OBSERVING SUPERSYMMETRY AT THE LHC

Tilman Plehn

Max Planck Institute for Physics, Munich

- TeV scale supersymmetry
- Inclusive + exclusive signals at LHC
- Measurements at LHC (+ILC)
- LHC pheno tools at work: split supersymmetry

Starting from data...

- ...which seem to indicate a light Higgs
- $\begin{array}{ll} \mbox{ problem of light Higgs: } & \mbox{ scalar masses perturbatively unstable} \\ & \mbox{ quadratic divergences } \delta m_h^2 \propto g^2 \Lambda^2 \\ & \mbox{ all-orders Higgs mass driven to cutoff } m_h \to \Lambda \end{array}$
- \Rightarrow solution: counter term for exact cancellation \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless/composite Higgs YourFavoriteNewPhysics...
- \Rightarrow all beautiful concepts and symmetries
- \Rightarrow in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1) [scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

Bright side

- 3 running gauge couplings meet GUT gauge group
- 2 Higgs doublets radiative symmetry breaking
- R parity stable proton yields dark matter
- local supersymmetry including gravity?
- rich LHC phenomenology no nasty surprises [effective theory of everything]

Dark side

- unknown SUSY breaking
 - \rightarrow masses, couplings, phases...
 - \rightarrow e.g. hierarchical spectrum? [Split SUSY]
- flavor physics and SUSY breaking \rightarrow CKM and lepton flavor?
- 2 Higgs doublet model $\rightarrow \mu$ parameter and SUSY breaking?
- \Rightarrow as many as exclusive analyses as possible

		spin	d.o.f.	
fermion	^f L ^{, f} R	1/2	1+1	
\rightarrow sfermion	$\tilde{f}_{L}, \tilde{f}_{R}$	0	1+1	
gluon	${ t G}_{\mu}$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ,Z	1	2+3	
Higgs bosons	h ^o , H ^o , A ^o	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_{i}^{\pm}$	1/2	2 · 4	Dirac

TEV SCALE SUPERSYMMETRY: 3

Structures in the SUSY spectrum [Drees, Martin]

- gauginos-higgsinos mixing: $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$ or $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$ in MSSM

 $\begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{B}}} & 0 & -\mathsf{m}_{Z}s_{\mathsf{w}}c_{\beta} & \mathsf{m}_{Z}s_{\mathsf{w}}s_{\beta} \\ 0 & \mathsf{m}_{\widetilde{\mathsf{W}}} & \mathsf{m}_{Z}c_{\mathsf{w}}c_{\beta} & -\mathsf{m}_{z}c_{\mathsf{w}}s_{\beta} \\ -\mathsf{m}_{Z}s_{\mathsf{w}}c_{\beta} & \mathsf{m}_{Z}c_{\mathsf{w}}c_{\beta} & 0 & -\mu \\ \mathsf{m}_{Z}s_{\mathsf{w}}s_{\beta} & -\mathsf{m}_{Z}c_{\mathsf{w}}s_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{W}}} & \sqrt{2}\mathsf{m}_{\mathsf{W}}s_{\beta} \\ \sqrt{2}\mathsf{m}_{\mathsf{W}}c_{\beta} & -\mu \end{pmatrix}$

stop and sbottom mixing in MSSM

$$\begin{pmatrix} \mathsf{m}_{\mathsf{Q}}^{2} + \mathsf{m}_{\mathsf{t}}^{2} + \left(\frac{1}{2} - \frac{2}{3}\mathsf{s}_{\mathsf{w}}^{2}\right)\mathsf{m}_{\mathsf{Z}}^{2}\mathsf{c}_{2\beta} & -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) \\ -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) & \mathsf{m}_{\mathsf{U}}^{2} + \mathsf{m}_{\mathsf{t}}^{2} + \frac{2}{3}\mathsf{s}_{\mathsf{w}}^{2}\mathsf{m}_{\mathsf{Z}}^{2}\mathsf{c}_{2\beta} \end{pmatrix}$$

– heavy gluinos and squarks through unification: $m_{\tilde{B},\tilde{W},\tilde{g}}/m_{1/2} \sim 0.4, 0.8, 2.6$ $m_{\tilde{\ell},\tilde{q}}/m_{1/2} \sim 0.7, 2.5 \ [m_0 \ll m_{1/2}]$

[mass and coupling unification independent]

TEV SCALE SUPERSYMMETRY: 4

Supersymmetric parameter conventions

- comparison of specialized codes crucial [remember: e.g. Comphep-Pythia-Isajet]
- \Rightarrow fix SUSY conventions once for all

soft breaking parameters [e.g. $\pm A_t$] scale dependence of couplings, masses [e.g. m(q = TeV, v, m_t)?] definitions of mass matrixes, mixing angles [e.g. $\tilde{t}_{L,R}$ up or down?]

