${\small S}{\small \textsf{UPERSYMMETRY}} \text{ at the } {\small \textsf{LHC}}$

Tilman Plehn

Max Planck Institute for Physics, Munich

- TeV scale supersymmetry
- Signals at LHC
- Measurements at LHC (+ILC)
- Split Susy (only if too few questions)

Starting from data...

- ...which seem to indicate a light Higgs
- $\begin{array}{ll} \mbox{ problem of light Higgs: } & \mbox{ scalar masses perturbatively unstable} \\ & \mbox{ quadratic divergences } \delta m_h^2 \propto g^2 \Lambda^2 \\ & \mbox{ all-orders Higgs mass driven to cutoff } m_h \to \Lambda \end{array}$
- \Rightarrow solution: counter term for exact cancellation \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (pseudo–Goldstone Higgs) Higgsless/composite Higgs YourFavoriteNewPhysics...
- \Rightarrow all beautiful concepts and symmetries
- \Rightarrow in general problematic to realize at TeV scale [data seriously in the way]

Idea of supersymmetry:

cancellation of divergences through statistics factor (-1) [scalars vs. SM fermions; fermions vs. SM gauge bosons; fermions vs. SM scalars]

TEV SCALE SUPERSYMMETRY: 2

Bright side

- 3 running gauge couplings meet GUT gauge group
- 2 Higgs doublets radiative symmetry breaking
- R parity stable proton yields dark matter
- local supersymmetry including gravity?
- rich LHC phenomenology no nasty surprises [effective theory of everything]

Dark side

- unknown SUSY breaking
 - \rightarrow masses, couplings, phases...
 - \rightarrow e.g. hierarchical spectrum?
- flavor physics and SUSY breaking \rightarrow CKM and lepton flavor?
- 2 Higgs doublet model $\rightarrow \mu$ parameter and SUSY breaking?

		spin	d.o.f.	
fermion	^f L , ^f R	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	${\tt G}_{\mu}$	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	$\gamma,$ Z	1	2+3	
Higgs bosons	h ^O , H ^O , A ^O	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	Majorana
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}^{\pm}_{i}$	1/2	2 · 4	Dirac

 \Rightarrow as many as exclusive analyses as possible

TEV SCALE SUPERSYMMETRY: 3

Structures in the SUSY spectrum [Drees, Martin]

- gauginos-higgsinos mixing: $m_{\tilde{\chi}^0_2} \sim m_{\tilde{\chi}^+_1}$ or $m_{\tilde{\chi}^0_1} \sim m_{\tilde{\chi}^+_1}$ in MSSM

$$\begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{B}}} & 0 & -\mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{c}_{\beta} & \mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{s}_{\beta} \\ 0 & \mathsf{m}_{\widetilde{\mathsf{W}}} & \mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{c}_{\beta} & -\mathsf{m}_{z}\mathsf{c}_{\mathsf{w}}\mathsf{s}_{\beta} \\ -\mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{c}_{\beta} & \mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{c}_{\beta} & 0 & -\mu \\ \mathsf{m}_{Z}\mathsf{s}_{\mathsf{w}}\mathsf{s}_{\beta} & -\mathsf{m}_{Z}\mathsf{c}_{\mathsf{w}}\mathsf{s}_{\beta} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \mathsf{m}_{\widetilde{\mathsf{W}}} & \sqrt{2}\mathsf{m}_{\mathsf{W}}\mathsf{s}_{\beta} \\ \sqrt{2}\mathsf{m}_{\mathsf{W}}\mathsf{c}_{\beta} & -\mu \end{pmatrix}$$

stop and sbottom mixing in MSSM

$$\begin{pmatrix} \mathsf{m}_{\mathsf{Q}}^2 + \mathsf{m}_{\mathsf{t}}^2 + \left(\frac{1}{2} - \frac{2}{3}\mathsf{s}_{\mathsf{w}}^2\right)\mathsf{m}_{\mathsf{Z}}^2\mathsf{c}_{2\beta} & -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) \\ -\mathsf{m}_{\mathsf{t}}\left(\mathsf{A}_{\mathsf{t}} + \mu\cot\beta\right) & \mathsf{m}_{\mathsf{U}}^2 + \mathsf{m}_{\mathsf{t}}^2 + \frac{2}{3}\mathsf{s}_{\mathsf{w}}^2\mathsf{m}_{\mathsf{Z}}^2\mathsf{c}_{2\beta} \end{pmatrix}$$

– heavy gluinos and squarks through unification: $\begin{array}{l} m_{\widetilde{B},\widetilde{W},\widetilde{g}}/m_{1/2}\sim0.4,0.8,2.6\\ m_{\widetilde{\ell},\widetilde{q}}/m_{1/2}\sim0.7,2.5\ \mbox{\tiny [m_0\,\ll\,m_{1/2}]} \end{array}$

[mass and coupling unification independent]

experimentalists: ask your local SUSY breakers!

