SPLIT SUPERSYMMETRY:

PHENOMENOLOGY WITHOUT A REASON?

Tilman Plehn

Max-Planck-Institut für Physik, Bayern

- Split and TeV scale supersymmetry
- Signals at the LHC
- Signals at the ILC
- What stays [W. Kilian, P. Richardson, TP, E. Schmidt: EPC 39]

TEV SCALE SUPERSYMMETRY: 1

Starting from data...

...which seem to indicate a light Higgs

problem of light Higgs: scalar masses perturbatively unstable

quadratic divergences $\delta m_h^2 \propto g^2 \Lambda^2$

all–orders Higgs mass driven to cutoff $m_h \rightarrow \Lambda$

⇒ solution: counter term for exact cancellation ⇒ artificial, ugly, fine tuned

⇒ or new physics at TeV scale: supersymmetry

extra dimensions

little Higgs (pseudo-Goldstone Higgs)

Higgsless/composite Higgs

YourFavoriteNewPhysics...

⇒ all beautiful concepts and symmetries

⇒ in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry: cancellation of divergences through statistics factor (-1)

[scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

TEV SCALE SUPERSYMMETRY: 2

Bright side

- light fundamental Higgs by construction [data]
- 3 running gauge couplings meet GUT gauge group
- R parity stable proton yields dark matter
- 2 Higgs doublets radiative symmetry breaking
- local supersymmetry including gravity?
- rich LHC phenomenology [effective theory of everything short–lived]

Dark side

- unknown Susy breaking
 - → masses, couplings, phases
- flavor physics and Susy breaking
 - → CKM and lepton flavor?
- 2 Higgs doublet model
 - $\rightarrow \mu$ and Susy breaking? [Giudice, Masiero]
- as many exclusive analyses as possible [never believe us theorists when we say we know...]

		spin	d.o.f.	
gluon	G_{μ}	1	n-2	
→ gluino	$oxed{G}_{\mu}$	1/2	2	Majorana
gauge bosons	γ , Z	1	2+3	
Higgs bosons	h^O,H^O,A^O	0	3	
→ neutralinos	$ ilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
→ charginos	$ ilde{ ilde{\chi}}_{i}^{\pm}$	1/2	2 · 4	Dirac
fermion	f_L, f_R	1/2	1+1	
→ sfermion	$\tilde{f}_{L}^{-}, \tilde{f}_{R}^{-}$	0	1+1	

TEV SCALE SUPERSYMMETRY: 3

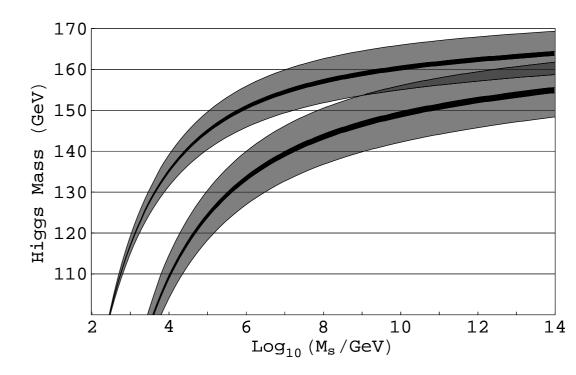
Gauginos and higgsinos in the SUSY spectrum [Dimopoulos; Drees, Martin]

