SIGNAL SIGNIFICANCE IN THE

IDEAL LHC WORLD

Tilman Plehn

MPI München & University of Edinburgh

- What the problem with significance is
- How we can try to solve it
- Where it seems to work

in collaboration with Kyle Cranmer [he did all the statistics]

THE PROBLEM WITH LHC SEARCHES: 1

Haven't we all had this problem?

- some new BSM model predicts a crazy new particle
- → extraction from backgrounds at LHC [LHC physics is statistics]
- → parton-level signal/background analysis [all of the U.S. can do that now]
- → cuts analysis an art, not a science [know-how got people like me a job]
- → experimentalist reluctant to invest time [no trust because they know phenomenologists]
- → yes: neural net with hugely improved significance [my papers]
 yes: parton level analysis proven completely wrong [everyone else's papers]
 no: idea forever lost

How to solve it in the ideal world?

- (1) predict significance which can be obtained
- (2) check if experimental analysis is optimal
- ⇒ emulate the perfect experimentalist on a laptop [to take him home or to workshops]

THE PROBLEM WITH LHC SEARCHES: 2

An example from real life [TP, Rainwater, Zeppenfeld vs. Cranmer, Quayle, Wu]

- WBF H $\rightarrow \tau \tau$ in Standard Model
- cut analysis promising, experimentalists convinced [after years of convincing]
- neural net even better with LEP-type events weighting
- new Higgs discovery channel
- ⇒ could we predict these numbers?
 - ► Significance for 30 fb⁻¹:

Higgs Mass	Cut Analysis(Pois.)	Cut on NN	NN Sig. w/cut	NN Sig. w/LR
115	2.95	0.89	3.71	4.68
120	3.09	0.93	3.97	4.88
125	3.06	0.92	3.93	4.75
130	2.72	0.94	3.70	4.49
135	2.56	0.96	3.36	4.02
140	1.86	0.97	2.85	3.38

- ▶ Improvement of ~30% from Neural Nets
- ▶ Improvement of ~60% with Likelihood Ratio

[B. Quayle, ATLAS Higgs meeting, 2003]

LIKELIHOOD RATIO

Likelihood ratio

combined likelihood for N-event Poisson statistics [independent channels]

$$\begin{split} \mathcal{L}_b &= \frac{e^{-b} \ b^N}{N!} \\ q &= \log \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} = -s + N \ \log \left(1 + \frac{s}{b} \right) \longrightarrow -\sum_j s_j + \sum_j N_j \ \log \left(1 + \frac{s_j}{b_j} \right) \end{split}$$

- remember: Gaussian significance approximately $n_\sigma \sim -2$ q
- \rightarrow inspiration by LEP-Higgs analyses: integration over all possible p.s. points by replacing s, b $\rightarrow |\mathcal{M}_{s,b}|^2$

$$q(x) = \log \left(1 + \frac{|\mathcal{M}_s|^2}{|\mathcal{M}_b|^2} \right)_x$$

- → treatment of log likelihood as measurement function
- \rightarrow extraction of probability distribution function more involved: $\rho_{s,b}(n)$
- \rightarrow integrate over background pdf $CL_b = \int_N^\infty dn \rho_b(n)$ [5 σ with probability 2.85 10⁻⁷]

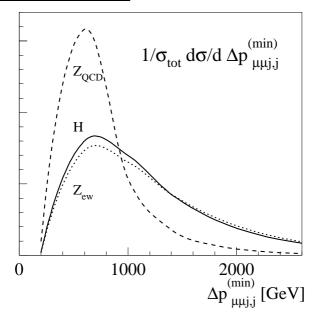
BEYOND IRREDUCIBLE AND UNSMEARED

Beyond naive phase space integration

irreducible & unsmeared: signal and background phase space identical

$$\sigma_{\mathrm{tot}} = \int \mathrm{dPS} \; \mathrm{M_{PS}} \; \mathrm{d}\sigma_{\mathrm{PS}} = \int \mathrm{d}\vec{\mathbf{r}} \; \mathrm{M}(\vec{\mathbf{r}}) \; \mathrm{d}\sigma(\vec{\mathbf{r}})$$