SUSY Les Houches Accord [P. Skands et al.]

- spectrum generators: SoftSusy, SPheno, FeynHiggs,...
- multi-purpose Monte Carlos: Pythia, Herwig, Sherpa
- matrix element generators: Whizard, Smadgraph
- NLO cross sections: Prospino2
- NLO decay rates: Sdecay
- SUSY parameter extraction: Fittino, Sfitter
- dark matter: Micromegas
- ⇒ fixed parameter convention and read-write format [list to be extended]

SUSY SIGNALS AT LHC: 1

Supersymmetry at the LHC

- (1) **possible discovery** signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking
- ⇒ at least 10% precision to be matched at LHC [theorist's nightmare, yet unsolved]

Hadron collider observables with errors

- \star masses from $\sigma_{\rm tot}$
- \star branching fractions from $\sigma_{\rm tot}$
- renormalization scale from $\alpha_s, y_{b,t}$
- factorization scale from pdf's
- perturbative series $N_c \alpha_s / \pi \sim 10\%$
- finite terms [LO-NLO-NNLO: DY, Higgs]
- \Rightarrow NLO errors: 15...40 % for SUSY particles

SUSY SIGNALS AT LHC: 2A

Prospino2: NLO cross sections for LHC

- all two-particle SUSY production channels included
- download from Prospino2 page: http://pheno.physics.wisc.edu/~plehn
- extended version beyond Prospino2: pp \rightarrow SS^{*}, tH⁻...

[thanks to: W. Beenakker, R.Höpker, M. Krämer, M. Spira, P. Zerwas]

SUSY signals included

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_1^+ d\bar{u} \text{ or c.c.}]$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^ [\tilde{\chi}_2^0 \rightarrow \tilde{\ell} \bar{\ell} \rightarrow \tilde{\chi}_1^0 \ell \bar{\ell}; \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \ell \bar{\nu}]$
- bottoms and ${\not\!\!\! E}_T {:}\ pp \to { \vec b}_1 { \vec b}_1^*$

Tilman Plehn: Observing Supersymmetry at the LHC – p.7

SUSY SIGNALS AT LHC: 2B

Prospino2: NLO cross sections for Tevatron

- all two-particle SUSY production channels included
- download from Prospino2 page: http://pheno.physics.wisc.edu/~plehn
- extended version beyond Prospino2: $pp \rightarrow SS^*, tH^-...$

[thanks to: W. Beenakker, R.Höpker, M. Krämer, M. Spira, P. Zerwas]

SUSY signals included

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_1^+ d\bar{u} \text{ or c.c.}]$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$

```
[\tilde{\chi}^0_2 \to \tilde{\ell}\bar{\ell} \to \tilde{\chi}^0_1 \ell\bar{\ell}; \tilde{\chi}^-_1 \to \tilde{\chi}^0_1 \ell\bar{\nu}]
```


Tilman Plehn: Observing Supersymmetry at the LHC – p.8

SUSY MEASUREMENTS AT LHC: 1

SUSY spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 3×10^5 events]
- thresholds & edges [Hinchliffe, Paige...; Cambridge ex-th] critical: enough thresholds and edges available? classical $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$

Side remark: problem in decay studies

- typical cuts: p_{T,j}>150,100,50,50 GeV
- (a) cuts on p_{T,j} hierarchy?
 (b) combinatorics through jet radiation?
- \Rightarrow matrix elements for SUSY + hard jets
- ⇒ Smadgraph [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

Tilman Plehn: Observing Supersymmetry at the LHC – p.9

SUSY MEASUREMENTS AT LHC: 2

Theorist's point of view

- measured masses, cross sections, decays secondary
- parameters in SUSY Lagrangean from measurements
- \Rightarrow SUSY breaking parameters at TeV (or higher) scale