– gauginos–higgsinos mixing: $m_{{\widetilde \chi}_2^0} \sim m_{{\widetilde \chi}_1^+}$ or $m_{{\widetilde \chi}_1^0} \sim m_{{\widetilde \chi}_1^+}$ in MSSM

$$\begin{pmatrix} \mathbf{m}_{\widetilde{\mathbf{B}}} & \mathbf{0} & -\mathsf{m}_{Z} s_{w} c_{\beta} & \mathsf{m}_{Z} s_{w} s_{\beta} \\ \mathbf{0} & \mathsf{m}_{\widetilde{W}} & \mathsf{m}_{Z} c_{w} c_{\beta} & -\mathsf{m}_{z} c_{w} s_{\beta} \\ -\mathsf{m}_{Z} s_{w} c_{\beta} & \mathsf{m}_{Z} c_{w} c_{\beta} & \mathbf{0} & -\mu \\ \mathsf{m}_{Z} s_{w} s_{\beta} & -\mathsf{m}_{Z} c_{w} s_{\beta} & -\mu & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{m}_{\widetilde{W}} & \sqrt{2} \mathsf{m}_{Z} c_{w} s_{\beta} \\ \sqrt{2} \mathsf{m}_{Z} c_{w} c_{\beta} & -\mu \end{pmatrix}$$

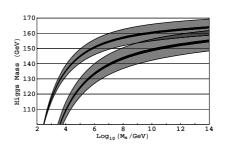
- heavy gluinos through unification: $m_{\widetilde{B},\widetilde{W},\widetilde{g}}/m_{1/2}\sim 0.4,0.8,2.6$ [mass and coupling unification independent]
- lightest Susy partner $\tilde{\chi}_1^0, \tilde{\nu}$
 - \Rightarrow after dark matter data $ilde{\chi}_1^0 \sim ilde{\mathsf{B}}, ilde{\mathsf{W}}$ [Falk,...; Hooper,...]

Split supersymmetry [Dimopoulos, Arkani-Hamed; Giudice, Romanino]

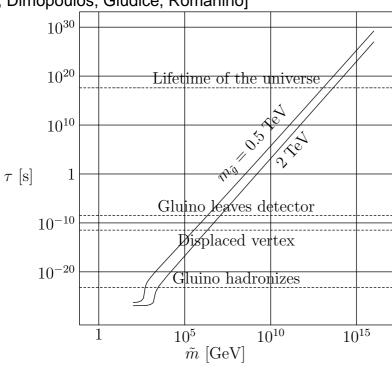

- forget about fine tuning [Higgs will never be as bad as cosmological constant]
- remember all the good things Susy did for you [dark matter, unification from data]
- notice that scalars are evil [lepton and quark favor, Higgs mass, EDMs]
- remember simple facts about unification [SU(5) multiplets decouple; Dawson, Georgi 1979]
- \Rightarrow make all scalars heavy [hope: $\tilde{m} \rightarrow m_{GUT}$?]
- \Rightarrow protect all gaugino and higgsino masses [$m_{\widetilde{\chi}_{i}}, m_{\widetilde{g}} \lesssim$ TeV]

Fine tuning no excuse for multi-billion dollar experiments [trigger by popular vote of theorists?]

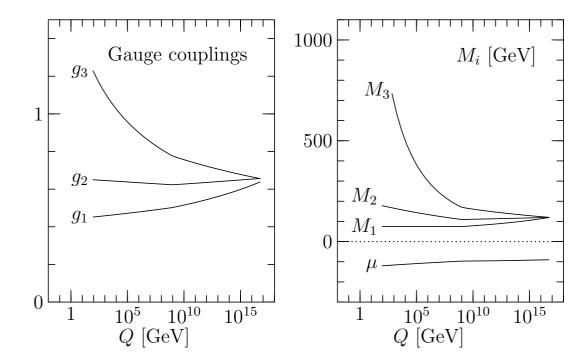
- gluinos and gauginos at the LHC
- gauginos and higgsinos at the ILC
- ⇒ is it supersymmetry?
- \Rightarrow is it split?