TEV SCALE SUPERSYMMETRY: 4

Supersymmetric parameter conventions

- comparison of specialized codes crucial [remember: e.g. Comphep-Pythia-Isajet]
- \Rightarrow fix SUSY conventions once for all

soft breaking parameters [e.g. $\pm A_t$] scale dependence of couplings, masses [e.g. $m(q = TeV, v, m_t)$?] definitions of mass matrixes, mixing angles [e.g. $\tilde{t}_{L,R}$ up or down?]

SUSY Les Houches Accord [Allanach, Skands et al.]

- spectrum generators: SoftSusy, SPheno, FeynHiggs,...
- multi-purpose Monte Carlos: Pythia, Herwig, Sherpa
- matrix element generators: Whizard, Smadgraph
- NLO cross sections: Prospino2
- NLO decay rates: Sdecay
- SUSY parameter extraction: Fittino, Sfitter
- dark matter: Micromegas
- ⇒ fixed parameter convention and read-write format [list to be extended]

SUSY SIGNALS AT LHC: 1

Supersymmetry at the LHC

- (1) **possible discovery** signals for new physics, exclusion of parameter space
- (2) measurements masses, cross sections, decays
- (3) parameter studies MSSM Lagrangean, SUSY breaking
- ⇒ at least 10% precision to be matched at LHC [theorist's nightmare, yet unsolved]

Hadron collider observables with errors

- \star masses from $\sigma_{\rm tot}$
- \star branching fractions from $\sigma_{\rm tot}$
- renormalization scale from $\alpha_s, y_{b,t}$
- factorization scale from pdf's
- perturbative series $N_c \alpha_s / \pi \sim 10\%$
- finite terms [LO-NLO-NNLO: DY, Higgs]
- \Rightarrow NLO errors: 15...40 % for SUSY particles

SUSY SIGNALS AT LHC: 2A

Prospino2: NLO cross sections for LHC

- all two-particle SUSY production channels included
- download from Prospino2 page: http://pheno.physics.wisc.edu/~plehn
- extended version beyond Prospino2: $pp \rightarrow SS^*, tH^-...$

[thanks to: W. Beenakker, R.Höpker, M. Krämer, M. Spira, P. Zerwas]

SUSY signals included

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_1^+ d\bar{u} \text{ or c.c.}]$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^ [\tilde{\chi}_2^0 \rightarrow \tilde{\ell} \bar{\ell} \rightarrow \tilde{\chi}_1^0 \ell \bar{\ell}; \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \ell \bar{\nu}]$
- bottoms and ${\not\!\!\! E}_T {:}\ pp \to { \vec b}_1 { \vec b}_1^*$

SUSY SIGNALS AT LHC: 2B

Prospino2: NLO cross sections for Tevatron

- all two-particle SUSY production channels included
- download from Prospino2 page: http://pheno.physics.wisc.edu/~plehn
- extended version beyond Prospino2: $pp \rightarrow SS^*, tH^-...$

[thanks to: W. Beenakker, R.Höpker, M. Krämer, M. Spira, P. Zerwas]

SUSY signals included

- funny tops: $pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$
- like sign dileptons: $pp \rightarrow \tilde{g}\tilde{g}$
 - $[\tilde{g} \rightarrow \tilde{u}\bar{u} \rightarrow \tilde{\chi}_1^+ d\bar{u} \text{ or c.c.}]$
- tri-leptons: pp $\rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^-$

$$[\tilde{\chi}^0_2 \to \tilde{\ell} \bar{\ell} \to \tilde{\chi}^0_1 \ell \bar{\ell}; \tilde{\chi}^-_1 \to \tilde{\chi}^0_1 \ell \bar{\nu}]$$

Tilman Plehn: Supersymmetry at the LHC – p.8

SUSY spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 10⁷ events]
- thresholds & edges [Hinchliffe, Paige...; Cambridge ex-th] classical $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 - m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 - m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$
- cross sections as additional input?
- ⇒ detector resolution, calibration, systematic errors? [Polesello, Gjelsten, Miller, Osland]

SUSY spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 10⁷ events]
- thresholds & edges [Hinchliffe, Paige...; Cambridge ex-th] classical $m_{\ell\ell}^2 < (m_{\widetilde{\chi}_2^0}^2 - m_{\widetilde{\ell}}^2)(m_{\widetilde{\ell}}^2 - m_{\widetilde{\chi}_1^0}^2)/m_{\widetilde{\ell}}^2$
- cross sections as additional input?
- \Rightarrow detector resolution, calibration, systematic errors?