Warmup: Sugra top-down fit with errors

- fit including all errors

[Allanach et al; Jack & Jones]

abs. errors		Δ at LHC		Δ at ILC		Δ at LHC+ILC	
	SPS1a	stat	stat+theo	stat	stat+theo	stat	stat+theo
m ₀	100	4.0	4.7	0.09	0.6	0.08	0.6
^m 1/2	250	1.8	2.6	0.13	0.6	0.11	0.5
$tan \beta$	10	1.3	3.5	0.14	0.3	0.14	0.4
A ₀	-100	31.8	32.4	4.43	8.5	4.23	12.6

spectrum from Suspect [Djouadi, Kneur]
 fit Suspect and Softsusy [Allanach]

 \Rightarrow no one best way to estimate theory errors

LHC	Suspect	Δ	Softsusy	Δ
m ₀	100.00	4.7	97.9	4.6
^m 1/2	250.00	2.7	252.5	2.9
$tan \beta$	10.00	3.5	11.6	3.6
A ₀	-99.96	32.4	14.7	58.9
LHC+ILC				
m ₀	100.0	0.59	98.4	0.7
^m 1/2	249.99	0.49	254.3	0.8
$tan\beta$	9.99	0.44	7.3	0.3
A ₀	-100.1	12.6	902.0	18

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses [Suspect, Softsusy, FeynHiggs...] branching fractions [MSMlib, Sdecay] cross sections [Prospino, MSMlib],...
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

SFitter [Lafaye, TP, D. Zerwas, also Fittino]

(1) grid for closed subset
(2) fit of remaining parameters
(3) complete fit

 \Rightarrow LHC+ILC with no assumptions

	LHC	ILC	LHC+ILC	SPS1a
taneta	10.22 ± 9.1	10.26 ± 0.3	10.06 ± 0.2	10
M ₁	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67 \pm 15	fi x 500	588.05 \pm 11	589.4
$M_{\tilde{\tau}_1}$	fi x 500	197.68 ± 1.2	199.25 \pm 1.1	197.8
$M_{\tau_{R}}^{L}$	129.03 ± 6.9	135.66±0.3	133.35±0.6	135.5
$M_{\tilde{\mu}L}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M _{~q31}	498.3±110	497.6±4.4	521.9±39	501.3
M _{ťp}	fi x 500	420±2.1	411.73±12	420.2
M _õ R	522.26±113	fi x 500	504.35±61	525.6
$A_{ au}$	fi x 0	-202.4 ± 89.5	352.1 ± 171	-253.5
At	-507.8 ± 91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7 ± 35603	fi x 0	-977±12467	-799.4

SPLIT SUSY AT COLLIDERS: 1

Split Supersymmetry [Dimopoulos, Arkani-Hamed; Giudice, Romanino; Wells; Drees]

- forget about fine tuning [Higgs will never be as bad as cosmological constant]
- remember all the good things SUSY did for you [dark matter, unifi cation]
- \Rightarrow make all scalars heavy [hope: $\tilde{m} \rightarrow m_{GUT}$?]
- \Rightarrow protect all gaugino and higgsino masses [m_{$\tilde{\chi}_i$}, m_{$\tilde{g}} <math>\lesssim$ TeV]</sub>

What's new for phenomenology?

- no squarks, sleptons for colliders, astro-particle physics [Giudice, Romanino; Pierce]
- no cascade decays
- stable (hadronizing) gluinos $[\tau \sim \tilde{m}^{-4} \sim 6.5 \text{s for } \tilde{m} = 10^9 \text{GeV}]$
- heavy hadrons R_g, R_{qq}, R_{qqq} [Farrar, Fayet; Baer, Cheung, Gunion; UKQCD; Kraan]
- renormalization group running without scalars [e.g. different ino Yukawa couplings by $\lesssim 20\%$]

Collider tests

- (1) Is it supersymmetry?
- (2) Is it split?