Heavy scalars and the Higgs mass [Giudice, Romanino; Arvantaki, Davis, Graham, Wacker]

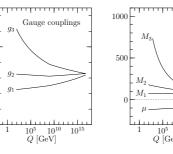
- known leading corrections increased: $m_h \sim m_Z + G_F y_t^4 \log(m_{\tilde{t}}^2/m_t^2)$
- ⇒ large m_h for heavy stops [out of LEP2 reach]
- ⇒ not a precision observable anymore [large logarithms]
- \Rightarrow light Higgs is a SM Higgs boson with m_h \gtrsim 140 GeV [other 2HDM heavy]

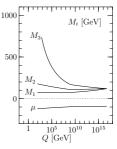

Heavy scalars and the Higgs mass [Giudice, Romanino; Arvantaki, Davis, Graham, Wacker]

- known leading corrections increased: $m_h \sim m_Z + G_F y_t^4 \log(m_{\tilde{t}}^2/m_t^2)$
- ⇒ large m_h for heavy stops [out of LEP2 reach]
- ⇒ not a precision observable anymore [large logarithms]
- \Rightarrow light Higgs is a SM Higgs boson with $m_h \gtrsim 140 \; \text{GeV}$


Heavy scalars and the gluino life time [Arkani-Hamed, Dimopoulos; Giudice, Romanino]

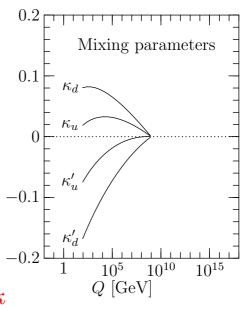
- decay through squark $au_{\widetilde{g}} \sim \widetilde{m}^4/m_{\widetilde{g}}^5$
- loop-induced decays? [Toharia, Wells]
- lifetime constrained by nucleosynthesis
- $-~\widetilde{m} \lesssim 10^9 GeV \ll m_{GUT}~\text{[PeV? Wells]}$
- ⇒ gluino hadronizes, decays much later
- ⇒ long-lived gluino collider signature No.1


Renormalization group running


- argued unification, so make Split Susy a GUT
- gauge couplings unify
- gaugino masses as well

Renormalization group running

- argued unification, so make Split Susy a GUT
- gauge couplings unify
- gaugino masses assumed to unify as well



Anomalous ino Yukawa coupling

gauginos-higgsinos mixing in MSSM:

$$\begin{pmatrix} \mathbf{m}_{\widetilde{\mathbf{B}}} & \mathbf{0} & -\mathbf{m}_{Z}\mathbf{s}_{w}\mathbf{c}_{\beta} \equiv -\widetilde{\mathbf{g}}_{d}\mathbf{v} & \mathbf{m}_{Z}\mathbf{s}_{w}\mathbf{s}_{\beta} \equiv \widetilde{\mathbf{g}}_{u}\mathbf{v} \\ \mathbf{0} & \mathbf{m}_{\widetilde{\mathbf{W}}} & \mathbf{m}_{Z}\mathbf{c}_{w}\mathbf{c}_{\beta} \equiv \widetilde{\mathbf{g}}_{d}'\mathbf{v} & -\mathbf{m}_{z}\mathbf{c}_{w}\mathbf{s}_{\beta} \equiv -\widetilde{\mathbf{g}}_{u}'\mathbf{v} \\ -\mathbf{m}_{Z}\mathbf{s}_{w}\mathbf{c}_{\beta} & \mathbf{m}_{Z}\mathbf{c}_{w}\mathbf{c}_{\beta} & \mathbf{0} & -\mu \\ \mathbf{m}_{Z}\mathbf{s}_{w}\mathbf{s}_{\beta} & -\mathbf{m}_{Z}\mathbf{c}_{w}\mathbf{s}_{\beta} & -\mu & \mathbf{0} \end{pmatrix}$$

- Yukawas/gaugino-higgsino mixing fixed by Susy
- supersymmetric beta functions broken at $Q = \tilde{m}$
- anomalous Yukawas collider signal No.2: $\tilde{g}/\tilde{g}_{MSSM} = 1 + \kappa$

Manuel's argument [Drees: hep-ph/0501106]

