Split Supersymmetry

Tilman Plehn

Max–Planck–Institut für Physik, Bayern

- Split and TeV scale supersymmetry
- Signals at the LHC
- Signals at the ILC
- What stays [W. Kilian, P. Richardson, TP, E. Schmidt: EPC C39]

Starting from data...

- ...which seem to indicate a light Higgs
- $\begin{array}{ll} \mbox{ problem of light Higgs: } & \mbox{ scalar masses perturbatively unstable} \\ & \mbox{ quadratic divergences } \delta m_h^2 \propto g^2 \Lambda^2 \\ & \mbox{ all-orders Higgs mass driven to cutoff } m_h \to \Lambda \end{array}$
- \Rightarrow solution: counter term for exact cancellation \Rightarrow artificial, ugly, fine tuned
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless/composite Higgs YourFavoriteNewPhysics...
- \Rightarrow all beautiful concepts and symmetries
- \Rightarrow in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1) [scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

TEV SCALE SUPERSYMMETRY: 2

Bright side

- light fundamental Higgs by construction [data]
- 3 running gauge couplings meet GUT gauge group [data]
- R parity stable proton yields dark matter [data]
- 2 Higgs doublets radiative symmetry breaking [beauty]
- local supersymmetry including gravity? [beauty]
- rich LHC phenomenology [effective theory of everything short–lived]

Dark side

- unknown Susy breaking \rightarrow masses, couplings, phases
- flavor physics and Susy breaking \rightarrow CKM and lepton flavor?
- 2 Higgs doublet model $\rightarrow \mu$ and Susy breaking? [Giudice, Masiero]
- as many exclusive analyses as possible [never believe us theorists when we say we know...] \Rightarrow

		spin	d.o.f.	
gluon	${\sf G}_\mu$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ,Z	1	2+3	
Higgs bosons	h^{O}, H^{O}, A^{O}	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_{i}^{\pm}$	1/2	2 · 4	Dirac
fermion	^f L , ^f R	1/2	1+1	
\rightarrow sfermion	$\tilde{f}_{L}, \tilde{f}_{R}$	0	1+1	

TEV SCALE SUPERSYMMETRY: 3

Gauginos and higgsinos in the SUSY spectrum [Dimopoulos; Drees, Martin]

– gauginos–higgsinos mixing: $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$ or $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$ in MSSM

$$\begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{B}}} & 0 & -\mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{c}_{\beta} & \mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{s}_{\beta} \\ 0 & \mathsf{m}_{\widetilde{\mathsf{W}}} & \mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{c}_{\beta} & -\mathsf{m}_{z}\mathsf{c}_{\mathsf{w}}\mathsf{s}_{\beta} \\ -\mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{c}_{\beta} & \mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{c}_{\beta} & 0 & -\mu \\ \mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{s}_{\beta} & -\mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{s}_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{W}}} & \sqrt{2}\mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{s}_{\beta} \\ \sqrt{2}\mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{c}_{\beta} & -\mu \end{pmatrix}$$

- heavy gluinos through unification: $m_{\tilde{B},\tilde{W},\tilde{g}}/m_{1/2} \sim 0.4, 0.8, 2.6$ [mass and coupling unification independent]
- lightest Susy partner $\tilde{\chi}_1^0, \tilde{\nu}$
 - \Rightarrow after dark matter data $\tilde{\chi}_1^0 \sim \tilde{B}, \tilde{W}$ [Ellis, Falk, Olive...]

Split supersymmetry [Dimopoulos, Arkani-Hamed; Giudice, Romanino]

- forget about fine tuning [Higgs will never be as bad as cosmological constant]
- remember all the good things Susy did for you [dark matter, unification from data]
- notice that scalars are evil [lepton and quark favor, Higgs mass and LEP2]
- remember simple facts about unification [SU(5) multiplets decouple; Dawson, Georgi 1979]
- \Rightarrow make all scalars heavy [hope: $\tilde{m} \rightarrow m_{GUT}$?]
- \Rightarrow protect all gaugino and higgsino masses [m_{$\tilde{\chi}_i$}, m_{$\tilde{g}} <math>\lesssim$ TeV]</sub>

Fine tuning no excuse for multi-billion dollar experiments [trigger by popular vote of theorists?]

- gluinos and gauginos at the LHC
- gauginos and higgsinos at the ILC
- \Rightarrow is it supersymmetry?
- \Rightarrow is it split?