SPLIT SUSY AT COLLIDERS: 2

Split SUSY at the LHC [Kilian, TP, Richardson, Schmidt]

- neutralinos, charginos like in MSSM, poor precision [Prospino2]
- many gluinos pair-produced [$\sigma \gtrsim 1 \text{ pb}, \frac{\text{Prospino2}}{\text{Prospino2}}$]
- gluinonium $\tilde{g}\tilde{g} \rightarrow jj$ [Kühn, Ono; Goldman, Haber; CMS; reach \sim TeV?]
- neutral R hadrons missing \rightarrow missing energy signal
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- mass measurement through time of flight tracker-muon chamber

SPLIT SUSY AT COLLIDERS: 3

Split Supersymmetry at the ILC [Kilian, TP, Richardson, Schmidt]

- gluinos not produced because of decoupled squarks
- neutralino-chargino sector analysis as usual [robust towards decay channels]
- anomalous Yukawas \equiv off-diagonal mass matrix entries $[gs_{\beta}, gc_{\beta}, g's_{\beta}, g'c_{\beta}]$
- $\Rightarrow (1) \text{ direct measurements of } \chi\chi h \quad [Whizard, Smadgraph \rightarrow distinctly unpromising]}$ (2) indirect determination of mass matrices [poor man's Sfi tter]

Indirect determination

- errors crucial [0.5 % error on masses at ILC]
- 10⁴ smeared pseudo-measurements to extract parameters from
- \Rightarrow analytic inversion impossible, fit instead
- \Rightarrow errors from distribution of 10⁴ best fits

	Fit tan β	m _i	σ_{ij}	$\Delta \kappa_{U}$	$\Delta \kappa_{d}$	$\Delta \kappa'_{\sf U}$	$\Delta \kappa'_{\sf d}$
ILC		•	•	0.9×10^{-2}	3×10^{-2}	1.3×10^{-2}	4×10^{-2}
ILC	•	•	•	1.2×10^{-2}	5×10^{-2}	2×10^{-2}	$5 imes 10^{-2}$
ILC		•		1.1×10^{-2}	5×10^{-2}	3×10^{-2}	8×10^{-2}
ILC	•	•		1.2×10^{-2}	11×10^{-2}	4×10^{-2}	8×10^{-2}
LHC		•		2.2×10^{-1}	6×10^{-1}	2.7×10^{-1}	8×10^{-1}
ILC		•	•	1.4×10^{-2}	5×10^{-2}	3×10^{-2}	10×10^{-2}
ILC*	•	•	•	1.7×10^{-2}	9×10^{-2}	4×10^{-2}	13×10^{-2}
ILC	fi x tan β = 3	•	•	1.6 × 10 ⁻²	4×10^{-2}	4×10^{-2}	9×10^{-2}

Error on anomalous Yukawa couplings

Verdict

- LHC: stable R hadrons, charginos and neutralinos
- ILC: anomalous Yukawa couplings
- IceCube: one event per year for low-mass R hadrons [Hewett, Lillie, Mazip, Rizzo]
- \Rightarrow split supersymmetry identifiable at combination of colliders
- ⇒ what stays: exotic heavy hadrons visible at LHC why did we ever assume MSSM-type ino Yukawas?

Theory effort for SUSY at the LHC well advanced

- inclusive searches plus cascade reconstruction with great promise
- total cross sections available to NLO [Propino2]
- automatic matrix element generators being tested [Smadgraph, Whizard, Sherpa]
- parameter extraction tools in use for LHC-ILC studies [Sfitter, Fittino]
- \Rightarrow errors will be crucial at LHC

Showcase: Split Supersymmetry

- interesting phenomenology
- LHC: R hadrons observable with mass measurement
- ILC: anomalous weak-ino Yukawas accessible
- \Rightarrow some features always benefit future analyses

Regularization of supersymmetric theory: $\overline{\text{MS}}$ scheme

- + SUSY-QCD next-to-leading order is mostly QCD [i.e. α_s , y_b , pdf,...]
- MS breaks SUSY, but does not violate Ward identities [d.o.f. of gluinos; Jack, Jones]
- → correct vertices using additional 'renormalization' [Martin, Vaughn]

example: qqh, q̃q̃h, qq̃h vertices in naive $\overline{\text{MS}}$

$$(mg)_{qqh} \equiv mg_{\overline{MS}} \qquad (mg)_{\widetilde{qqh}} = (mg)_{qqh} \left(1 + \frac{\alpha_s C_F}{4\pi}\right) \qquad (mg)_{q\widetilde{qh}} = (mg)_{qqh} \left(1 + \frac{3\alpha_s C_F}{8\pi}\right)$$

→ complete set of corrections purely technical complication [Stöckinger]

DR scheme

- + assume gauge invariance not an issue [Siegel]
- + DR scheme explicitely supersymmetric [only shift in space-time dimension]
- inconvenient, missing QCD infrastructure
- additional contribution to collinear factorization with massive final states
 [Beenakker...; van Neerven, Smith]