- remember Higgs potential and B parameter $[V \sim -\mu B H_u H_d]$
- \rightarrow Higgsino mass $\mu \sim m_{\text{weak}}$ by symmetry, but where is B?

$$\sin 2\beta = 2 \frac{\tan \beta}{1 + \tan^2 \beta} = 2 \frac{B \mu}{m_{H,u}^2 + m_{H,d}^2} = 2 \frac{B m_{\text{weak}}}{\widetilde{m}^2} = 2 x \frac{m_{\text{weak}}}{\widetilde{m}} \quad \text{for } B = x \, \widetilde{m}$$

→ two easy solutions in limits:

$$\tan \beta \ll 1$$
: $\tan \beta = \frac{x \, m_{\text{weak}}}{\widetilde{m}}$ $\tan \beta \gg 1$: $\tan \beta = \frac{\widetilde{m}}{x \, m_{\text{weak}}}$

 \rightarrow remember Yukawa couplings: tan $\beta = 1...100$:

$$\tan \beta < 100 \quad \Rightarrow \quad x > \frac{\widetilde{m}}{100 \, m_{\text{weak}}} \quad \Rightarrow \quad B > \frac{\widetilde{m}^2}{100 \, m_{\text{weak}}}$$

→ second mass not protected by anything [and pointing above Planck scale?]

LHC production of gauginos and higgsinos

- cross sections not small $[M_j(m_{GUT}) = 120 \text{GeV}; \sigma \text{ in fb from Prospino2}]$

<u> </u>	1710						
$\tilde{\chi}_1^- \tilde{\chi}_1^+$	2910	$\tilde{\chi}_1^- \tilde{\chi}_2^+$	73.7	$\tilde{\chi}_1^+ \tilde{\chi}_2^-$	73.7	$\tilde{\chi}_2^+\tilde{\chi}_2^-$	604
$ ilde{\chi}^0_1 ilde{\chi}^0_1$	49.4	$ ilde{\chi}_1^0 ilde{\chi}_2^0$	49.7	$ ilde{\chi}^0_1 ilde{\chi}^0_3$	409	$\tilde{\chi}_1^0 \tilde{\chi}_4^0$	0.06
		$ ilde{\chi}_2^0 ilde{\chi}_2^{ar{0}}$	5.0	$ ilde{\chi}^0_2 ilde{\chi}^0_3$	876	$ ilde{\chi}^0_2 ilde{\chi}^0_4$	3.7
				$ ilde{\chi}^0_3 ilde{\chi}^0_3$	1.4	$\tilde{\chi}_3^0 \tilde{\chi}_4^0$	69.6
						$ ilde{\chi}_4^0 ilde{\chi}_4^0$	1.0
$\tilde{\chi}_1^- \tilde{\chi}_1^0$	584	$\tilde{\chi}_1^- \tilde{\chi}_2^0$	1780	$\tilde{\chi}_1^- \tilde{\chi}_3^0$	789	$\tilde{\chi}_1^- \tilde{\chi}_4^0$	78.8
$\tilde{\chi}_1^+ \tilde{\chi}_1^0$	914	$\tilde{\chi}_1^+ \tilde{\chi}_2^0$	2870	$\tilde{\chi}_1^+ \tilde{\chi}_3^0$	1310	$\tilde{\chi}_1^+ \tilde{\chi}_4^0$	138
$\tilde{\chi}_2^- \tilde{\chi}_1^0$	2.7	$\tilde{\chi}_2^-\tilde{\chi}_2^{\bar{0}}$	55.9	$\tilde{\chi}_2^- \tilde{\chi}_3^0$	66.6	$\tilde{\chi}_2^-\tilde{\chi}_4^0$	430
$\tilde{\chi}_2^+ \tilde{\chi}_1^0$	4.5	$\tilde{\chi}_2^+\tilde{\chi}_2^0$	97.7	$\tilde{\chi}_2^+\tilde{\chi}_3^0$	119	$\tilde{\chi}_2^+ \tilde{\chi}_4^0$	798

