# SUSY AT THE LHC DISCOVERY AND BEYOND

Tilman Plehn CERN

- Supersymmetrie am LHC
- Entdeckung
- Messungen
- Detail-Studien

## SUPERSYMMETRIE AN DER TEV–SKALA: 1

### Am Anfang waren die Daten...

- \* ...die auf ein leichtes fundamentales Higgs hindeuten
- ★ Problem des leichten Higgs: Massen skalarer Felder instabil durch Loops quadratische Divergenzen δm<sup>2</sup><sub>h</sub> ∝ g<sup>2</sup>Λ<sup>2</sup> korrigierte Higgs–Masse am Cutoff m<sub>h</sub> → Λ Lösung: Counterterm mit exakter Aufhebung ⇒ künstlich, unmotiviert und hässlich
- $\Rightarrow$  Alternative: neue Physik an der TeV–Skala
- $\Rightarrow$  SUperSYmmetrie

Extra–Dimensionen Little Higgs (Pseudo–Goldstone) Topcolor (zusammengesetztes Higgs) YourFavoriteNewPhysics...

- $\Rightarrow$  ästhetische Konzepte und Symmetrien
- $\Rightarrow$  all gemein problematische Realisierung an TeV-Skala [Daten störend]

### Grund-Idee von Supersymmetrie

- Aufhebung quadratischer Divergenzen durch Statistik–Faktor (-1): skalare Partner von SM–Fermionen fermionische Partner von SM–Eichbosonen fermionische Partner von SM–Skalaren
- $\Rightarrow$  offensichtlich gebrochene Symmetrie

## SUPERSYMMETRIE AN DER TEV–SKALA: 2

### Sonnenseiten

- \* radiative Symmetriebrechung 2 Higgs–Dubletts
- \* R-Parität keine FCNC liefert dunkle Materie
- \* Vereinheitlichung 3 laufende Kopplungen treffen sich
- \* Supergravitation Licht am Ende des Theorie–Tunnels?
- \* breite Anforderungen an LHC keine Überraschungen

### Schattenseiten

- ★ unbekannte SUSY–Brechung
  - $\rightarrow$  weiche Brechung ohne quadratische Divergenzen
  - $\rightarrow$  100+ Parameter: Massen, skalare Kopplungen, Phasen...
- \* Flavor–Physik CKM und Leptonflavor durch SUSY–Brechung? 2HDM —  $\mu$ –Parameter durch SUSY–Brechung? [Giudice, Masiero]

### ★ MSSM-Spektrum

|                           |                            | Spin | Ladung    | Freiheitsgrade |           |
|---------------------------|----------------------------|------|-----------|----------------|-----------|
| Quark                     | $q_L, q_R$                 | 1/2  | 2/3, -1/3 | 1+1            |           |
| $\rightarrow$ Squark      | $\tilde{q}_L, \tilde{q}_R$ | 0    | 2/3, -1/3 | 1+1            | 6 Flavors |
| Gluon                     | $G_{\mu}$                  | 1    | 0         | n-2            |           |
| $\rightarrow$ Gluino      | $	ilde{g}$                 | 1/2  | 0         | 2              | Majorana  |
| Eichbosonen               | $\gamma, Z$                | 1    | 0         | 2+3            |           |
| Higgs-Bosonen             | $h^o, H^o, A^o$            | 0    | 0         | 3              |           |
| $\rightarrow$ Neutralinos | $	ilde{\chi}^o_i$          | 1/2  | 0         | $4 \cdot 2$    | Majorana  |
| Eichbosonen               | $W^{\pm}$                  | 1    | $\pm 1$   | $2 \cdot 3$    |           |
| Higgs-Bosonen             | $H^{\pm}$                  | 0    | $\pm 1$   | 2              |           |
| $\rightarrow$ Charginos   | $\tilde{\chi}_i^{\pm}$     | 1/2  | $\pm 1$   | $2 \cdot 4$    | Dirac     |

 $\Rightarrow$  Analysen unabhängig von SUSY-Brechung?





