SUSY TOOLS FOR THE LHC

Tilman Plehn CERN

- Supersymmetry at the LHC
- Discoveries
- Measurements
- Parameter Studies

SUPERSYMMETRY AT TEV SCALE: 1

Starting from data...

- * ...which seem to indicate a light Higgs
- * problem of light Higgs: scalar masses perturbatively unstable quadratic divergences $\delta m_h^2 \propto g^2 \Lambda^2$ all-orders Higgs mass driven to cutoff $m_h \rightarrow \Lambda$ solution: counter term for exact cancellation \Rightarrow artificial, unmotivated, ugly [anthropic principle?]
- \Rightarrow alternative: new physics at TeV scale
- ⇒ supersymmetry extra dimensions
 little Higgs (pseudo–Goldstone) topcolor (composite Higgs)
 YourFavoriteNewPhysics...
- \Rightarrow beautiful concepts und symmetries
- \Rightarrow in general problematic to realize at TeV scala [data in the way]

Idea of supersymmetry

- cancellation of quadratic divergences through statistics (-1): scalar partner of SM fermions fermionic partner of SM gauge bosons fermionic partner of SM scalars
- \Rightarrow obviously broken symmetry

SUPERSYMMETRY AT TEV SCALE: 2

Bright side

- ★ radiative symmetrie breaking 2 Higgs doublets
- * R parity stable proton yields dark matter
- ★ unification 3 running couplings meet
- * local supersymmetry unified theory including gravity?
- * rich LHC phenomenology no nasty surprises

Dark side

- * unknown SUSY breaking
 - \rightarrow soft breaking without quadratic divergences
 - \rightarrow 100+ parameters: masses, scalar couplings, phases...
- * flavor physics CKM and lepton flavor through SUSY breaking? 2HDM — μ parameter through SUSY breaking? [Giudice, Masiero]
- ★ MSSM spectrum

		spin	charge	d.o.f.	
quark	q_L, q_R	1/2	2/3, -1/3	1+1	
\rightarrow squark	$ ilde q_L, ilde q_R$	0	2/3, -1/3	1+1	6 favors
gluon	G_{μ}	1	0	n-2	
\rightarrow gluino	$ ilde{g}$	1/2	0	2	Majorana
gauge bosons	γ, Z	1	0	2+3	
Higgs bosons	h^o, H^o, A^o	0	0	3	
\rightarrow neutralinos	$ ilde{\chi}^o_i$	1/2	0	$4 \cdot 2$	Majorana
gauge bosons	W^{\pm}	1	±1	$2 \cdot 3$	
Higgs bosons	H^{\pm}	0	± 1	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	± 1	$2 \cdot 4$	Dirac

 \Rightarrow analyses independent of SUSY breaking?

SUPERSYMMETRY AT TEV SCALE: 3

Struktures of SUSY spectrum

 \star gauginos–higgsinos: $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$ or $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$ in MSSM

 $\begin{pmatrix} m_{\tilde{B}} & 0 & -m_Z s_w c_\beta & m_Z s_w s_\beta \\ 0 & m_{\tilde{W}} & m_Z c_w c_\beta & -m_z c_w s_\beta \\ -m_Z s_w c_\beta & m_Z c_w c_\beta & 0 & -\mu \\ m_Z s_w s_\beta & -m_Z c_w s_\beta & -\mu & 0 \end{pmatrix} \begin{pmatrix} m_{\tilde{W}} & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & -\mu \end{pmatrix}$

* stop and sbottom mixing in MSSM

$$\begin{pmatrix} m_Q^2 + m_t^2 + \left(\frac{1}{2} - \frac{2}{3}s_w^2\right)m_Z^2 c_{2\beta} & -m_t \left(A_t + \mu \cot\beta\right) \\ -m_t \left(A_t + \mu \cot\beta\right) & m_U^2 + m_t^2 + \frac{2}{3}s_w^2 m_Z^2 c_{2\beta} \end{pmatrix}$$

