MSSM HIGGS BOSON PRODUCTION VIA BOTTOM PARTONS

Tilman Plehn CERN

- Charged Higgs: bottom induced process
- Total rate
- Top and Higgs distributions

MSSM HIGGS BOSONS AT THE LHC

MSSM Higgs Sector

- Softly broken supersymmetric anomaly–free theory
- two doublets, coupling to up and down type fermions
 - \rightarrow five physical states h^o, H^o, A^o, H^{\pm}
 - \rightarrow mixing of scalars to mass eigenstates (mixing angle α)
 - \rightarrow more predictive than Standard Model (upper h^o mass limit)
- conveniently expressed as function of m_A and $\tan \beta \equiv v_2/v_1$
- Yukawa couplings to H, A, H^{\pm} : $m_b \tan \beta, m_t / \tan \beta$ (large m_A)
- typically one light, many heavy scalars [Heinemeyer, Weiglein]

Find first Higgs boson

- complete coverage by WBF $h \rightarrow \tau \tau$ [TP, Rainwater, Zeppenfeld; Schumacher]
- problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko] $\Delta m_h/m_h \sim \sigma/\sqrt{N}$ ($\sigma \sim 1.5$ GeV for $\mu\mu, \gamma\gamma$ and $\sigma \sim 15$ GeV for $\tau\tau$)

Tell it is 2HDM (MSSM?) \Rightarrow look for heavy Higgs bosons

- $-H^0, A^0 \to \tau \tau, \mu \mu$ inclusive $gg \to H$ and $gg \to b\bar{b}H$
- $-H^{\pm} \rightarrow \nu \tau, tb \text{ in } pp \rightarrow tH^{-}, W^{+}H^{-}, H^{+}H^{-}$ (n.b. SUSY loops) [Hollik et al, Kniehl et al]
- appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat]
- no other conclusive way but to find these particles

(HEAVY) CHARGED HIGGS

Most promising channel

- associated production $pp \to tH^- + X$ for large $\tan\beta$
- decay $H^{\pm} \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \to \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b
- \rightarrow experiment: forward jets, $p_{T,b}$ peaked at m_b (factor 1/6 for each tagged b)
- \rightarrow use bottom–inclusive cross section
- \rightarrow check asymptotic cross section behavior $d\sigma/dp_{T,b} \propto 1/p_{T,b}$
- \rightarrow inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$
- \rightarrow how large logarithms? resum?

Inclusive process $bg \to tH^-$

- resum large logarithms $\log(p_{T,b}/m_b)$ in exclusive process $gg \to \bar{b}tH^-$
- equivalent to bottom parton density and inclusive process $bg \to tH^-$
- $\rightarrow \mu_{F,b}$ 'transverse momentum size' of bottom parton $(\mu_{F,b} \equiv p_{T,b}^{\max}; \text{ usually hard scale } \mu_{F,b} = M)$
- \rightarrow numerical improvement or overestimate?
- \rightarrow (1) check bottom-inclusive total rate (2) check bottom-inclusive t, H distributions

2		$p_{\gamma,b}d\sigma/dp_{\gamma,b}(gg{\rightarrow}\bar{b}tH^{-})$
1	r	
0	m _H =1000 GeV	
10		
90		
0	m _H =500 GeV	
0	·····	mp=4.6 GeV
10	$r \sim$	m _b =0.46 GeV
10	m _H =250 GeV	
0	10	10 ² 10 ³

TOTAL RATE: BOTTOM FACTORIZATION SCALE

Perturbative bottom factorization scale from exclusive process [Boos, TP]

- two steps: first bottom virtuality Q_b^{\max}
- general exclusive process: $gg \to \bar{b}X_M$ asymptotic behavior $\overline{|\mathcal{M}|^2} = S^2 \sigma_0 / Q_b^2$; $\mathcal{L} = \mathcal{L}_0 / x^2$

$$\sigma = \frac{2\sigma_0 \mathcal{L}_0}{16\pi} \int_0^{S-M^2} \frac{dQ_b}{Q_b} F(Q_b)$$

- $\rightarrow F(Q_b)$ known correction to asymptotic behavior $d\sigma/dQ_b \sim 1/Q_b$
- \rightarrow define Q_b^{max} at turning point $d^2 F(Q_b)/d(\log Q_b)^2 = 0$
- $\rightarrow Q_b^{\max} \sim M/2$ (hard scale argument $Q_b^{\max} \propto M$, not more than that!) Second step: transverse momentum $p_{T,b}^{\max}$
- check explicitly: $Q_b \sim Q_b^{\text{max}}$ also yields $p_{T,b} \sim p_{T,b}^{\text{max}}$
- \rightarrow translate Q_b into $p_{T,b}$ point by point
- $\rightarrow p_{T,b}^{\max}/Q_b^{\max} \sim Q_b^{\max}/M \quad \text{yields} \quad p_{T,b}^{\max} \sim Q_b^{\max}/2 \sim M/4$ (numerical study of $gg \rightarrow \bar{b}tH^-$: $\mu_{F,b} \sim M/5$)
- So what did we learn from exclusive process?
 - $\log(p_{T,b}/m_b)$ after integrating over bottom jet but 'large' logs at maximum $\log(M/(5m_b))$ [TP; Maltoni, Willenbrock]
 - gg and bg processes: $\mu_{F,b} \sim M/5$ from partonic phase space
- ⇒ Total cross section with bottom partons understood [Dittmaier, Spira, Krämer]

DISTRIBUTIONS FOR INCLUSIVE PROCESS

On to the distributions (preliminary)

- bottom parton description appropriate for total rate
- \rightarrow Higgs and top distributions?
- \rightarrow bottom partons established for exclusive cross sections?