## SUPERSYMMETRIE AN DER TEV–SKALA: 3

### Strukturen im SUSY-Spektrum

 $\star$  Gauginos–Higgsinos:  $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$  oder  $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$  im MSSM

 $\begin{pmatrix} m_{\tilde{B}} & 0 & -m_Z s_w c_\beta & m_Z s_w s_\beta \\ 0 & m_{\tilde{W}} & m_Z c_w c_\beta & -m_z c_w s_\beta \\ -m_Z s_w c_\beta & m_Z c_w c_\beta & 0 & -\mu \\ m_Z s_w s_\beta & -m_Z c_w s_\beta & -\mu & 0 \end{pmatrix} \begin{pmatrix} m_{\tilde{W}} & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & -\mu \end{pmatrix}$ 

\* Stop- und Sbottom-Mischung im MSSM

$$\begin{pmatrix} m_Q^2 + m_t^2 + \left(\frac{1}{2} - \frac{2}{3}s_w^2\right)m_Z^2 c_{2\beta} & -m_t \left(A_t + \mu \cot \beta\right) \\ -m_t \left(A_t + \mu \cot \beta\right) & m_U^2 + m_t^2 + \frac{2}{3}s_w^2 m_Z^2 c_{2\beta} \end{pmatrix}$$

\* schwere Gluinos und Squarks durch Vereinheitlichung  $m_{\tilde{B},\tilde{W},\tilde{g}}/m_{1/2} \sim 0.4, 0.8, 2.6$  $m_{\tilde{\ell},\tilde{q}}/m_{1/2} \sim 0.7, 2.5 \quad [m_0 \ll m_{1/2}]$ 

n.b. Massen- und Kopplungs-Vereinigung unabhängig [Hooper, TP]

\* leichtester SUSY–Partner:  $\tilde{\chi}_1^0, \tilde{\nu}$  $\rightarrow$  inklusive Daten zu dunkler Materie:  $\tilde{\chi}_1^0 \sim \tilde{B}, \tilde{W}$ 

#### Beispiel-Spektren



## SUSY–SIGNALE AM LHC: 1

#### Entdeckung von Supersymmetrie

- 1 Entdeckung Signale für neue Physik, möglicherweise SUSY?
- 2 Messung Massen, Wirkungsquerschnitte, Zerfälle?
- 3 Detailstudien MSSM–Lagrangean, SUSY–Brechung?
- $\Rightarrow$  berechtigte Zweifel an SUSY jederzeit angebracht

Herausforderung: unübersehbare SUSY-Signale am LHC

- \* Jets und  $\not\!\!\!E_T: pp \to \tilde{q}\tilde{q}^*, \tilde{g}\tilde{g}, \tilde{q}\tilde{g} \qquad [\tilde{q} \to q\tilde{\chi}^0_1; \tilde{g} \to \tilde{q}\bar{q} \to q\bar{q}\tilde{\chi}^0_1]$
- \* Dileptonen gleicher Ladung:  $pp \to \tilde{g}\tilde{g} \qquad [\tilde{g} \to \tilde{u}\bar{u} \to \tilde{\chi}_1^+ d\bar{u} \text{ oder c.c.}]$
- \* Trileptonen ohne Z–Pol:  $pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^- \quad [\tilde{\chi}_2^0 \to \tilde{\ell}\bar{\ell} \to \tilde{\chi}_1^0 \ell \bar{\ell}; \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell \bar{\nu}]$
- \* unpassende Tops:  $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \quad [\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ \rightarrow b \bar{\ell} \nu \tilde{\chi}_1^0]$
- \* ..... [weitere Ideen herzlich willkommen]
- $\Rightarrow$  Erfahrungen aus Tevatron–Suchen

#### Exakte Vorhersage der Produktionswirkungsquerschnitte

- \* Massenbestimmung in inklusiven Analysen
- \* Verzweigungsverhältnisse in Kaskaden–Analysen [Sdecay: Mühlleitner]
- \* bisher leider: Ausschlussgrenzen für SUSY-Teilchen

## SUSY–SIGNALE AM LHC: 2

(SUSY)-QCD-Korrekturen für inklusive Prozesse

- \* grosse QCD-Korrekturen für Squarks, Stops & Gluinos
- \* kleine SUSY–Effekte für Stops
- \* DY-artige QCD-Korrekturen für Neutralinos, Charginos, Sleptonen
- \* sichtbare QCD–Korrekturen für Neutralino+Squark
- \* kleine QCD–Korrekturen für Neuralino+Gluino
- \* technisch korrekt: divergente Zwischenzustände, Renormierung,...
- \* Les-Houches-Interface zu Pythia, SoftSusy, FeynHiggs, etc.
- $\Rightarrow$  Prospino2.0beta öffentlich [http://pheno.physics.wisc.edu/~plehn]