Heavy scalars and the Higgs mass [Giudice, Romanino; Arvantaki, Davis, Graham, Wacker]

- known leading corrections increased: $m_h \sim m_Z + G_F y_t^4 \log(m_{\tilde{t}}^2/m_t^2)$
- $\Rightarrow \ \ large \ m_h \ for \ heavy \ stops \quad \ \ [out of \ LEP2 \ reach]$
- ⇒ not a precision observable anymore [large logarithms]
- \Rightarrow light Higgs is a SM Higgs boson with $m_h\gtrsim 140~GeV$ [other 2HDM heavy]

Heavy scalars and the Higgs mass [Giudice, Romanino; Arvantaki, Davis, Graham, Wacker]

- known leading corrections increased: $m_h \sim m_Z + G_F y_t^4 \log(m_{\tilde{t}}^2/m_t^2)$
- \Rightarrow large m_h for heavy stops [out of LEP2 reach]
- ⇒ not a precision observable anymore [large logarithms]
- $\Rightarrow~$ light Higgs is a SM Higgs boson with $m_h\gtrsim 140~GeV$

Heavy scalars and the gluino life time [Arkani-Hamed, Dimopoulos; Giudice, Romanino]

- decay through squark $au_{\widetilde{g}} \sim \widetilde{m}^4/m_{\widetilde{g}}^5$
- loop-induced decays? [Toharia, Wells]
- lifetime constrained by nucleosynthesis
- $-~\widetilde{m} \lesssim 10^9 GeV \ll m_{GUT} ~\text{[PeV? Wells]}$
- \Rightarrow gluino hadronizes, decays much later
- \Rightarrow long-lived gluino collider signature No.1

Tilman Plehn: Split Supersymmetry – p.7

Renormalization group running

- argued unification, so make Split Susy a GUT
- gauge couplings unify
- gaugino masses as well

Renormalization group running

- argued unification, so make Split Susy a GUT
- gauge couplings unify
- gaugino masses assumed to unify as well

Anomalous ino Yukawa coupling

gauginos—higgsinos mixing in MSSM:

 $\begin{pmatrix} m_{\widetilde{B}} & 0 & -m_{Z}s_{w}c_{\beta} \equiv -\tilde{g}_{d}v & m_{Z}s_{w}s_{\beta} \equiv \tilde{g}_{u}v \\ 0 & m_{\widetilde{W}} & m_{Z}c_{w}c_{\beta} \equiv \tilde{g}_{d}'v & -m_{z}c_{w}s_{\beta} \equiv -\tilde{g}_{u}'v \\ -m_{Z}s_{w}c_{\beta} & m_{Z}c_{w}c_{\beta} & 0 & -\mu \\ m_{Z}s_{w}s_{\beta} & -m_{Z}c_{w}s_{\beta} & -\mu & 0 \end{pmatrix}$

- Yukawas/gaugino-higgsino mixing fixed by Susy
- supersymmetric beta functions broken at $Q = \widetilde{m}$
- anomalous Yukawas collider signal No.2: $\tilde{g}/\tilde{g}_{MSSM} = 1 + \kappa$

Manuel's argument [Drees: hep-ph/0501106]

- remember Higgs potential and B parameter $[V \sim -\mu B H_u H_d]$
- $\rightarrow \mu$ protected by symmetry:

$$\sin 2\beta = 2 \frac{\tan \beta}{1 + \tan^2 \beta} = 2 \frac{B \mu}{m_{H,u}^2 + m_{H,d}^2} = 2 \frac{B m_{weak}}{\widetilde{m}^2} = 2 x \frac{m_{weak}}{\widetilde{m}} \quad \text{for} \quad B = x \, \widetilde{m}$$

 \rightarrow two solutions:

$$\tan \beta \ll 1$$
: $\tan \beta = \frac{x \, m_{\text{weak}}}{\widetilde{m}}$ $\tan \beta \gg 1$: $\tan \beta = \frac{m}{x \, m_{\text{weak}}}$

 \rightarrow remember Yukawa couplings: tan $\beta = 1...100$:

$$\tan\beta < 100 \quad \Rightarrow \quad x > \frac{\widetilde{m}}{100\,m_{\text{weak}}} \quad \Rightarrow \quad B > \frac{\widetilde{m}^2}{100\,m_{\text{weak}}}$$

→ second fine tuning not protected by anything [and pointing to Planck scale]

LHC production of gauginos and higgsinos

- cross sections not small $[M_j(m_{GUT}) = 120 \text{GeV}; \sigma \text{ in fb from Prospino2}]$