[Polesello, Gjelsten, Miller, Osland]

Mass determination

Tilman Plehn: Supersymmetry at the LHC – p.10

SUSY spectra from cascade decays

- decay $\tilde{g} \to \tilde{q}\bar{q} \to \tilde{\chi}_2^0 q\bar{q} \to \mu^+ \mu^- q\bar{q}\tilde{\chi}_1^0$ [better not via Z or to τ]
- cross sections some 100 pb [more than 10⁷ events]
- thresholds & edges [Hinchliffe, Paige...; Cambridge ex-th]

$$\text{classical } \mathsf{m}^2_{\ell \ell} < (\mathsf{m}^2_{\widetilde{\chi}^0_2} - \mathsf{m}^2_{\widetilde{\ell}})(\mathsf{m}^2_{\widetilde{\ell}} - \mathsf{m}^2_{\widetilde{\chi}^0_1})/\mathsf{m}^2_{\widetilde{\ell}}$$

- cross sections as additional input?
- \Rightarrow detector resolution, calibration, systematic errors? [Poles

[Polesello, Gjelsten, Miller, Osland]

	^m SPS1a	LHC	ILC	LHC+ILC		^m SPS1a	LHC	ILC	LHC+ILC
χ_1^0	97.03	4.8	0.05	0.05	χ_2^0	182.9	4.7	1.2	0.08
					$\chi_4^{\overline{0}}$	370.3	5.1		2.3
χ_1^{\pm}	182.3		0.55	0.55	χ_2^{\pm}	370.6		3.0	3.0
ĝ	615.7	8.0		6.4					
- Ĩ	411.8		2.0	2.0					
_b 1	520.8	7.5		5.7	₽ ₽	550.4	7.9		6.2
ũ ₁	551.0	23.6		23.6	ũ ₂	570.8	17.4		9.8
\tilde{d}_1	549.9	23.6		23.6	\tilde{d}_2	576.4	17.4		9.8
s ₁	549.9	23.6		23.6	\tilde{s}_2	576.4	17.4		9.8
~	551.0	23.6		23.6	c ₂	570.8	17.4		9.8
e ₁	144.9	4.8	0.05	0.05	e ₂	204.2	5.0	0.2	0.2
$\tilde{\mu}_1$	144.9	4.8	0.2	0.2	$\tilde{\mu}_2$	204.2	5.0	0.5	0.5
$\tilde{\tau}_1$	135.5	8.6	0.3	0.3	$\tilde{\tau}_2^-$	207.9		1.1	1.1
$\tilde{\nu}_{e}$	188.2		0.7	0.7					
						Tilman Plehn:	Supersym	metry at	the LHC – p.11

Mass determination

Squarks and gluinos plus jets [TP, Rainwater, Skands]

- pseudo-cascade jets from higher order radiation?
- Smadgraph/Smadevent the proper tool [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]
- compute ĝĝ+2j,...

 $[p_{T,j} > 50, 100 GeV]$

– no suppression $\alpha_{
m s}/\pi$

	$\sigma_{\sf tot}[{\sf pb}]$	ĝĝ	ũ _L ĝ	$\tilde{u}_{L}\tilde{u}_{L}^{*}$	ũLũL	ΤŦ
$p_{T,j} > 100 \text{GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30
	σ_{1j}	2.89	2.74	0.136	0.145	0.73
	σ_{2j}	1.09	0.85	0.049	0.039	0.26
$p_{T,j} > 50 \text{GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30
	σ_{1i}	5.90	5.37	0.283	0.285	1.50
	σ_{2j}	4.17	3.18	0.179	0.117	1.21

\Rightarrow Pythia shapes work!

[NLO rates: Prospino2]

Tilman Plehn: Supersymmetry at the LHC - p.12

Squarks and gluinos plus jets [TP, Rainwater, Skands]

- pseudo-cascade jets from higher order radiation?
- Smadgraph/Smadevent the proper tool [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]
- compute ĝĝ+2j,...