### ProspinoPropagandaPlot







## SUSY–SIGNALE AM LHC: 3

### SUSY-Signal: geladenes Higgs-Boson

- \* kein adjungiertes Higgs–Feld im Superpotential
  - $\rightarrow$  2 Dubletts für Top– und Bottom–Masse [tan  $\beta$ ]
  - $\rightarrow$  geladener Higgs–Skalar  $[H^- \rightarrow \tau \bar{\nu}, \bar{t}b, W^-h^0]$
- \* Produktionskanal  $bg \rightarrow tH^-$  [Prospino2.1, CMS: Nikitenko, ATLAS: Assamagan] (a) konzeptionell: bottom–Partonen [Boos & TP]
  - (b) experimentell: Messung von  $\tan \beta$  [LH 2003]

### SUSY-Signal: geladenes Higgs-Boson

- \* QCD–Korrekturen unter Kontrolle
- \* Top im Zwischenzustand subtrahiert
- \* faktorisierende SUSY–Terme [resummierbar: Nierste,...] Yukawa–Renormierung  $\Delta_b = \alpha_s C_F / (2\pi) \times m_{\tilde{g}} \mu / M^2 \tan \beta$

| * | explizite | SUSY–Diagramme | vernachlässigbar |
|---|-----------|----------------|------------------|
|   | 1         | 0              | 0                |

| mSUGRA | $m_H$ | aneta | $m_{1/2}$ | $\mu$ | $\sigma_{\rm NLO}$ [fb] | $\Delta_b$ | $\Delta_b^{\rm resum}$ | non– $\Delta_b$ |
|--------|-------|-------|-----------|-------|-------------------------|------------|------------------------|-----------------|
| 1a     | 402   | 10    | 250       | 352   | 25.6                    | -11.0%     | -10.2%                 | -1.9%           |
| 1b     | 543   | 30    | 400       | 501   | 61.7                    | -27.9%     | -23.5%                 | -4.6%           |
| 2      | 1446  | 10    | 300       | 125   | 0.13                    | -0.92%     | -0.91%                 | -1.7%           |
| 3      | 578   | 10    | 400       | 509   | 8.02                    | -10.1%     | -9.5%                  | -1.1%           |
| 4      | 416   | 50    | 300       | 377   | 395                     | -39.0%     | -31.0%                 | -4.6%           |
| 5      | 699   | 5     | 300       | 640   | 5.73                    | -8.5%      | -8.0%                  | 0.8%            |
| GMSB   |       |       |           |       |                         |            |                        |                 |
| 7      | 387   | 15    |           | 300   | 48.0                    | -8.5%      | -8.1%                  | -0.9%           |
| 8      | 521   | 15    |           | 398   | 20.4                    | -7.5%      | -7.1%                  | -0.5%           |
| AMSB   |       |       |           |       |                         |            |                        |                 |
| 9      | 916   | 10    |           | 870   | 1.29                    | -10.6%     | -9.9%                  | 4.1%            |













## SUSY–MESSUNGEN AM LHC: 1

#### SUSY-Spektren aus Zerfallskaskaden

- \* Zerfall  $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$  [hoffentlich nicht via Z]
- \* Wirkungsquerschnitte einige 100 pb [mehr als  $3 \times 10^5$  events]
- \* Schwellen & Ecken in Spektren [Allanach, Lester, Parker, Webber] Klassiker  $m_{\ell\ell}^2 < (m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2$ kritisch: genügend Schwellen und Ecken messbar?
- ⇒ Detektorauflösung, Kalibrierung, systematische Fehler?

#### Detailstudien für SPS-Punkte [Polesello et al.]

- \* Gluino–Masse in  $\tilde{g} \rightarrow \tilde{b}\bar{b}$
- \* Higgsino–Massen in  $\tilde{q}_L \rightarrow q \tilde{\chi}_4^0, \tilde{q}_L \rightarrow \tilde{\chi}_2^{\pm} q$
- \* Chargino-Masse in  $\tilde{q} \to q \tilde{\chi}_1^{\pm} \to q W_{had}^{\pm} \tilde{\chi}_1^0$  [Nojiri, Polesello, Tovey]
- $\star$  Slepton–Masse in  $\tilde{\ell} \to \ell \tilde{\chi}_1^0$
- \* ....
- $\Rightarrow \text{ generisch für kleine } \tan \beta \text{Werte}$ Probleme mit b-Jets und  $\tau$ -Leptonen für grosses  $\tan \beta$

