Searching for Supersymmetric Higgs Bosons At the LHC

Tilman Plehn CERN

- Light neutral Higgs: no-lose-theorem
- Charged Higgs: bottom induced processes
- Heavy neutral Higgs: decay to two light Higgses

MSSM HIGGS BOSONS AT THE LHC

MSSM Higgs Sector

- Softly broken supersymmetric anomaly–free theory
- two doublets, coupling to up and down type fermions
 - \rightarrow five physical states h^o, H^o, A^o, H^{\pm}
 - \rightarrow mixing of scalars to mass eigenstates (mixing angle α)
 - \rightarrow more predictive than Standard Model (upper h^o mass limit)
- conveniently expressed as function of m_A and $\tan \beta \equiv v_2/v_1$
- Yukawa couplings to H, A, H^{\pm} : $m_b \tan \beta, m_t / \tan \beta$ (large m_A)
- typically one light, many heavy scalars [Heinemeyer, Weiglein]

Find first Higgs boson

- complete coverage by WBF $h \rightarrow \tau \tau$ [TP, Rainwater, Zeppenfeld]
- problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko] $\Delta m_h/m_h \sim \sigma/\sqrt{N}$ ($\sigma \sim 1.5$ GeV for $\mu\mu, \gamma\gamma$ and $\sigma \sim 15$ GeV for $\tau\tau$)

Tell it is 2HDM (MSSM?) \Rightarrow look for heavy Higgs bosons

- $-H^0, A^0 \to \tau \tau, \mu \mu$ inclusive $gg \to H$ and $gg \to b\bar{b}H$
- $-H^{\pm} \rightarrow \nu \tau, tb \text{ in } pp \rightarrow tH^{-}, W^{+}H^{-}, H^{+}H^{-}$ (n.b. SUSY loops) [Hollik et al, Kniehl et al]
- appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat]
- no other conclusive way but to find these particles

MSSM HIGGS BOSONS AT THE LHC

MSSM Higgs Sector

- Softly broken supersymmetric anomaly–free theory
- two doublets, coupling to up and down type fermions
 - \rightarrow five physical states h^o, H^o, A^o, H^{\pm}
 - \rightarrow mixing of scalars to mass eigenstates (mixing angle α)
 - \rightarrow more predictive than Standard Model (upper h^o mass limit)
- conveniently expressed as function of m_A and $\tan \beta \equiv v_2/v_1$
- Yukawa couplings to H, A, H^{\pm} : $m_b \tan \beta, m_t / \tan \beta$ (large m_A)
- typically one light, many heavy scalars [Heinemeyer, Weiglein]

Find first Higgs boson

- complete coverage by WBF $h \rightarrow \tau \tau$ [TP, Rainwater, Zeppenfeld]
- problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko] $\Delta m_h/m_h \sim \sigma/\sqrt{N}$ ($\sigma \sim 1.5$ GeV for $\mu\mu, \gamma\gamma$ and $\sigma \sim 15$ GeV for $\tau\tau$)

Tell it is 2HDM (MSSM?) \Rightarrow look for heavy Higgs bosons

- $-H^0, A^0 \to \tau \tau, \mu \mu$ inclusive $gg \to H$ and $gg \to b\bar{b}H$
- $-H^{\pm} \rightarrow \nu \tau, tb \text{ in } pp \rightarrow tH^{-}, W^{+}H^{-}, H^{+}H^{-}$ (n.b. SUSY loops) [Hollik et al, Kniehl et al]
- appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat]
- no other conclusive way but to find these particles

1. LIGHT NEUTRAL HIGGS

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \rightarrow qqH$ (tagging jet signature, central decay products, minijet veto)
- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]
- MSSM decoupling region:
 - (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135 \text{ GeV}$
 - (b) production cross section: $g_{WWh} = \sin(\beta \alpha) \sim 1$
 - (c) branching fraction: $BR(h \to \tau \tau) > BR(H_{\rm SM} \to \tau \tau)$
- \rightarrow enhancement of rate: $pp \rightarrow qqh \rightarrow qq\tau\tau$
- \rightarrow heavy Higgs production at low m_A
- \rightarrow no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan\beta$: forbidden by LEP2
- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H
- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate
- CP phases in A_t : coverage solid [Carena, Ellis, Wagner,...]
- funny couplings of all kind: again solid [Schumacher]
- many multiplets: go for WBF WW channel \quad [Alves, Eboli, TP, Rainwater]