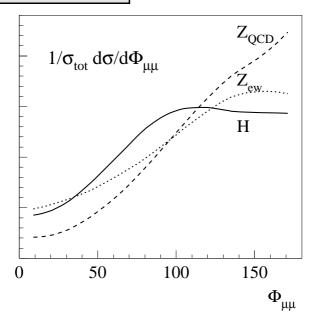
- \rightarrow same random numbers for S and B, all phase space info included [over-all ϕ ?]
- \rightarrow smearing! otherwise e.g. $m_{\mu\mu}^{\text{real}} \neq m_{\mu\mu}^{\text{meas}}$ too distinctive
- → smear small number of observables/random numbers with Gaussian G


$$\sigma_{\text{tot}} = \int d\vec{r}_{\perp} dr_{\text{m}}^* \int_{-\infty}^{\infty} dr_{\text{m}} \ \mathsf{M}(\vec{r}) \ \mathsf{d}\sigma(\vec{r}) \ \mathsf{G}(r_{\text{m}}, r_{\text{m}}^*)$$

- \rightarrow modified random number vector $\vec{r} = \{\vec{r}_{\perp}, r_m\}$ without back door
- → complete smearing?!
- → have to replace phase space by spectrum of set of distributions (can be large and overlapping)
- → about to be be implemented in Whizard [Cranmer, TP, Reuter]

WBF-HIGGS TO MUONS: 1

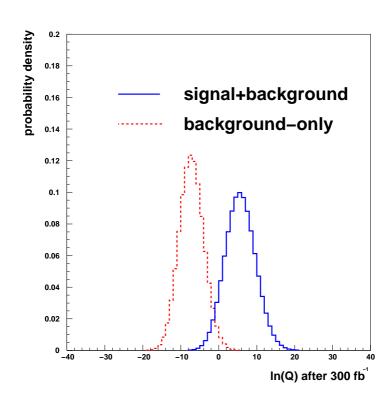
WBF Higgs with decay H $ightarrow \mu \mu$ [TP & Rainwater, 0107180]


- number of signal events small [$\sigma \cdot BR \sim 0.25 fb$]
- no distribution with golden cut
- → perfect for neural net analysis

WBF-HIGGS TO MUONS: 1

WBF Higgs with decay H $ightarrow \mu \mu$ [TP & Rainwater, 0107180]

- number of signal events small $[\sigma \cdot BR \sim 0.25fb]$
- no distribution with golden cut
- → perfect for neural net analysis


Old results [leading (irreducible) backgrounds]

√S [TeV]	M _H [GeV]	σ_{H} [fb]	σ_{Z}^{QCD} [fb]	σ_{Z}^{ew} [fb]	S/B	signifi cance σ	$\triangle \sigma/\sigma$	$\mathcal{L}_{5\sigma}$ [fb ⁻¹]
14	115	0.25	3.57	0.40	1/9.1	1.7	60%	2600
14	120	0.22	2.60	0.33	1/7.5	1.8	60%	2300
14	130	0.17	1.61	0.24	1/6.5	1.7	65%	2700
14	140	0.10	1.11	0.19	1/7.5	1.2	85%	4900
200	115	2.57	39.6	5.3	1/10.1	5.3	20%	270
200	120	2.36	29.2	4.0	1/8.0	5.7	20%	230
200	130	1.80	18.7	2.7	1/6.9	5.3	20%	260
200	140	1.14	13.4	2.0	1/7.9	4.0	27%	500

WBF-Higgs to Muons: 2

Statistical promise of WBF H $\rightarrow \mu\mu$

- relevant for physics: confirm Yukawa coupling to 2nd generation
- gluon-fusion channel helpful? [Han & McElrath, Boos etal.]
- → better try WBF alone
- cut analysis impossible
- event weighting in neural net promising
- only irreducible backgrounds
- smearing only relevant for $\mathsf{m}_{\mu\mu}$ [mimic by $\mathsf{\Gamma}'_\mathsf{H}$]
- → compute likelihood for each event
- → upper limit on parton level significance
- \rightarrow WBF H $\rightarrow \mu\mu$: 3.7 sigma in 300 fb⁻¹ [4.2 σ with jet veto; 5.2 σ for Atlas+CMS]
- ⇒ see if we can find an experimental group now

OUTLOOK

Higgs/BSM news for LHC

- we can emulate the perfect experimentalist!
- another cool tool in the pipeline
- concept and feasibility shown
- incorporation into Whizard over summer