⇒ essentiell für SUSY–Parameter–Bestimmung [Ergebnisse 2 Folien weiter]





[Allanach, Lester, Parker, Webber]

## SUSY–Messungen am LHC: 2

### Problem in Zerfalls-Studien

- ★ typische Schnitte:  $p_{T,j} > 150, 100, 50, 50 \text{ GeV}$ mutigere Analysen:  $p_{T,j} > 100, 100, 40, 20 \text{ GeV}$
- \* (a) Schnitte auf p<sub>T,j</sub>-Hierarchie?
  (b) kombinatorischer Untergrund durch Jet-Abstrahlung?
- $\Rightarrow \text{ Matrixelemente } pp \rightarrow X_{\text{SUSY}}Y_{\text{SUSY}} + \text{ harte Jets}$ gute Erfahrungen mit Higgs+Jets [Zeppenfeld, Rainwater; Jacobs, Mellado]
- $\Rightarrow$  SMadgraph [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

#### Solange wir SMadgraph noch testen...

- $\star$  ...vorläufige Madevent–Ergebnisse für  $pp \rightarrow ZZ$ + Jets
- \* Untergrund zu SUSY–Kaskaden mit  $\tilde{\chi}^0_3 \rightarrow Z$  [D. Zerwas, TP]
- \*  $p_{T,j} > 50 \text{ GeV: } \sigma = \{2500, 1100, 560\} \text{ fb für } pp \rightarrow ZZ + \{1,2,3\} \text{ Jets}$



## PARAMETER-BESTIMMUNG AM LHC: 1

#### Anliegen als Theoretiker

- \* gemessene Massen, Wirkungsquerschnitte, Zerfälle sekundär
- \* Parameter in SUSY–Lagrangean aus Messwerten
- $\Rightarrow$  SUSY–Brechungs–Parameter bei  $M_{\text{TeV}}$
- $\Rightarrow$  Extrapolation zu  $M_{\rm GUT}$  [Blair, Porod, P. Zerwas]

### Aufwärm-Training: mSUGRA-Fit

 $\star\,$  Fit mit festem Vorzeichen von  $\mu$ 

|           | SPS1a | LHC    | $\Delta_{ m LHC}$ | LC     | $\Delta_{\rm LC}$ | LHC+LC | $\Delta_{\rm LHC+LC}$ |
|-----------|-------|--------|-------------------|--------|-------------------|--------|-----------------------|
| $m_0$     | 100   | 100.03 | 4.0               | 100.03 | 0.09              | 100.04 | 0.08                  |
| $m_{1/2}$ | 250   | 249.95 | 1.8               | 250.02 | 0.13              | 250.01 | 0.11                  |
| aneta     | 10    | 9.87   | 1.3               | 9.98   | 0.14              | 9.98   | 0.14                  |
| $A_0$     | -100  | -99.29 | 31.8              | -98.26 | 4.43              | -98.25 | 4.13                  |

### $\Rightarrow$ Einfluss des LHC???

|                 | SPS1a | LHC  | LC   | LHC+LC |                | SPS1a | LHC  | LC  | LHC+LC |
|-----------------|-------|------|------|--------|----------------|-------|------|-----|--------|
| $\chi_1^0$      | 97.03 | 4.8  | 0.05 | 0.05   | $\chi^0_2$     | 182.9 | 4.7  | 1.2 | 0.08   |
| $\chi^0_3$      | 349.2 |      | 4.0  | 4.0    | $\chi_4^0$     | 370.3 | 5.1  | 4.0 | 2.3    |
| $\chi_1^{\pm}$  | 182.3 |      | 0.55 | 0.55   | $\chi_2^{\pm}$ | 370.6 |      | 3.0 | 3.0    |
| ${	ilde g}$     | 615.7 | 8.0  |      | 6.5    |                |       |      |     |        |
| $\tilde{t}_1$   | 411.8 |      | 2.0  | 2.0    |                |       |      |     |        |
| $	ilde{b}_1$    | 520.8 | 7.5  |      | 5.7    | $\tilde{b}_2$  | 550.4 | 7.9  |     | 6.2    |
| $\tilde{q}_R$   | 551.0 | 19.0 |      | 16.0   | $\tilde{q}_L$  | 570.8 | 17.4 |     | 9.8    |
| $\tilde{e}_1$   | 144.9 | 4.8  | 0.05 | 0.05   | $\tilde{e}_2$  | 204.2 | 5.0  | 0.2 | 0.2    |
| $	ilde{\mu}_1$  | 144.9 | 4.8  | 0.2  | 0.2    | $	ilde{\mu}_2$ | 204.2 | 5.0  | 0.5 | 0.5    |
| $	ilde{	au}_1$  | 135.5 | 6.5  | 0.3  | 0.3    | $	ilde{	au}_2$ | 207.9 |      | 1.1 | 1.1    |
| $\tilde{\nu}_e$ | 188.2 |      | 1.2  | 1.2    |                |       |      |     |        |