M_{SUSY}=1 TeV, maximal mixing

1. LIGHT NEUTRAL HIGGS

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \rightarrow qqH$ (tagging jet signature, central decay products, minijet veto)
- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]
- MSSM decoupling region:
 - (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135 \text{ GeV}$
 - (b) production cross section: $g_{WWh} = \sin(\beta \alpha) \sim 1$
 - (c) branching fraction: $BR(h \to \tau \tau) > BR(H_{\rm SM} \to \tau \tau)$
- \rightarrow enhancement of rate: $pp \rightarrow qqh \rightarrow qq\tau\tau$
- \rightarrow heavy Higgs production at low m_A
- \rightarrow no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan\beta$: forbidden by LEP2
- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H
- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate
- CP phases in A_t : coverage solid [Carena, Ellis, Wagner,...]
- funny couplings of all kind: again solid [Schumacher]
- many multiplets: go for WBF WW channel \quad [Alves, Eboli, TP, Rainwater]

1. LIGHT NEUTRAL HIGGS

MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld]

- SM cross section > 3 pb for light Higgs in $qq \rightarrow qqH$ (tagging jet signature, central decay products, minijet veto)
- approximate 12 GeV $\tau\tau$ mass reconstruction at high $p_{T,h}$ [K.Ellis]
- MSSM decoupling region:
 - (a) Higgs mass range after LEP2: $m_Z \ll m_h < 135 \text{ GeV}$
 - (b) production cross section: $g_{WWh} = \sin(\beta \alpha) \sim 1$
 - (c) branching fraction: $BR(h \to \tau \tau) > BR(H_{\rm SM} \to \tau \tau)$
- \rightarrow enhancement of rate: $pp \rightarrow qqh \rightarrow qq\tau\tau$
- \rightarrow heavy Higgs production at low m_A
- \rightarrow no–lose theorem for MSSM Higgs scalars

Attempts to escape this channel

- low $\tan\beta$: forbidden by LEP2
- $m_A = 91$ GeV and $m_h = 95$ GeV: wide open channel for H
- super–large mixing $A_t > 6$ TeV: enhanced WBF WW and $\gamma\gamma$ rate
- CP phases in A_t : coverage solid [Carena, Ellis, Wagner,...]
- funny couplings of all kind: again solid [Schumacher]
- many multiplets: go for WBF WW channel \quad [Alves, Eboli, TP, Rainwater]

2. (Heavy) Charged Higgs

Most promising channel

- associated production $pp \to tH^- + X$ for large $\tan\beta$
- decay $H^{\pm} \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \to \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b
- \rightarrow experiment: forward jets, $p_{T,b}$ peaked at m_b (factor 1/6 for each tagged b)
- \rightarrow use bottom–inclusive cross section
- \rightarrow check asymptotic cross section behavior $d\sigma/dp_{T,b} \propto p_{T,b}/m_{T,b}^2$
- \rightarrow inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$
- \rightarrow how large logarithms? resum?

Inclusive process $bg \to tH^-$

- resum large logarithms $\log(p_{T,b}/m_b)$ in exclusive process $gg \to \bar{b}tH^-$
- equivalent to bottom parton density and inclusive process $bg \to tH^-$
- $\rightarrow \mu_{F,b}$ 'transverse momentum size' of bottom parton $(\mu_{F,b} \equiv p_{T,b}^{\max}; \text{ usually hard scale } \mu_{F,b} = M)$
- \rightarrow numerical improvement or overestimate?
- \rightarrow (1) check bottom-inclusive total rate (2) check bottom-inclusive t, H distributions

2. (Heavy) Charged Higgs

Most promising channel

- associated production $pp \to tH^- + X$ for large $\tan\beta$
- decay $H^{\pm} \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \to \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b
- \rightarrow experiment: forward jets, $p_{T,b}$ peaked at m_b (factor 1/6 for each tagged b)
- \rightarrow use bottom–inclusive cross section
- \rightarrow check asymptotic cross section behavior $d\sigma/dp_{T,b} \propto p_{T,b}/m_{T,b}^2$
- \rightarrow inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$
- \rightarrow how large logarithms? resum?