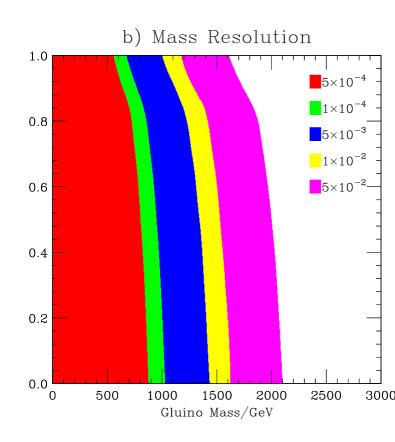

but best background rejection m_{ℓℓ} gone with the wind [higgsino searches?]

What's new for LHC phenomenology?

- no squarks, sleptons for cascades [Giudice, Romanino; astro-particle: Pierce]
- stable (hadronizing) gluinos [$\tau \sim \widetilde{m}^{-4} \sim 6.5 \mathrm{s}$ for $\widetilde{m} = 10^9 \mathrm{GeV}$, LHC time scale 25 ns]
- heavy hadrons R_g , $R_{q\bar{q}}$, R_{qqq} [Farrar, Fayet 1978; Baer, Cheung, Gunion 1999; UKQCD 1999]
- gluinonium [Kühn, Ono 1984; Goldman, Haber 1985; Cheung]

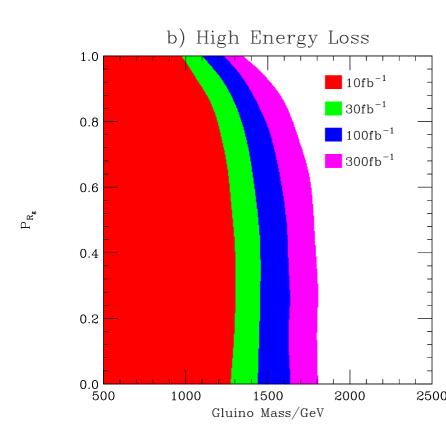
Charged R hadrons

- many gluinos pair-produced [$\sigma \gtrsim 100 \text{ pb}$]
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- level-1 trigger without muon chamber? [25...75 ns delay]
- effect of conversion to R baryons because of light pions? [Kraan]
- ⇒ fraction of charged R hadrons crucial
- \Rightarrow effective (not calculable) parameter $\mathsf{P}_{\mathsf{R}_\mathsf{q}}$

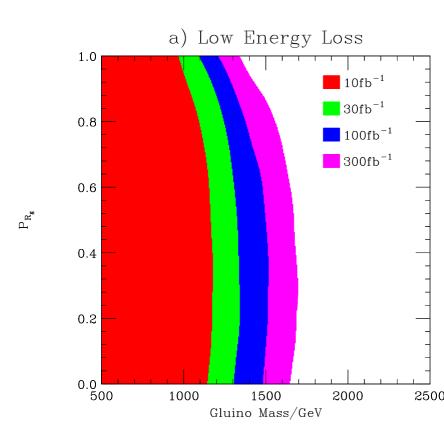

Tilman Plehn: Split Supersymmetry - p.12

Charged R hadrons

- many gluinos pair-produced [$\sigma \gtrsim 100 \text{ pb}$]
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- level-1 trigger without muon chamber? [25...75 ns delay]
- effect of conversion to R baryons because of light pions? [Kraan]
- ⇒ fraction of charged R hadrons crucial
- \Rightarrow effective (not calculable) parameter P_{R_q}