 $\Rightarrow$  was sind Daten und was Modell-Annahmen?

## PARAMETER-BESTIMMUNG AM LHC: 2

### SUSY-Parameter aus Observablen

- \* Parameter: MSSM–Lagrangean
- Messungen: Massen [SuSpect, SoftSUSY, FeynHiggs..., z.Zt. nur Massen]
   Verzweigungsverhältnisse [MSMlib, Sdecay]
   Wirkungsquerschnitte [Prospino, MSMlib, Fittino mit Spheno]
   Erweiterung problemlos
- \* Fehler: allgemeine Korrelation, Statistik & Systematik & Theorie
- \* Problem mit Fit: Phasenraum–Struktur, Anfangswerte
   Problem mit Grid: riesiges Gitter, schwer abdeckbar

SFitter [Lafaye, TP, D. Zerwas]

- \* 1 Grid mit Teilmenge von Messungen und Parametern
  - 2 Fit der übrigen Parameter an alle Messungen
  - 3 kompletter Fit

|                      | LHC                | LC                 | LHC+LC            | SPS1a  |
|----------------------|--------------------|--------------------|-------------------|--------|
| aneta                | $10.22 \pm 9.1$    | $10.26 {\pm} 0.3$  | $10.06 {\pm} 0.2$ | 10     |
| $M_1$                | $102.45 \pm 5.3$   | $102.32{\pm}0.1$   | 102.23±0.1        | 102.2  |
| $M_3$                | 578.67±15          | fix 500            | 588.05±11         | 589.4  |
| $M_{\tilde{\tau}_L}$ | fix 500            | 197.68±1.2         | 199.25±1.1        | 197.8  |
| $M_{\tilde{\tau}_R}$ | 129.03±6.9         | $135.66 {\pm} 0.3$ | 133.35±0.6        | 135.5  |
| $M_{\tilde{\mu}_L}$  | 198.7±5.1          | 198.7±0.5          | 198.7±0.5         | 198.7  |
| $M_{\tilde{q}3_L}$   | 498.3±110          | 497.6±4.4          | 521.9±39          | 501.3  |
| $M_{\tilde{t}_R}$    | fix 500            | 420±2.1            | 411.73±12         | 420.2  |
| $M_{\tilde{b}_R}$    | 522.26±113         | fix 500            | 504.35±61         | 525.6  |
| $A_{\tau}$           | fix 0              | -202.4±89.5        | 352.1±171         | -253.5 |
| $A_t$                | -507.8±91          | $-501.95 \pm 2.7$  | -505.24±3.3       | -504.9 |
| $A_b$                | $-784.7 \pm 35603$ | fix 0              | -977±12467        | -799.4 |

 $\Rightarrow$  alles ausser LHC+LC nicht ohne Modell-Annahmen [mehr Messungen?]

## AUSBLICK

### SUSY–Signale am LHC

- \* Messung von Raten und Zerfällen erster Schritt
- \* NLO–Wirkungsquerschnitte in Prospino2.0 [Standard am Tevatron]
- \* QCD-Korrekturen relevant
- \* SUSY-QCD-Korrekturen nicht immer vernachlässigbar

### SUSY-Messungen am LHC

- \* Endzustände mit Jets essentiell [Higgs am LHC]
- harte Matrixelemente mit SMadgraph
- \* Analyse von Zerfalls-Kaskaden vielversprechende Strategie

### SUSY-Parameter am LHC

- \* SUSY–Observablen theoretisch sekundär
- \* Bestimmung von SUSY–Parametern mit Sfitter
- **\*** Kombination von Experimenten unabdingbar