* heavy gluinos and squarks through unification

 $m_{\tilde{B},\tilde{W},\tilde{g}}/m_{1/2} \sim 0.4, 0.8, 2.6$ $m_{\tilde{\ell},\tilde{q}}/m_{1/2} \sim 0.7, 2.5 \quad [m_0 \ll m_{1/2}]$

n.b. mass and coupling unification independent [Hooper, TP]

★ lightest SUSY particle: $\tilde{\chi}_1^0, \tilde{\nu}$ → including dark matter data: $\tilde{\chi}_1^0 \sim \tilde{B}, \tilde{W}$

examples

SUSY SIGNALS AT LHC: 1

Appearance of supersymmetry

- 1 dicovery signals for new physics, possibly SUSY?
- 2 measurements masses, cross sections, decays?
- 3 parameter studies MSSM Lagrangean, SUSY breaking?
- \Rightarrow well founded doubts always expected

Challenge: find fool proof SUSY signals at LHC

- \star jets und $\not\!\!\!E_T: pp \to \tilde{q}\tilde{q}^*, \tilde{g}\tilde{g}, \tilde{q}\tilde{g} \qquad [\tilde{q} \to q\tilde{\chi}_1^0; \tilde{g} \to \tilde{q}\bar{q} \to q\bar{q}\tilde{\chi}_1^0]$
- * like sign dileptons: $pp \rightarrow \tilde{g}\tilde{g} \qquad [\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_1^+ d\bar{u} \text{ oder c.c.}]$
- * tri-leptons, no Z–Pol: $pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^- \quad [\tilde{\chi}_2^0 \to \tilde{\ell}\bar{\ell} \to \tilde{\chi}_1^0 \ell \bar{\ell}; \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell \bar{\nu}]$
- * funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \quad [\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ \rightarrow b \bar{\ell} \nu \tilde{\chi}_1^0]$
- * [more ideas your job...]
- \Rightarrow experience from Tevatron searches

Precise NLO prediction of production cross sections [Prospino]

- * masses from inclusive analyses
- * branching fractions from cascade analyses [Sdecay: Mühlleitner]
- * until now: exclusion limits for SUSY particles

SUSY SIGNALS AT LHC: 2

(SUSY)-QCD corrections for inclusive processes

- * large QCD corrections for squarks, stops, gluinos
- ★ small SUSY effects for stops
- * DY type QCD corrections for neutralinos, charginos, sleptonen
- sizeable QCD corrections for neutralino+squark
- * small QCD corrections for neutralino+gluino
- * technically correct: divergent intermediate states, renormalization,...
- * Les Houches interface to Pythia, SoftSusy, etc.
- \Rightarrow Prospino2.0beta publicly available

[http://pheno.physics.wisc.edu/~plehn]

Prospino propaganda plot

SUSY SIGNALS AT LHC: 3

Unusual SUSY signal: charged Higgs

- * no adjoint Higgs field in superpotential
 - \rightarrow 2 doublets for top und bottom mass [tan β]
 - \rightarrow charged Higgs scalar $[H^- \rightarrow \tau \bar{\nu}, \bar{t}b, W^-h^0]$
- * production $bg \rightarrow tH^-$ [Prospino2.1, CMS: Nikitenko, ATLAS: Assamagan]
 - (a) conceptional: bottom partonen [Boos & TP]
 - (b) experimental: measurement von $\tan\beta$ [LH 2003]

Signal: charged Higgs

- * QCD corrections under control
- * intermediate top subtracted
- * factorizing SUSY contributions [resummed: Nierste,...] Yukawa coupling renormalization $\Delta_b = \alpha_s C_F / (2\pi) \times m_{\tilde{q}} \mu / M^2 \tan \beta$