 $[p_{T,j} > 50, 100 GeV]$

– no suppression $\alpha_{
m s}/\pi$

	$\sigma_{\sf tot}[{\sf pb}]$	ĝĝ	ũ _L ĝ	ũ _L ũ _Ľ	ũ _L ũ _L	ΤŦ
$p_{T,j} > 100 \text{ GeV}$	$\sigma_{0 \mathrm{j}}$	4.83	5.65	0.286	0.502	1.30
	σ_{1j}	2.89	2.74	0.136	0.145	0.73
	σ_{2j}	1.09	0.85	0.049	0.039	0.26
$p_{T,j} > 50 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30
~	σ_{1i}	5.90	5.37	0.283	0.285	1.50
	σ_{2j}	4.17	3.18	0.179	0.117	1.21

\Rightarrow Pythia shapes work!

[NLO rates: Prospino2]

Tilman Plehn: Supersymmetry at the LHC - p.13

Theorist's point of view

- measured masses, cross sections, decays secondary
- parameters in SUSY Lagrangean from measurements
- \Rightarrow SUSY breaking parameters at TeV (or higher) scale

Warmup: Sugra top-down fit with errors [unsmeared measurements]

- fit including all errors
 [Allanach et al; Jack & Jones]
- spectrum from Suspect
 [Djouadi, Kneur]

abs. errors		Δ at LHC		Δ at ILC		Δ at LHC+ILC	
	SPS1a	stat	stat+theo	stat	stat+theo	stat	stat+theo
m ₀	100	4.0	4.7	0.09	0.6	0.08	0.6
^m 1/2	250	1.8	2.6	0.13	0.6	0.11	0.5
$tan \beta$	10	1.3	3.5	0.14	0.3	0.14	0.4
A ₀	-100	31.8	32.4	4.43	8.5	4.23	12.6

- \Rightarrow masses alone
- \Rightarrow LHC edges alone
- \Rightarrow wrong $\mu < 0$
- ⇒ SoftSusy fit [Allanach]

LHC	Masses	Δ	Edges	Δ	μ $<$ 0	Δ	Softsusy	Δ
m ₀	100	3.9	100	1.2	101.4	1.8	97.9	4.6
^m 1/2	250	1.7	250	1.0	249.8	0.01	252.5	2.9
$\tan \beta$	10	1.1	10	0.9	13.8	0.002	11.6	3.6
A ₀	-100	33	-100	20	-150.2	1.7	14.7	58.9
LHC+ILC	Masses	Δ					Softsusy	Δ
LHC+ILC m ₀	Masses 100	Δ 0.6					Softsusy 95.2	Δ 1.1
LHC+ILC m ₀ m _{1/2}	Masses 100 250	∆ 0.6 0.5					Softsusy 95.2 249.8	Δ 1.1 0.5
LHC+ILC m_0 $m_{1/2}$ $tan\beta$	Masses 100 250 10	△ 0.6 0.5 0.5					Softsusy 95.2 249.8 9.8	<u> </u>
LHC+ILC m_0 $m_1/2$ $tan\beta$ A_0	Masses 100 250 10 -100	△ 0.6 0.5 0.5 13					Softsusy 95.2 249.8 9.8 -97	△ 1.1 0.5 0.5 10

⇒ But all wrong... [mass unification assumed!]

SUSY parameters from observables

- parameters: weak-scale MSSM Lagrangean
- measurements: masses [Suspect, Softsusy, FeynHiggs...] branching fractions [MSMlib, Sdecay] cross sections [Prospino, MSMlib, Spheno],...
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
 problem in fit: domain walls, starting values, global minimum?

Sfitter [Lafaye, TP, D. Zerwas, also Fittino]

- (0) start: smeared measurements
 (1) grid for pleased subset
 - (1) grid for closed subset
 - (2) fit of remaining parameters
 - (3) complete fit
- \Rightarrow LHC+ILC with no assumptions

