MADGRAPH TUTORIAL

Tilman Plehn

MPI München & University of Edinburgh

- Madgraph/Madevent approach
- proof of its power in LHC studies
- core structure of Madgraph + examples
- basics of Madevent + examples
- proof: speaker does not know what he is talking about

in name of:

F. Maltoni, J. Alwall, S. DeVisscher R. Frederix, M. Herquet,..., K. Hagiwara, D. Rainwater, T. Stelzer,

GENERAL BLABLA

Before I start explaining Fabio's LHC tool:

- QCD will kill you, no matter what black box you use
- LEP/Tevatron/LHC statistics are way past 1D distributions
- ⇒ LHC life is tougher than we all think
 - if you do not understand μ_F do not use Pythia
 - to really use Herwig, Pythia, Sherpa find a competent co-author
 - parton level is fine for me, so it is likely fine for you
- ⇒ results we do not understand are useless
- phenomenologists are not in physics to write tools for model builders
- running a model through Madevent will likely contribute nothing to LHC physics
- ⇒ Don't ask what LHC can do for you...

MADGRAPH VS. MADEVENT

Advanced user's tool: Madgraph [Stelzer & Long]

- problem: (differential) tree—level cross sections for ILC, LHC
- usually more complex than 2 → 2, otherwise talk N^mLO
- perfect tool for numerical helicity amplitudes: HELAS [Hagiwara, Murayama, Watanabe]
- \Rightarrow interface initial/final states $a, b \to A, B, C, D, ... \leftrightarrow \overline{|\mathcal{M}|^2}$ in Fortran

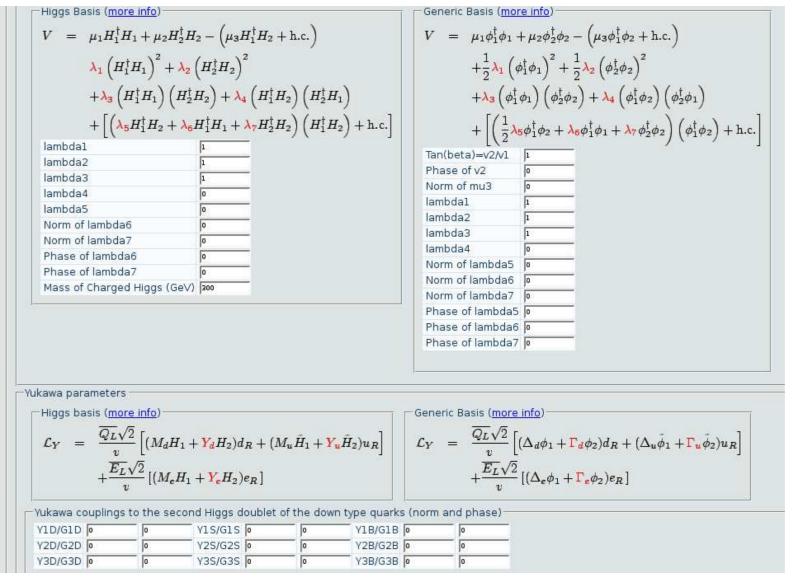
What is and what is not included

- user-defined: particles, interactions in simple syntax
- user-defined: couplings in Fortran, unless Standard Model default
- included: Feynman diagram calculator
- included: Fortran function $\overline{|\mathcal{M}|^2}$ [plus HELAS library]
- only in Madevent: phase space integrator/generator
- only in Madevent: plotting routine, fast detector simulation...
- ⇒ Madgraph for experts/pheno students [established for many years]

MADGRAPH VS. MADEVENT

Experimental style or skilled hackers: Madevent [Maltoni, Stelzer, Alwall,...]

- no need to rewrite phase space for W + jets every time
- no need to link PAW locally every time
- no need to write Pythia/PGS interface every time
- certainly no need to debug your own code every time...
- ⇒ highly complex public computer code [great if someone else maintains it]
- ⇒ web-based tool, newest version in Louvain-la-Neuve

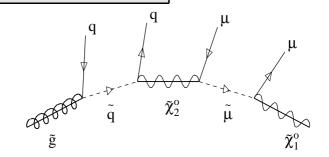

Smadgraph/Madevent [SUSY release paper: hep-ph/0601063; similar for 2HDM, Higgs-ET, UED, etc.]

- Madgraph: BSM particles, interactions files model parameter interface, couplings definition, HELAS interface
- Madevent: same by Perl script
- ⇒ BSM–Madevent the future

Reference processes on the web [Smadgraph + Sherpa + Whizard]

Comparison of Automated Tools for Phenomenological Investigations of SuSy

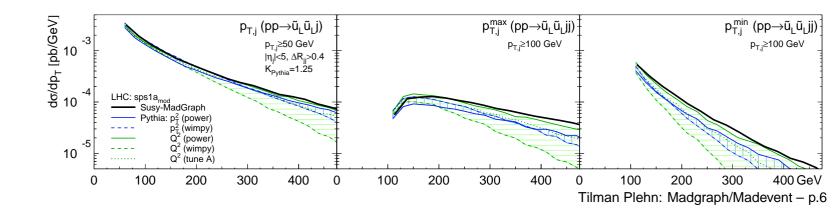
2HDM IN MADEVENT



[TwoHiggsCalc: Herquet, DeVisscher, Ovyn]

1 - SQUARKS AND GLUINOS WITH JETS

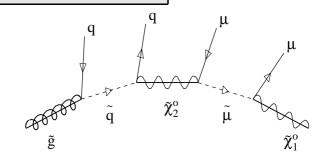
Problem: jets with SUSY cascades?