Inclusive process $bg \to tH^-$

- resum large logarithms $\log(p_{T,b}/m_b)$ in exclusive process $gg \to \bar{b}tH^-$
- equivalent to bottom parton density and inclusive process $bg \to tH^-$
- $\rightarrow \mu_{F,b}$ 'transverse momentum size' of bottom parton $(\mu_{F,b} \equiv p_{T,b}^{\max}; \text{ usually hard scale } \mu_{F,b} = M)$
- \rightarrow numerical improvement or overestimate?
- \rightarrow (1) check bottom-inclusive total rate (2) check bottom-inclusive t, H distributions

2. (Heavy) Charged Higgs

Most promising channel

- associated production $pp \to tH^- + X$ for large $\tan\beta$
- decay $H^{\pm} \rightarrow \nu \tau$ most promising [Assamagan, Coadou]

Exclusive production $gg \to \bar{b}tH^-$

- collinear bottom jets from gluon splitting, regularized by m_b
- \rightarrow experiment: forward jets, $p_{T,b}$ peaked at m_b (factor 1/6 for each tagged b)
- \rightarrow use bottom–inclusive cross section
- \rightarrow check asymptotic cross section behavior $d\sigma/dp_{T,b} \propto p_{T,b}/m_{T,b}^2$
- \rightarrow inclusive total rate $\sigma \propto \log(p_{T,b}^{\text{max}}/p_{T,b}^{\text{min}}) = \log(p_{T,b}^{\text{max}}/m_b)$
- \rightarrow how large logarithms? resum?

Inclusive process $bg \to tH^-$

- resum large logarithms $\log(p_{T,b}/m_b)$ in exclusive process $gg \to \bar{b}tH^-$
- equivalent to bottom parton density and inclusive process $bg \to tH^-$
- $\rightarrow \mu_{F,b}$ 'transverse momentum size' of bottom parton $(\mu_{F,b} \equiv p_{T,b}^{\max}; \text{ usually hard scale } \mu_{F,b} = M)$
- \rightarrow numerical improvement or overestimate?
- \rightarrow (1) check bottom-inclusive total rate (2) check bottom-inclusive t, H distributions

TOTAL RATE: BOTTOM FACTORIZATION SCALE

Perturbative bottom factorization scale from exclusive process [Boos, TP]

- two steps: first bottom virtuality Q_b^{\max}
- general exclusive process: $gg \to \bar{b}X_M$ approximate gluon density $\mathcal{L} = \mathcal{L}_0/x^2$ asymptotic behavior $\overline{|\mathcal{M}|^2} = S^2 \sigma_0/Q_b^2$

$$\sigma = \frac{2\sigma_0 \mathcal{L}_0}{16\pi} \int_0^{S-M^2} \frac{dQ_b}{Q_b} F(Q_b)$$

- $\rightarrow F(Q_b)$ known correction to asymptotic behavior $d\sigma/dQ_b \sim 1/Q_b$ \rightarrow define Q_b^{max} at turning point $d^2F(Q_b)/d(\log Q_b)^2 = 0$
- $\rightarrow Q_b^{\max} \sim M/2$ (hard scale argument $Q_b^{\max} \propto M$, not more than that!)

Second step: transverse momentum $p_{T,b}^{\max}$

- check explicitly: $Q_b \sim Q_b^{\text{max}}$ also yields $p_{T,b} \sim p_{T,b}^{\text{max}}$
- \rightarrow translate Q_b into $p_{T,b}$ point by point
- $\rightarrow p_{T,b}^{\max}/Q_b^{\max} \sim Q_b^{\max}/M \quad \text{yields} \quad p_{T,b}^{\max} \sim Q_b^{\max}/2 \sim M/4$ (numerical study of $gg \rightarrow \bar{b}tH^-$: $\mu_{F,b} \sim M/5$)

So what did we learn from exclusive process?

