rightarrow S/B detector simulation, neural net analysis

$m_h \; [\text{GeV}]$	$\sigma_{\rm hhZ}({\rm fb})$	${ m N_{hhZ}^{500}}$	$\epsilon_{ m hhZ}$	$\Delta\sigma/\sigma$	$(\mathcal{L} = 500, 10)$	$000, 2000 \text{fb}^{-1})$
120	0.186	93.	43%	24.1%	17.3%	11.6%
130	0.149	74.	43%	26.6%	19%	17.7%
140	0.115	57.	39%	32%	23%	17%

 \rightarrow measurement of λ through total cross section ($m_h = 120 \text{ GeV}$)

variable	$\Delta\lambda/\lambda$	$(\mathcal{L}=500,10$	$(00, 2000 \text{fb}^{-1})$
$\mathcal{B}^{ ext{recoil}}$	42.2%	30.3%	20.3~%
NN output	35.7%	22.6%	18.0%

HIGGS PAIRS AT THE LHC

Signal Extraction

- signal $gg \to HH \to (W^+W^-)(W^+W^-) \to (jj\ell^{\pm}\nu)(jj\ell'^{\pm}\nu)$ [Mangano et al.; Blondel, Clark, Mazzucato]
- dominant backgrounds: $WWWjj, t\bar{t}W$ additional backgrounds: $WWZjj, t\bar{t}W, t\bar{t}Z, t\bar{t}j, WZ4j, WW4j, 4t$ $[VV4j \equiv VV2j + 2j, \text{ all others hard matrix element}]$
- parton level MC, one cut $\Delta R_{\rm jj,min} > 1$ only
- large top mass approximation completely useless

Signal & Backgrounds [fb]

$m_h \; [\text{GeV}]$	signal	$N^{2 \times 300}$	WWWjj	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}j$	WZ4j	WW4j	$t\bar{t}t\bar{t}$
150	0.074	44	0.361	0.222	0.054	0.082	0.148	0.0052	0.0018
160	0.194	116	0.486						
180	0.177	106	0.404						
200	0.083	50	0.292						

HIGGS SELF COUPLING

Statement about Higgs self coupling

- certainly no 5σ signal for HH production (possible at vLHC)
- assumption: Standard Model Higgs type scalar derive limits on 'anomalous' Higgs self coupling exclude $\lambda = 0$ with enhanced rate (asymmetric limits)
- LHC: no extraction from total rate

Intermediate Higgs vs. Continuum

- useful distribution from visible mass $[(\Sigma_{j,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many particle final state (W, t in backgrounds)
- could be used for background suppression instead used to fit self coupling λ

Results

Issues worth to be resolved

- identification of jets from W decay vs. jet radiation (additional jet not always the softest jet)
- QCD and detector effects in visible mass (simple physics argument, PYTHIA jet approach valid?)
- background $t\bar{t}j$: dependent on $p_{T,\ell}$ cut (matrix element versus PYTHIA jet radiation?)
- $-H \rightarrow 4b$ at LHC probably hopeless [Baur, TP, Rainwater (soon)]

HIGHER ORDERS

The Old Problem: NLO corrections known for signal only

Signal	Background			
theoretical prediction	measurement in side bins			
\Rightarrow major impact of NLO	\Rightarrow less impact of NLO			
keep bulk of rate	cut back into tails			
\Rightarrow parton level useful	\Rightarrow Monte Carlo needed			
consistency: prediction of rate \leftrightarrow topology				
PYTHIA jet radiation: approximate higher order topology				
\Rightarrow normalization with best possible prediction for rate				
\Rightarrow reduction of theoretical errors				
jet radiation, NLO rate	radiation, NLO rate jet radiation, LO rate			
\Rightarrow reduced theoretical error	\Rightarrow large theoretical error			
	\Rightarrow (1) impact of uncertainty?			
	\Rightarrow (2) impact of enhanced rate?			
$pp \rightarrow HH$: fit to structure in signal, using NLO signal rate				
(1) allow for 30% uncertainty in background				
(2) allow for $K = 1.3$ in background				
(3) impact of side bin measurements				