ĝĝ	1710						
$\tilde{\chi}_1^- \tilde{\chi}_1^+$	2910	$\tilde{\chi}_1^- \tilde{\chi}_2^+$	73.7	$\tilde{\chi}_1^+ \tilde{\chi}_2^-$	73.7	$\tilde{\chi}_2^+ \tilde{\chi}_2^-$	604
$ ilde{\chi}_1^0 ilde{\chi}_1^0$	49.4	$ ilde{\chi}^0_1 ilde{\chi}^0_2$	49.7	$ ilde{\chi}^0_1 ilde{\chi}^0_3$	409	$ ilde{\chi}^0_1 ilde{\chi}^0_4$	0.06
		$ ilde{\chi}^0_2 ilde{\chi}^0_2$	5.0	$ ilde{\chi}^0_2 ilde{\chi}^0_3$	876	$ ilde{\chi}^0_2 ilde{\chi}^0_4$	3.7
				$ ilde{\chi}^0_3 ilde{\chi}^0_3$	1.4	$ ilde{\chi}^0_3 ilde{\chi}^0_4$	69.6
						$ ilde{\chi}_4^{ar{0}} ilde{\chi}_4^{ar{0}}$	1.0
$\tilde{\chi}_{1}^{-}\tilde{\chi}_{1}^{0}$	584	$\tilde{\chi}_1^- \tilde{\chi}_2^0$	1780	$\tilde{\chi}_{1}^{-}\tilde{\chi}_{3}^{0}$	789	$\tilde{\chi}_{1}^{-}\tilde{\chi}_{4}^{0}$	78.8
$\tilde{\chi}_1^+ \tilde{\chi}_1^0$	914	$\tilde{\chi}_1^+ \tilde{\chi}_2^0$	2870	$\tilde{\chi}_1^+ \tilde{\chi}_3^0$	1310	$\tilde{\chi}_1^+ \tilde{\chi}_4^0$	138
$ ilde{\chi}_2^- ilde{\chi}_1^0$	2.7	$\tilde{\chi}_2^- \tilde{\chi}_2^0$	55.9	$\tilde{\chi}_2^- \tilde{\chi}_3^0$	66.6	$\tilde{\chi}_2^- \tilde{\chi}_4^0$	430
$\tilde{\chi}_2^+ \tilde{\chi}_1^0$	4.5	$\tilde{\chi}_2^+ \tilde{\chi}_2^0$	97.7	$\tilde{\chi}_2^+ \tilde{\chi}_3^0$	119	$\tilde{\chi}_2^+ \tilde{\chi}_4^0$	798

- but best background rejection $m_{\ell\ell}$ gone with the wind [higgsino searches?]

What's new for LHC phenomenology?

- no squarks, sleptons for cascades [Giudice, Romanino; astro-particle: Pierce]
- stable (hadronizing) gluinos $[\tau \sim \widetilde{m}^{-4} \sim 6.5 \text{ for } \widetilde{m} = 10^9 \text{GeV}$, LHC time scale 25 ns]
- heavy hadrons Rg, Rqq, Rqqq [Farrar, Fayet 1978; Baer, Cheung, Gunion 1999; UKQCD 1999]
- gluinonium [Kühn, Ono 1984; Goldman, Haber 1985; Cheung]

Charged R hadrons

- many gluinos pair-produced [$\sigma \gtrsim 1 \text{ pb}$]
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- level-1 trigger without muon chamber? [25...75 ns delay]
- effect of conversion to R baryons because of light pions? [Kraan]
- \Rightarrow fraction of charged R hadrons crucial
- \Rightarrow effective (not calculable) parameter P_{R_g}

Charged R hadrons

- many gluinos pair-produced [$\sigma \gtrsim$ 1 pb]
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]

Ъ

- level-1 trigger without muon chamber? [25...75 ns delay]
- effect of conversion to R baryons because of light pions? [Kraan]
- \Rightarrow fraction of charged R hadrons crucial
- \Rightarrow effective (not calculable) parameter P_{R_q}

Beyond BSM signal

- mass measurement through time of flight
- charge flipper [Kraan; Hewett, Rizzo,...]
- energy deposition: no heavy lepton

Neutral R hadrons

- jets plus missing energy $[\sim 10\% \text{ energy loss}]$
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron [missing energy trigger]
- mass measurement from gluinonium
- R hadron flavor physics?
- \Rightarrow charged R hadrons preferable

Neutral R hadrons

- jets plus missing energy $[\sim 10\% \text{ energy loss}]$
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron [missing energy trigger]
- mass measurement from gluinonium
- R hadron flavor physics?
- \Rightarrow charged R hadrons preferable

Signals at the ILC

- gluinos not produced because of decoupled squarks
- neutralino-chargino sector analysis as usual [robust with changed decay channels]
- measurement of anomalous Yukawas $[\tilde{g}_u, \tilde{g}_d, \tilde{g}'_u, \tilde{g}'_d$ different by $\sim 10\%$]
- \Rightarrow (1) direct measurements of $\chi\chi H$

Signals at the ILC

- gluinos not produced because of decoupled squarks
- neutralino-chargino sector analysis as usual [robust with changed decay channels]
- measurement of anomalous Yukawas $[\tilde{g}_u, \tilde{g}_d, \tilde{g}'_u, \tilde{g}'_d]$
- \Rightarrow (1) direct measurements of $\chi\chi$ H [Whizard, Smadgraph; unpromising!] (2) indirect determination of mass matrices