- $\log(p_{T,b}/m_b)$ after integrating over bottom jet but 'large' logs at maximum $\log(M/(5m_b))$ [TP; Maltoni, Willenbrock]
- hard scale for inclusive process: $\mu_{F,b} \propto M$
- gg and bg processes: $\mu_{F,b} \sim M/5$ from partonic phase space
- \Rightarrow Total cross section with bottom partons understood

LHC gg shift	mg-240,800,3000 EarV
1, 1, 0, m	02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL RATE: BOTTOM FACTORIZATION SCALE

Perturbative bottom factorization scale from exclusive process [Boos, TP]

- two steps: first bottom virtuality Q_b^{\max}
- general exclusive process: $gg \to \bar{b}X_M$ approximate gluon density $\mathcal{L} = \mathcal{L}_0/x^2$ asymptotic behavior $\overline{|\mathcal{M}|^2} = S^2 \sigma_0/Q_b^2$

$$\sigma = \frac{2\sigma_0 \mathcal{L}_0}{16\pi} \int_0^{S-M^2} \frac{dQ_b}{Q_b} F(Q_b)$$

- $\rightarrow F(Q_b)$ known correction to asymptotic behavior $d\sigma/dQ_b \sim 1/Q_b$ \rightarrow define Q_b^{max} at turning point $d^2F(Q_b)/d(\log Q_b)^2 = 0$
- $\rightarrow Q_b^{\max} \sim M/2$ (hard scale argument $Q_b^{\max} \propto M$, not more than that!)

Second step: transverse momentum $p_{T,b}^{\max}$

- check explicitly: $Q_b \sim Q_b^{\text{max}}$ also yields $p_{T,b} \sim p_{T,b}^{\text{max}}$
- \rightarrow translate Q_b into $p_{T,b}$ point by point
- $\rightarrow p_{T,b}^{\max}/Q_b^{\max} \sim Q_b^{\max}/M \quad \text{yields} \quad p_{T,b}^{\max} \sim Q_b^{\max}/2 \sim M/4$ (numerical study of $gg \rightarrow \bar{b}tH^-$: $\mu_{F,b} \sim M/5$)

So what did we learn from exclusive process?

- $\log(p_{T,b}/m_b)$ after integrating over bottom jet but 'large' logs at maximum $\log(M/(5m_b))$ [TP; Maltoni, Willenbrock]
- hard scale for inclusive process: $\mu_{F,b} \propto M$
- gg and bg processes: $\mu_{F,b} \sim M/5$ from partonic phase space
- \Rightarrow Total cross section with bottom partons understood

LHC gg shift	mg-240,800,3000 EarV
1, 1, 0, m	02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL RATE: QCD CORRECTIONS

Next-to-leading Order QCD Calculation [TP]

- leading order uncertainty large for $bg \rightarrow tH^-$
- complete set of virtual and real SUSY corrections
- running Yukawa couplings, everything else misleading
- \rightarrow NLO correction $+30\% \cdots 40\%$ perturbatively stable [Zhu]

Scale Dependence

- renormalization scale dependence numerically dominant $\mu_R \sim (m_t + m_H)/2$ natural choice [c.f. Higgs decays, Melnikov]
- factorization scale dependence critical only for small μ_F $\mu_F \sim (m_t + m_H)/5$ from exclusive process
- problem at small scales: bottom induced process not dominant
- \rightarrow NLO scale dependence $\pm 20\%$
- \rightarrow well defined limit $\mu_F \rightarrow m_b$ returns exclusive process $gg \rightarrow \bar{b}tH^-$

Matching at threshold

- $-m_H < m_t m_b$: top pair production and Breit–Wigner propagator $m_H > m_t - m_b$: resummed off-shell process
- double counting of $pp \to t\bar{t}^* \to t(\bar{b}H^-)$
- subtract on-shell top pairs from NLO $bg \rightarrow tH^-$ process (unique in small width approximation, see SUSY-pairs)
- \rightarrow consistent matching by simply adding channels