	LHC	ILC	LHC+ILC	SPS1a
taneta	10.22 ± 9.1	10.26 ± 0.3	10.06 ± 0.2	10
M ₁	102.45 ± 5.3	102.32 ± 0.1	102.23 ± 0.1	102.2
M ₃	578.67 \pm 15	fix 500	588.05 \pm 11	589.4
$M_{\tilde{\tau}_{I}}$	fix 500	197.68±1.2	199.25±1.1	197.8
$M_{\tilde{\tau}_{R}}$	129.03 ± 6.9	135.66 ± 0.3	133.35 ± 0.6	135.5
$M_{\tilde{\mu}_{L}}$	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M _{~q31}	498.3±110	497.6±4.4	521.9±39	501.3
M _{ťp}	fix 500	420±2.1	411.73±12	420.2
M _õ R	522.26±113	fix 500	504.35±61	525.6
$A_{ au}$	fix 0	-202.4 ± 89.5	352.1 ± 171	-253.5
A _t	-507.8 ± 91	-501.95 ± 2.7	-505.24 ± 3.3	-504.9
Ab	-784.7 ± 35603	fix 0	-977±12467	-799.4

SPLIT SUSY AT COLLIDERS: 1

Split Supersymmetry [Dimopoulos, Arkani-Hamed; Giudice, Romanino; Wells; Drees]

- forget about fine tuning [Higgs will never be as bad as cosmological constant]
- remember all the good things SUSY did for you [dark matter, unification]
- \Rightarrow make all scalars heavy [hope but wrong: $\widetilde{m} \rightarrow m_{GUT}$?]
- $\Rightarrow \ \ \text{protect all gaugino and higgsino masses} \ \ \text{[m}_{\widetilde{\chi_i}}, \text{m}_{\widetilde{g}} \lesssim \text{TeV} \ \text{]}$

What's new for phenomenology?

- no squarks, sleptons for colliders, astro-particle physics [Giudice, Romanino; Pierce]
- no cascade decays
- stable (hadronizing) gluinos $[\tau \sim \tilde{m}^{-4} \sim 6.5 \text{s for } \tilde{m} = 10^9 \text{GeV}]$
- heavy hadrons R_g, R_{qq}, R_{qqq} [Farrar, Fayet; Baer, Cheung, Gunion; UKQCD; Kraan]
- renormalization group running without scalars [e.g. different ino Yukawa couplings by $\lesssim 20\%$]

Collider tests

- (1) Is it supersymmetry?
- (2) Is it split?

Split Susy at Colliders: 2

Manuel's argument [Drees: hep-ph/0501106]

- remember Higgs potential and B parameter $[V \sim -\mu B H_u H_d]$
- \rightarrow Higgsino mass $\mu \sim m_{weak}$ by symmetry, but where is B?

$$\sin 2\beta = 2 \frac{\tan \beta}{1 + \tan^2 \beta} = 2 \frac{B \mu}{m_{H,u}^2 + m_{H,d}^2} = 2 \frac{B m_{weak}}{\widetilde{m}^2} = 2 x \frac{m_{weak}}{\widetilde{m}} \quad \text{for} \quad B = x \, \widetilde{m}$$

 \rightarrow two easy solutions in limits:

$$\tan \beta \ll 1$$
: $\tan \beta = \frac{x \, m_{\text{weak}}}{\widetilde{m}}$ $\tan \beta \gg 1$: $\tan \beta = \frac{m}{x \, m_{\text{weak}}}$

 \rightarrow perturbative Yukawa couplings: tan $\beta = 1...100$:

$$\tan \beta < 100 \quad \Rightarrow \quad x > \frac{\widetilde{m}}{100 \, m_{\text{weak}}} \quad \Rightarrow \quad B > \frac{\widetilde{m}^2}{100 \, m_{\text{weak}}}$$

→ second mass scale not protected by anything [pointing above Planck scale?]

SPLIT SUSY AT COLLIDERS: 3

Split SUSY at the LHC [Kilian, TP, Richardson, Schmidt]

- neutralinos, charginos like in MSSM, poor precision
- many gluinos pair-produced [$\sigma \gtrsim$ 1 pb, Prospino2]
- gluinonium $\tilde{g}\tilde{g} \rightarrow jj$ [Kühn, Ono; Goldman, Haber; CMS; reach \sim TeV?]
- neutral R hadrons missing \rightarrow missing energy signal
- charged R hadrons in tracker, calorimeter, muon chambers [Cambridge ex-th]
- mass measurement through time of flight tracker—muon chamber

SPLIT SUSY AT COLLIDERS: 4

Split Supersymmetry at the ILC [Kilian, TP, Richardson, Schmidt]