- 10⁴ smeared measurements of six masses (and cross sections)
- 10^4 fits of M_1, M_2, μ and one or more κ_i
- LHC data alone not promising [masses only, 5% error]

SPLIT SUPERSYMMETRY AT THE ILC: 2

Neutralinos/charginos at the ILC

- mass measurements to 0.5%
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to \lesssim 5%

SPLIT SUPERSYMMETRY AT THE ILC: 2

Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to \lesssim 5%
- \Rightarrow four κ simultaneously to $\lesssim 10\%$

SPLIT SUPERSYMMETRY AT THE ILC: 2

Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to \lesssim 5%
- \Rightarrow four κ simultaneously to $\lesssim 10\%$

So can we tell it is Split Susy?

- mass measurement errors conservative
- only mass and cross section measurements yet [Sfi tter-Fittino next step]

	Fit tan β	m _i	σ_{ij}	$\Delta \kappa_{u}$	$\Delta \kappa_{\sf d}$	$\Delta \kappa'_{\sf U}$	$\Delta \kappa'_{\sf d}$
ILC		•	•	0.9×10^{-2}	3×10^{-2}	1.3×10^{-2}	4×10^{-2}
ILC	•	•	•	1.2×10^{-2}	$5 imes 10^{-2}$	2×10^{-2}	$5 imes 10^{-2}$
ILC		•		1.1×10^{-2}	$5 imes 10^{-2}$	3×10^{-2}	8×10^{-2}
ILC	•	•		1.2×10^{-2}	11×10^{-2}	4×10^{-2}	8×10^{-2}
LHC		•		2.2×10^{-1}	6×10^{-1}	2.7×10^{-1}	8×10^{-1}
ILC		•	•	1.4×10^{-2}	5×10^{-2}	3×10^{-2}	10×10^{-2}
ILC*	•	•	•	1.7×10^{-2}	9×10^{-2}	4×10^{-2}	13×10^{-2}
ILC	fi x tan $\beta = 3$	•	•	1.6×10^{-2}	4×10^{-2}	4×10^{-2}	9×10^{-2}
ILC*	$\kappa_{i} \neq 0$	•	•	1.4×10^{-2}	$5 imes 10^{-2}$	4×10^{-2}	11×10^{-2}
ILC*	fi x tan $\beta = 5$	•	•	1.6×10^{-2}	7×10^{-2}	4×10^{-2}	14×10^{-2}

 \Rightarrow anomalous Yukawas promising at ILC

OUTLOOK

Showcase for state-of-the-art LHC phenomenology: Split Supersymmetry

- interesting phenomenology
- LHC: R hadrons observable with mass measurement
- ILC: anomalous weak-ino Yukawas accessible

What stays

- exotic heavy hadrons visible at LHC [trigger issues]
- why did we aways assume MSSM-type ino Yukawas? [missed Susy test]

SUSY-Madgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase
- first physics project: SUSY pairs in WBF

Using SUSY-Madevent: squarks and gluinos plus jets [TP, R

[TP, Rainwater, Skands]

- cascade studies sensitive to hard jet radiation?
- compute $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [SPS1a, $p_{T,j} > 100$ GeV]

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
σ_{0j}	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

- task 1: gluon radiation vs. initial states?
- task 2: comparison with Phythia showers

SUSY-Madgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase
- first physics project: SUSY pairs in WBF

Using SUSY-Madevent: squarks and gluinos plus jets [TP, Rainwater, Skands]

- cascade studies sensitive to hard jet radiation?
- compute $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [SPS1a, $p_{T,j} > 100$ GeV]

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
σ_{0j}	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

- task 1: gluon radiation vs. initial states?
- task 2: comparison with Phythia showers

SUSY-Madgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase
- first physics project: SUSY pairs in WBF

Using SUSY-Madevent: squarks and gluinos plus jets [TP, Rainwater, Skands]

- cascade studies sensitive to hard jet radiation?
- compute $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [SPS1a, $p_{T,j} > 100$ GeV]

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
σ_{0j}	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

- task 1: gluon radiation vs. initial states?
- task 2: comparison with Phythia showers

SUSY-Madgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase
- first physics project: SUSY pairs in WBF

Using SUSY-Madevent: squarks and gluinos plus jets

- cascade studies sensitive to hard jet radiation?
- compute $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [SPS1a, $p_{T,j} > 100$ GeV]

σ [pb]	$t\overline{t}_{600}$	ĝĝ	ũ _L ĝ
$\sigma_{0 \mathrm{j}}$	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

- task 1: gluon radiation vs. initial states?
- task 2: comparison with Phythia showers