TOTAL RATE: QCD CORRECTIONS

Next-to-leading Order QCD Calculation [TP]

- leading order uncertainty large for $bg \rightarrow tH^-$
- complete set of virtual and real SUSY corrections
- running Yukawa couplings, everything else misleading
- \rightarrow NLO correction $+30\% \cdots 40\%$ perturbatively stable [Zhu]

Scale Dependence

- renormalization scale dependence numerically dominant $\mu_R \sim (m_t + m_H)/2$ natural choice [c.f. Higgs decays, Melnikov]
- factorization scale dependence critical only for small μ_F $\mu_F \sim (m_t + m_H)/5$ from exclusive process
- problem at small scales: bottom induced process not dominant
- \rightarrow NLO scale dependence $\pm 20\%$
- \rightarrow well defined limit $\mu_F \rightarrow m_b$ returns exclusive process $gg \rightarrow \bar{b}tH^-$

Matching at threshold

- $-m_H < m_t m_b$: top pair production and Breit–Wigner propagator $m_H > m_t - m_b$: resummed off-shell process
- double counting of $pp \to t\bar{t}^* \to t(\bar{b}H^-)$
- subtract on-shell top pairs from NLO $bg \rightarrow tH^-$ process (unique in small width approximation, see SUSY-pairs)
- \rightarrow consistent matching by simply adding channels

DISTRIBUTIONS FOR INCLUSIVE PROCESS

- On to the distributions [Berger, Han, Jiang, TP]
 - bottom parton description appropriate for total rate
- \rightarrow Higgs and top distributions?
- \rightarrow bottom partons established for exclusive cross sections?
- (1) Test zero transverse momentum approximation
- bottom partons assuming small $p_{T,b} \ll p_{z,b}$
- \rightarrow compare inclusive process and (massless) exclusive $(2 \rightarrow 3)$ process (as it is part of NLO rate)
- \rightarrow run bottom factorization scale $\mu_F \rightarrow m_b$ switch on/off incoming bottoms, left with $gg \rightarrow \bar{b}tH^-$
- \rightarrow slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established
- \rightarrow check with bottom mass dependent $pp\rightarrow \bar{b}tH^-$
- \rightarrow perfect agreement with exclusive process for small m_b very good agreement with physical bottom mass case
- $\rightarrow\,$ bottom parton picture altogether appropriate

DISTRIBUTIONS FOR INCLUSIVE PROCESS

- On to the distributions [Berger, Han, Jiang, TP]
 - bottom parton description appropriate for total rate
- \rightarrow Higgs and top distributions?
- \rightarrow bottom partons established for exclusive cross sections?
- (1) Test zero transverse momentum approximation
- bottom partons assuming small $p_{T,b} \ll p_{z,b}$
- \rightarrow compare inclusive process and (massless) exclusive $(2 \rightarrow 3)$ process (as it is part of NLO rate)
- \rightarrow run bottom factorization scale $\mu_F \rightarrow m_b$ switch on/off incoming bottoms, left with $gg \rightarrow \bar{b}tH^-$
- \rightarrow slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established
- \rightarrow check with bottom mass dependent $pp\rightarrow \bar{b}tH^-$
- \rightarrow perfect agreement with exclusive process for small m_b very good agreement with physical bottom mass case
- $\rightarrow\,$ bottom parton picture altogether appropriate

DISTRIBUTIONS FOR INCLUSIVE PROCESS

- On to the distributions [Berger, Han, Jiang, TP]
 - bottom parton description appropriate for total rate
- \rightarrow Higgs and top distributions?
- \rightarrow bottom partons established for exclusive cross sections?
- (1) Test zero transverse momentum approximation
- bottom partons assuming small $p_{T,b} \ll p_{z,b}$
- \rightarrow compare inclusive process and (massless) exclusive $(2 \rightarrow 3)$ process (as it is part of NLO rate)
- \rightarrow run bottom factorization scale $\mu_F \rightarrow m_b$ switch on/off incoming bottoms, left with $gg \rightarrow \bar{b}tH^-$
- \rightarrow slightly harder distributions (due to x dependence of bottom PDF)