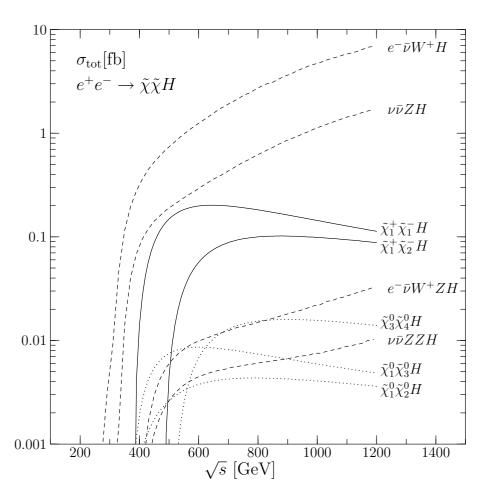

Beyond BSM signal

- mass measurement through time of flight
- charge flipper [Kraan; Hewett, Rizzo,...]
- energy deposition: no heavy lepton

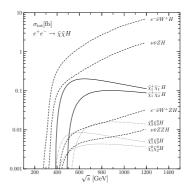

Neutral R hadrons

- jets plus missing energy [∼ 10% energy loss]
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron [missing energy trigger]
- mass measurement from gluinonium
- R hadron flavor physics?
- ⇒ charged R hadrons preferable

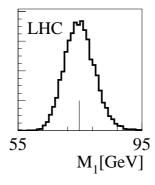
Neutral R hadrons

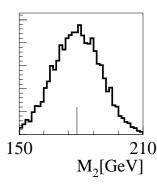

- jets plus missing energy [∼ 10% energy loss]
- trigger dependent on cross section in calorimeter
- improved in combination with charged R hadron [missing energy trigger]
- mass measurement from gluinonium
- R hadron flavor physics?
- ⇒ charged R hadrons preferable

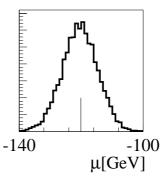
Tilman Plehn: Split Supersymmetry - p.15

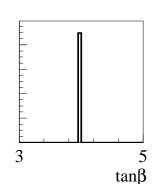

Signals at the ILC

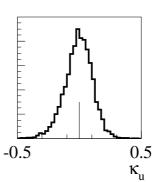
- gluinos not produced because of decoupled squarks
- neutralino—chargino sector analysis as usual [robust with changed decay channels]
- measurement of anomalous Yukawas $[\tilde{g}_u, \tilde{g}_d, \tilde{g}_u', \tilde{g}_d'$ different by $\sim 10\%]$
- \Rightarrow (1) direct measurements of $\chi\chi H$

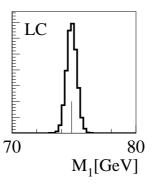

Signals at the ILC

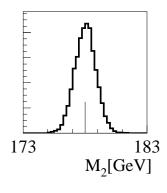

- gluinos not produced because of decoupled squarks
- neutralino—chargino sector analysis as usual [robust with changed decay channels]
- measurement of anomalous Yukawas $[\tilde{g}_u, \tilde{g}_d, \tilde{g}'_u, \tilde{g}'_d]$
- \Rightarrow (1) direct measurements of $\chi\chi H$ [Whizard, Smadgraph; unpromising!]
 - (2) indirect determination of mass matrices

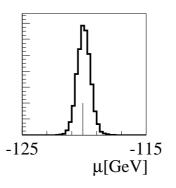


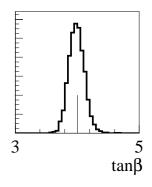

Extracting parameters from neutralino/chargino sector

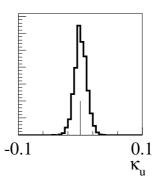

- 10⁴ smeared measurements of six masses (and cross sections)
- -10^4 fits of M_1, M_2, μ and one or more κ_i
- LHC data alone not promising [masses only, 5% error]