* explicit SUSY diagrams negligible

mSUGRA	m_H	aneta	$m_{1/2}$	μ	$\sigma_{\rm NLO}$ [fb]	Δ_b	$\Delta_b^{\mathrm{resum}}$	non– Δ_b
1a	402	10	250	352	25.6	-11.0%	-10.2%	-1.9%
1b	543	30	400	501	61.7	-27.9%	-23.5%	-4.6%
2	1446	10	300	125	0.13	-0.92%	-0.91%	-1.7%
3	578	10	400	509	8.02	-10.1%	-9.5%	-1.1%
4	416	50	300	377	395	-39.0%	-31.0%	-4.6%
5	699	5	300	640	5.73	-8.5%	-8.0%	0.8%
GMSB								
7	387	15		300	48.0	-8.5%	-8.1%	-0.9%
8	521	15		398	20.4	-7.5%	-7.1%	-0.5%
AMSB								
9	916	10		870	1.29	-10.6%	-9.9%	4.1%

SUSY MEASUREMENTS AT LHC: 1

SUSY spektra from cascade decays

- * decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [hopefully not via Z]
- * cross sections some 100 pb [more than 3×10^5 events]
- * thresholds & edges in spectra [Allanach, Lester, Parker, Webber] classic $m_{\ell\ell}^2 < (m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}}^2)(m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2)/m_{\tilde{\ell}}^2$ critical: enough thresholds and edges available?
- \Rightarrow detector resolution, calibration, systematic errors?

Studies for SPS points [Polesello et al.]

- \star gluino mass in $\tilde{g} \to \tilde{b}\bar{b}$
- * higgsino masses in $\tilde{q}_L \rightarrow q \tilde{\chi}_4^0, \tilde{q}_L \rightarrow \tilde{\chi}_2^{\pm} q$
- * chargino mass in $\tilde{q} \to q \tilde{\chi}_1^{\pm} \to q W_{had}^{\pm} \tilde{\chi}_1^0$ [Nojiri, Polesello, Tovey]
- \star slepton mass in $\tilde{\ell} \to \ell \tilde{\chi}_1^0$
- *
- $\Rightarrow \text{ generic for small } \tan \beta$ problems with *b*-jets und taus for large $\tan \beta$

 \Rightarrow essential for SUSY parameters [SFitter results coming]

[Allanach, Lester, Parker, Webber]

SUSY MEASUREMENTS AT LHC: 2

Problem in decay studies

- * typical cuts: $p_{T,j} > 150, 100, 50, 50 \text{ GeV}$ courageous analyses: $p_{T,j} > 100, 100, 40, 20 \text{ GeV}$
- * (a) cuts on p_{T,j} hierarchy?
 (b) combinatorical background through jet radiation?
- \Rightarrow matrix elements $pp \rightarrow X_{SUSY}Y_{SUSY}$ + hard jets great success for Higgs+jets [Zeppenfeld, Rainwater; Jacobs, Mellado]
- \Rightarrow SMadgraph [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

While testing Smadgraph

- * ...preliminary Madevent results for $pp \rightarrow ZZ$ + jets
- \star background to SUSY cascades including $\tilde{\chi}^0_3 \to Z \quad$ [D. Zerwas, TP]
- * $p_{T,j} > 50 \text{ GeV: } \sigma = \{2500, 1100, 560\} \text{ fb for } pp \rightarrow ZZ + \{1,2,3\} \text{ jets}$

PARAMETER DETERMINATION AT LHC: 1

Theorist's point of view

- * measured masses, cross sections, decays secondary
- * parameters in SUSY Lagrangean from measurements
- \Rightarrow SUSY breaking parameters at scale M_{TeV}
- \Rightarrow extrapolation to $M_{\rm GUT}$ [Blair, Porod, P. Zerwas]

Warmup exercise: fit of mSUGRA using SFitter

 \star fit with fixed sign of μ

	SPS1a	LHC	$\Delta_{ m LHC}$	LC	$\Delta_{\rm LC}$	LHC+LC	$\Delta_{\rm LHC+LC}$
m_0	100	100.03	4.0	100.03	0.09	100.04	0.08
$m_{1/2}$	250	249.95	1.8	250.02	0.13	250.01	0.11
aneta	10	9.87	1.3	9.98	0.14	9.98	0.14
A_0	-100	-99.29	31.8	-98.26	4.43	-98.25	4.13

\Rightarrow impact of LHC???