(2) Test zero bottom mass approximation

- agreement exclusive vs. inclusive cross section established
- \rightarrow check with bottom mass dependent $pp\rightarrow \bar{b}tH^-$
- \rightarrow perfect agreement with exclusive process for small m_b very good agreement with physical bottom mass case
- $\rightarrow\,$ bottom parton picture altogether appropriate

SUSY-QCD CORRECTIONS

SUSY-QCD Loop Contributions [TP; Berger, Han, Jiang, TP]

- infrared finite but ultraviolet divergent SUSY loop contributions
- (1) universal corrections $y_b/(1 + \Delta_b)$

[Carena, Garcia, Nierste, Wagner; Guasch, Häflinger, Spira]

(2) remaining explicit SUSY loop diagrams

	m_0	$m_{1/2}$	aneta	μ	m_H			$(\Delta_b)_{\mathrm{resum}}$	non– Δ_b
1a	100	250	10	420	477			-9.5%	3.0%
1b	200	400	30	511	535			-23.0%	-0.1%
2	1450	300	10	425	1503			-3.0%	-1.0%
3	90	400	10	633	719			-8.8%	3.0%
4	400	300	50	389	357			-32.0%	-0.4%
5	150	300	5	637	697			-7.7%	10.0%
	m_0	$m_{1/2}$	aneta	μ	m_H	M_1	$M_{2,3}$		
6	150	300	10	402	476	480	300	-9.0%	3.0%
	Λ	$M_{\rm mes}$	$N_{\rm mes}$	aneta	μ	m_H			
7	40×10^3	80×10^3	3	15	316	476		-7.8%	0.5%
8	100×10^3	200×10^3	1	15	421	538		-7.5%	0.5%

→ Δm_b corrections dominant for tan $\beta \gtrsim 10$ (dependent on sign of μ) → explicit loop corrections negligible $\lesssim 10\%$ for generic mSUGRA

3. (Heavy) Neutral Higgs

Bottom induced production of neutral Higgses

- rate enhanced by $\tan\beta^2$
- $-gg \rightarrow b\bar{b}H$ exclusive versus $bg \rightarrow bH$ inclusive $bg \rightarrow bh$ exclusive versus $b\bar{b} \rightarrow H$ inclusive
- appropriate factorization scale $\mu_{F,b} \sim M/5 = m_h/5$
- check: $b\bar{b} \to H$ NNLO scale dependence [Harlander & Kilgore] $\mu_{R,b}$ variation for fixed $\mu_{F,b} \sim m_h/4$ well under control $\mu_{F,b}$ variation for fixed $\mu_{R,b} \sim m_h$ almost fixed point

- check: exclusive vs. inclusive total rate [Dittmaier, Spira, Krämer]

	14	$\sigma(q\bar{q},gg \rightarrow b\bar{d})$	$\bar{b}H + X$) [fb]	$\sigma(b\bar{b} \to H + X)$ [fb]			
	M_H	LO	NLO	LO	NNLO		
	120	$3.9^{+3.5}_{-1.7}$	$8.0^{+3.1}_{-2.4}$	$8.6 \frac{+4.7}{-5.0}$	$10.5 {}^{+0.3}_{-1.1}$		
Tevatron	200	$0.22^{+0.19}_{-0.09}$	$0.56{}^{+0.23}_{-0.18}$	$0.69{}^{+0.20}_{-0.26}$	$0.79{}^{+0.02}_{-0.03}$		
	120	$(5.3^{+2.7}_{-1.7}) \times 10^2$	$(7.3^{+2.0}_{-1.6}) \times 10^2$	$(4.8^{+4.3}_{-3.2}) \times 10^2$	$(7.2^{+0.4}_{-1.6}) \times 10^2$		
LHC	400	$4.3^{+2.4}_{-1.4}$	$8.1^{+2.2}_{-1.9}$	$7.4{}^{+2.4}_{-2.5}$	$9.8 {}^{+0.2}_{-0.4}$		