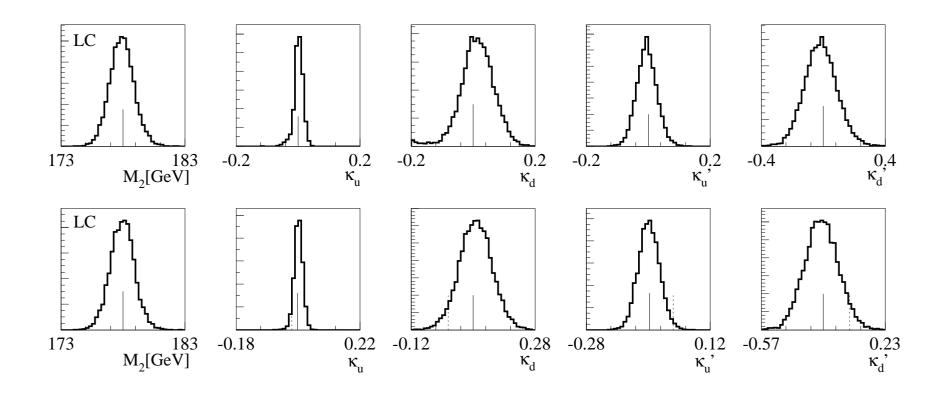







Neutralinos/charginos at the ILC


- mass measurements to 0.5%
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to $\lesssim 5\%$



Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to $\lesssim 5\%$
- \Rightarrow four κ simultaneously to $\lesssim 10\%$

Neutralinos/charginos at the ILC

- mass measurements to 0.5%, cross sections statistical error
- error propagation through 10⁴ smeared pseudo-measurements
- \Rightarrow one κ at the time to $\lesssim 5\%$
- \Rightarrow four κ simultaneously to $\lesssim 10\%$

So can we tell it is Split Susy?

- mass measurement errors conservative
- only mass and cross section measurements yet [Sfi tter-Fittino next step]

	Fit $tan eta$	m _i	$\sigma_{\sf ij}$	$\Delta \kappa_{U}$	$\Delta \kappa_{d}$	$\Delta \kappa_{\sf u}'$	$\Delta \kappa_{\sf d}'$
ILC		•	•	0.9×10^{-2}	3×10^{-2}	1.3×10^{-2}	4×10^{-2}
ILC	•	•	•	1.2×10^{-2}	5×10^{-2}	2×10^{-2}	5×10^{-2}
ILC		•		1.1×10^{-2}	5×10^{-2}	3×10^{-2}	8×10^{-2}
ILC	•	•		1.2×10^{-2}	11×10^{-2}	4×10^{-2}	8×10^{-2}
LHC		•		2.2×10^{-1}	6×10^{-1}	2.7×10^{-1}	8×10^{-1}
ILC		•	•	1.4×10^{-2}	5×10^{-2}	3×10^{-2}	10×10^{-2}
ILC*	•	•	•	1.7×10^{-2}	9×10^{-2}	4×10^{-2}	13×10^{-2}
ILC	fix $\tan \beta = 3$	•	•	1.6×10^{-2}	4×10^{-2}	4×10^{-2}	9×10^{-2}
ILC*	$\kappa_{i} \neq 0$	•	•	1.4×10^{-2}	5×10^{-2}	4×10^{-2}	11×10^{-2}
ILC*	fix $tan \beta = 5$	•	•	1.6×10^{-2}	7×10^{-2}	4×10^{-2}	14×10^{-2}

⇒ anomalous Yukawas promising at ILC

OUTLOOK

Showcase for state-of-the-art LHC phenomenology: Split Supersymmetry

- interesting phenomenology
- LHC: R hadrons observable with mass measurement
- ILC: anomalous weak-ino Yukawas accessible
- IceCube: one event per year for low-mass R hadrons [Hewett, Lillie, Mazip, Rizzo]
- Pierre Auger: few events for $\widetilde{m} < 10^{11}~\text{GeV}$ [Anchordoqui, Goldberg, Nunez]

What stays

- exotic heavy hadrons visible at LHC [trigger issues]
- why did we aways assume MSSM-type ino Yukawas? [missed Susy test]
- ⇒ Useful results from the most unlikely models