	SPS1a	LHC	LC	LHC+LC		SPS1a	LHC	LC	LHC+LC
χ_1^0	97.03	4.8	0.05	0.05	χ^0_2	182.9	4.7	1.2	0.08
χ^0_3	349.2		4.0	4.0	χ_4^0	370.3	5.1	4.0	2.3
χ_1^{\pm}	182.3		0.55	0.55	χ_2^{\pm}	370.6		3.0	3.0
${ ilde g}$	615.7	8.0		6.5					
\tilde{t}_1	411.8		2.0	2.0					
\tilde{b}_1	520.8	7.5		5.7	\tilde{b}_2	550.4	7.9		6.2
\tilde{q}_R	551.0	19.0		16.0	\tilde{q}_L	570.8	17.4		9.8
\tilde{e}_1	144.9	4.8	0.05	0.05	\tilde{e}_2	204.2	5.0	0.2	0.2
$ ilde{\mu}_1$	144.9	4.8	0.2	0.2	$ ilde{\mu}_2$	204.2	5.0	0.5	0.5
$ ilde{ au}_1$	135.5	6.5	0.3	0.3	$\tilde{ au}_2$	207.9		1.1	1.1
$\tilde{\nu}_e$	188.2		1.2	1.2					

 \Rightarrow what is data and what are model assumptions?

PARAMETER DETERMINATION AT LHC: 2

SUSY parameters from observables

* parameters: MSSM Lagrangean

- measurements: masses [SuSpect, SoftSUSY, FeynHiggs...]
 branching fractions [MSMlib, Sdecay]
 cross sections [Prospino, MSMlib]
 additional measurements trivial to add
- * errors: general correlation, statistics & systematics & theory
- * problem in Fit: phase space, starting values
 problem in Grid: huge grid, hard to completely cover

SFitter [Lafaye, TP, D. Zerwas]

- \star 1 grid for part of measurements and parameters
 - 2 fit of remaining parameters to all measurements
 - 3 complete fit

	LHC	LC	LHC+LC	SPS1a
aneta	10.22±9.1	$10.26 {\pm} 0.3$	$10.06 {\pm} 0.2$	10
M_1	102.45±5.3	$102.32{\pm}0.1$	$102.23 {\pm} 0.1$	102.2
M_3	578.67±15	fi x 500	588.05±11	589.4
$M_{\tilde{\tau}_L}$	fi x 500	197.68±1.2	199.25±1.1	197.8
$M_{\tilde{\tau}_R}$	129.03±6.9	$135.66 {\pm} 0.3$	133.35±0.6	135.5
$M_{\tilde{\mu}_L}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
$M_{\tilde{q}3_L}$	498.3±110	497.6±4.4	521.9±39	501.3
$M_{\tilde{t}_R}$	fi x 500	420±2.1	411.73±12	420.2
$M_{\tilde{b}_R}$	522.26±113	fi x 500	504.35±61	525.6
A_{τ}	fi x 0	-202.4±89.5	352.1±171	-253.5
A_t	-507.8±91	-501.95±2.7	-505.24±3.3	-504.9
A_b	-784.7±35603	fi x 0	-977±12467	-799.4

 \Rightarrow all but LHC+LC not without model assumptions [additional measurements?]

OUTLOOK

SUSY signals at LHC

- \star measurement of rates and decays first step
- * NLO cross sections using Prospino2.0 [standard at Tevatron]
- * QCD corrections relevant
- * SUSY-QCD corrections not always negligible

SUSY measurements at LHC

- * final state with jets essentiel [Higgs at LHC]
- * hard matrix elements using SMadgraph
- \star analysis of cascade decays promising strategy

SUSY parameters at LHC

- ***** SUSY observables secondary for theorists
- * determination of SUSY parameters using Sfitter
- \star combination of experiments vital