Side remark: single top production $qg \rightarrow \bar{b}tq'$ [Willenbrock et al]

- less steep quark densities, $x_1 \neq x_2$
- production above threshold
- $\rightarrow Q_b^{\max} \sim m_t$
- generally $p_{T,b}^{\max} \sim Q_b^{\max}/2$
- $\rightarrow \mu_{F,b} \sim m_t/2$ covered by quoted theoretical uncertainty

Harlander, Kilgore

HEAVY HIGGS DECAY TO LIGHT HIGGSES

SM Higgs pair production at the LHC [Baur, TP, Rainwater]

- $-HH \rightarrow 4W$: believable detector simulation needed, not hopeless (use m_{vis} to determine λ_{HHH})
- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b:$ several major miracles mandatory TESLA in better shape [Castanier, Gay,... ; Lafaye, Mühlleitner,...]
- $-HH \rightarrow b\bar{b}\mu\mu$: at least small miracle would be helpful (might come out of $\mu\mu$ mass resolution)
- $-HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed

MSSM pair production $gg \rightarrow hh$ [Djouadi, Haber, Zerwas]

- only way to access $\tan\beta < 10$ beyond no-lose theorem
- factor 20 enhancement of cross section
- $\rightarrow HH \rightarrow b\bar{b}\gamma\gamma$ best shot
- \rightarrow backgrounds hard to compute but under control
- $\rightarrow 5\sigma$ with 300 fb⁻¹ possible for tan $\beta = 3$

a								BR
	σ(pp-shh-	+b673) [B	4			BR(b-s)	6)	
ł	ταβ=3	\bigcap						10 -1
10 -1	a							
	1-2					BR(h-r)	nê î	
10 3	6	n ₁ :117:	GeV:=	√2			1	10
	50 200	250	200	350	400	450	500	

HEAVY HIGGS DECAY TO LIGHT HIGGSES

SM Higgs pair production at the LHC [Baur, TP, Rainwater]

- $-HH \rightarrow 4W$: believable detector simulation needed, not hopeless (use m_{vis} to determine λ_{HHH})
- $HH \rightarrow b\bar{b}\tau\tau$: miracle required
- $HH \rightarrow 4b:$ several major miracles mandatory TESLA in better shape [Castanier, Gay,... ; Lafaye, Mühlleitner,...]
- $-HH \rightarrow b\bar{b}\mu\mu$: at least small miracle would be helpful (might come out of $\mu\mu$ mass resolution)
- $-HH \rightarrow b\bar{b}\gamma\gamma$: some enhancement needed

MSSM pair production $gg \rightarrow hh$ [Djouadi, Haber, Zerwas]

- only way to access $\tan\beta < 10$ beyond no-lose theorem
- factor 20 enhancement of cross section
- $\rightarrow HH \rightarrow b\bar{b}\gamma\gamma$ best shot
- \rightarrow backgrounds hard to compute but under control
- $\rightarrow 5\sigma$ with 300 fb⁻¹ possible for tan $\beta = 3$

a								BR
	σ(pp-shh-	+b673) [B	4			BR(b-s)	6)	
ł	ταβ=3	\bigcap						10 -1
10 -1	a							
	1-2					BR(h-r)	nê î	
10 3	6	n ₁ :117:	GeV:=	√2			1	10
	50 200	250	200	350	400	450	500	

CONCLUSIONS

- (1) One MSSM Higgs guaranteed to be seen stable to variations of MSSM
- (2) heavy Higgs bosons necessary to tell it might be the MSSM charged Higgs production with bottom jets understood
- (2') NLO rate for charged Higgs production known: NLO₁: inclusive process well defined NLO₂: remaining scale uncertainty $\leq 20\%$ NLO₃: Δm_b corrections dominant in MSSM for large tan β NLO₄: non-factorizable corrections negligible in MSSM
- (3) neutral Higgs production with $b\bar{b} \to H$ understood
- (4) signal $H^* \to hh \to b\bar{b}\gamma\gamma$ for small $\tan\beta$