(1) Inclusive kinematics

- bottom partons assuming small $p_{T,b} \ll p_{z,b}$
- \rightarrow compare to exclusive (2 \rightarrow 3) process which is part of NLO rate
- \rightarrow run bottom factorization scale $\mu_F \rightarrow m_b$ switch off incoming bottoms, left with $gg \rightarrow \bar{b}tH^-$
- \rightarrow slightly harder distributions (due to x dependence of bottom PDF)

(2) Zero bottom mass

- agreement exclusive vs. inclusive cross section established
- \rightarrow check with bottom mass dependent $pp \rightarrow \bar{b}tH^-$
- \rightarrow perfect agreement with exclusive process for small m_b very good agreement with physical bottom mass case
- \rightarrow Bottom parton picture altogether appropriate

SUSY-QCD CORRECTIONS

SUSY-QCD Loop Contributions [TP; Berger, Han, Jiang, TP]

- infrared finite but ultraviolet divergent SUSY loop contributions
- (1) universal corrections y_b/(1 + Δ_b)
 [Carena, Garcia, Nierste, Wagner; Guasch, Häflinger, Spira]
 (2) remaining explicit SUSY loop diagrams

	m_0	$m_{1/2}$	aneta	μ	m_H			$(\Delta_b)_{\mathrm{resum}}$	non– Δ_b
1a	100	250	10	420	477			-10.2%	3.0%
1b	200	400	30	511	535			-23.5%	-0.1%
2	1450	300	10	425	1503			-0.9%	-1.0%
3	90	400	10	633	719			-9.5%	3.0%
4	400	300	50	389	357			-31.0%	-0.4%
5	150	300	5	637	697			-8.0%	10.0%
	m_0	$m_{1/2}$	aneta	μ	m_H	M_1	$M_{2,3}$		
6	150	300	10	402	476	480	300	-9.5%	3.0%
	Λ	$M_{\rm mes}$	$N_{\rm mes}$	aneta	μ	m_H			
7	40×10^3	80×10^3	3	15	316	476		-8.1%	0.5%
8	100×10^3	200×10^3	1	15	421	538		-7.1%	0.5%

 $\rightarrow \Delta m_b$ corrections dominant for tan $\beta \gtrsim 10$ (dependent on sign of μ) \rightarrow explicit loop corrections negligible $\lesssim 10\%$ for generic mSUGRA

(HEAVY) NEUTRAL HIGGS

Bottom induced production of neutral Higgses

- rate enhanced by $\tan\beta^2$
- $-gg \rightarrow b\bar{b}H$ exclusive versus $bg \rightarrow bH$ inclusive $bg \rightarrow bh$ exclusive versus $b\bar{b} \rightarrow H$ inclusive
- appropriate factorization scale $\mu_{F,b} \sim M/5 = m_h/5$
- check: $b\bar{b} \to H$ NNLO scale dependence [Harlander & Kilgore] $\mu_{R,b}$ variation for fixed $\mu_{F,b} \sim m_h/4$ well under control $\mu_{F,b}$ variation for fixed $\mu_{R,b} \sim m_h$ almost fixed point

- check: exclusive vs. inclusive total rate [Dittmaier, Spira, Krämer]

	14	$\sigma(q\bar{q},gg ightarrow b\bar{b}$	$\bar{b}H + X$) [fb]	$\sigma(b\bar{b} \to H + X)$ [fb]		
	M_H	LO	NLO	LO	NNLO	
	120	$3.9^{+3.5}_{-1.7}$	$8.0 {}^{+3.1}_{-2.4}$	$8.6 {}^{+4.7}_{-5.0}$	$10.5{}^{+0.3}_{-1.1}$	
Tevatron	200	$0.22{}^{+0.19}_{-0.09}$	$0.56{}^{+0.23}_{-0.18}$	$0.69{}^{+0.20}_{-0.26}$	$0.79{}^{+0.02}_{-0.03}$	
	120	$(5.3{}^{+2.7}_{-1.7})\!\times\!10^2$	$(7.3{}^{+2.0}_{-1.6})\!\times\!10^2$	$(4.8^{+4.3}_{-3.2}) \times 10^2$	$(7.2{}^{+0.4}_{-1.6})\!\times\!10^2$	
LHC	400	$4.3^{+2.4}_{-1.4}$	$8.1^{+2.2}_{-1.9}$	$7.4^{+2.4}_{-2.5}$	$9.8{}^{+0.2}_{-0.4}$	

Side remark: single top production $qg \rightarrow \bar{b}tq'$ [Willenbrock et al]

- less steep quark densities, $x_1 \neq x_2$
- production above threshold
- $\rightarrow Q_b^{\max} \sim m_t$
- generally $p_{T,b}^{\max} \sim Q_b^{\max}/2$
- $\rightarrow \mu_{F,b} \sim m_t/2$ covered by quoted theoretical uncertainty

	12 Part 102 Part 100
20 ⁻¹ 1 0/m	11 ⁻¹ 11 ⁻¹ 11 ⁻¹
LBC agrabal	m-175,580,100 GeV
10 ⁻¹ I Q ₂ m,	10 ⁻¹ 1 p ₁₀ /m
	12 F

CONCLUSIONS

Bottom parton picture works fine

- total rate correct with appropriate factorization scale
- top and Higgs distributions correctly described
- we also understand why

Heinemeyer, Hollik, Weiglein

Harlander, Kilgore