- gluinos not produced because of decoupled squarks
- neutralino-chargino sector analysis as usual [robust towards decay channels]
- anomalous Yukawas \equiv off-diagonal mass matrix entries $[gs_{\beta}, gc_{\beta}, g's_{\beta}, g'c_{\beta}]$
- ⇒ (1) direct measurements of $\chi\chi h$ [Whizard, Smadgraph → distinctly unpromising] (2) indirect determination of mass matrices

Indirect determination

- errors crucial [0.5 % error on masses at ILC]
- 10⁴ smeared pseudo-measurements to extract parameters from
- \Rightarrow analytic inversion impossible, fit instead
- $\Rightarrow \mathcal{O}(\text{few}\%) \text{ errors on anomalous Yukawas}$

OUTLOOK

Pheno effort for SUSY@LHC picking up speed

- inclusive searches plus cascade reconstruction with great promise
- relevant theoretical QCD problems yet to be solved [higher orders vs. shower]
- total cross sections available to NLO [Propino2]
- automatic matrix element generators tested [Smadgraph, Whizard, Sherpa]
- parameter extraction tools in use for LHC-ILC studies [Sfitter, Fittino]
- ⇒ errors the key at LHC [tools mean no excuses for poor jobs]
- \Rightarrow whatever we learn for SUSY we will use for BSM

For entertainment: Split Supersymmetry

- interesting phenomenology [for dead model]
- LHC: R hadrons observable with mass measurement
- ILC: anomalous weak-ino Yukawas accessible
- \Rightarrow some aspects always benefits future analyses

Regularization of supersymmetric theory: $\overline{\text{MS}}$ scheme

- + SUSY-QCD next-to-leading order is mostly QCD [i.e. α_s , y_b , pdf,...]
- MS breaks SUSY, but does not violate Ward identities [d.o.f. of gluinos; Jack, Jones]
- → correct vertices using additional 'renormalization' [Martin, Vaughn]

example: qqh, q̃q̃h, qq̃h vertices in naive $\overline{\text{MS}}$

$$(mg)_{qqh} \equiv mg_{\overline{MS}} \qquad (mg)_{\widetilde{qqh}} = (mg)_{qqh} \left(1 + \frac{\alpha_s C_F}{4\pi}\right) \qquad (mg)_{q\widetilde{qh}} = (mg)_{qqh} \left(1 + \frac{3\alpha_s C_F}{8\pi}\right)$$

→ complete set of corrections purely technical complication [Stöckinger]

DR scheme

- + assume gauge invariance not an issue [Siegel]
- + DR scheme explicitely supersymmetric [only shift in space-time dimension]
- inconvenient, missing QCD infrastructure
- additional contribution to collinear factorization with massive final states
 [Beenakker...; van Neerven, Smith]

	Fit tan β	m _i	σ_{ij}	$\Delta \kappa_{u}$	$\Delta \kappa_{d}$	$\Delta \kappa'_{\sf u}$	$\Delta \kappa'_{\sf d}$
ILC		•	•	0.9×10^{-2}	3×10^{-2}	1.3×10^{-2}	4×10^{-2}
ILC	•	•	•	1.2×10^{-2}	5×10^{-2}	2×10^{-2}	5×10^{-2}
ILC		•		1.1×10^{-2}	5×10^{-2}	3×10^{-2}	8×10^{-2}
ILC	•	•		1.2×10^{-2}	11×10^{-2}	4×10^{-2}	8×10^{-2}
LHC		•		2.2×10^{-1}	6×10^{-1}	2.7×10^{-1}	8×10^{-1}
ILC		•	•	1.4×10^{-2}	5×10^{-2}	3×10^{-2}	10×10^{-2}
ILC*	•	•	•	1.7×10^{-2}	9×10^{-2}	4×10^{-2}	13×10^{-2}
ILC	fix tan $\beta = 3$	•	•	1.6×10^{-2}	4×10^{-2}	4×10^{-2}	9×10^{-2}

Error on anomalous Yukawa couplings

Verdict

- LHC: stable R hadrons, charginos and neutralinos
- ILC: anomalous Yukawa couplings
- IceCube: one event per year for low-mass R hadrons [Hewett, Lillie, Mazip, Rizzo]
- Pierre Auger: few events for $\widetilde{m} < 10^{11}~GeV~$ [Anchordoqui, Goldberg, Nunez]
- \Rightarrow split supersymmetry identifiable at combination of colliders
- ⇒ what stays: exotic heavy hadrons visible at LHC why did we ever assume MSSM-type ino Yukawas?