- gluino/squark decays to jets, missing energy,...
- exclusive: SUSY masses from thresholds & edges
- ⇒ effects of additional QCD jets beyond Pythia?

Comparison Pythia — Madevent

- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- normalized p_{T,j} distributions with Madevent
- Pythia shower tuned at Tevatron
- ⇒ SUSY easier than tops [QCD: the heavier the better]

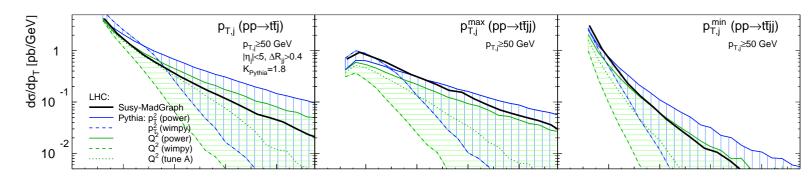
σ [pb]	tt ₆₀₀	ĝĝ	$\widetilde{u}_{L}\widetilde{g}$
σ_{0j}	1.30	4.83	5.65
$\sigma_{1\mathrm{j}}$	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85



1 - SQUARKS AND GLUINOS WITH JETS

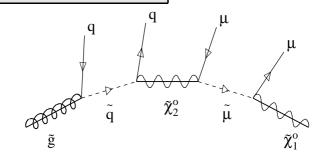
Problem: jets with SUSY cascades?

- gluino/squark decays to jets, missing energy,...
- inclusive: jet multiplicity 1 for q


 , 2 for g
- exclusive: SUSY masses from thresholds & edges
- ⇒ effects of additional QCD jets beyond Pythia?

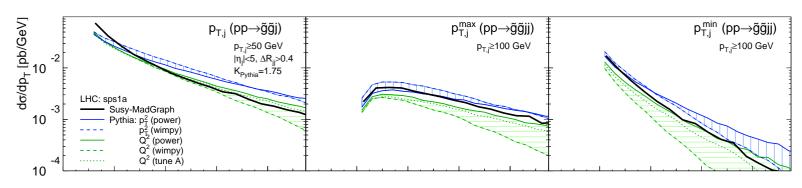
Comparison Pythia — Madevent

- matrix element $\tilde{g}\tilde{g}$ +2j and $\tilde{u}_L\tilde{g}$ +2j [$p_{T,j} > 100 \text{ GeV}$]
- normalized p_{T,j} distributions with Madevent
- Pythia shower tuned at Tevatron
- ⇒ SUSY easier than tops [QCD: the heavier the better]


σ [pb]	tt̄ ₆₀₀	ĝĝ	$\widetilde{u}_{L}\widetilde{g}$
σ_{0j}	1.30	4.83	5.65
$\sigma_{1\mathrm{j}}$	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

1 - SQUARKS AND GLUINOS WITH JETS

Problem: jets with SUSY cascades?


- gluino/squark decays to jets, missing energy,...
- exclusive: SUSY masses from thresholds & edges
- ⇒ effects of additional QCD jets beyond Pythia?

Comparison Pythia — Madevent

- matrix element $\tilde{g}\tilde{g}+2j$ and $\tilde{u}_L\tilde{g}+2j$ [PT, j > 100 GeV]
- normalized p_{T,j} distributions with Madevent
- Pythia shower tuned at Tevatron
- ⇒ SUSY easier than tops [QCD: the heavier the better]

σ [pb]	tt̄ ₆₀₀	ĝĝ	$\widetilde{u}_{L}\widetilde{g}$
σ_{0j}	1.30	4.83	5.65
$\sigma_{1\mathrm{j}}$	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

2 - Susy in Weak Boson Fusion

Problem: weakly interacting particles in WBF

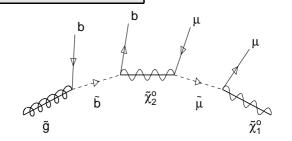
- works great for Higgs (Standard Model or MSSM)
- W, Z background the problem for DY-type pp $\to \tilde{\chi} \tilde{\chi}, \tilde{\ell} \tilde{\ell}$
- trigger difficult for (neutral) stable sleptons
- \Rightarrow give it a try: $qq' \to q'q \tilde{\ell} \tilde{\ell}^*$ [cancellations deadly]

	SP:	S 1a	SPS8		
process	DY	WBF	DY	WBF	
$\tilde{\mathrm{e}}_{\mathrm{L}}^{+}\tilde{\mathrm{e}}_{\mathrm{L}}^{-}$	22.5	0.036	2.49	0.004	
$ ilde{e}_{R}^{+} ilde{e}_{R}^{-}$	29.0	0.029	14.3	0.014	
$ ilde{ au}_1^+ ilde{ au}_1^-$	34.4	0.033	16.0	0.015	
$ ilde{ au}_{ extsf{2}}^{+} ilde{ au}_{ extsf{2}}^{-}$	18.3	0.032	2.40	0.004	

2 - Susy in Weak Boson Fusion

Problem: weakly interacting particles in WBF

- works great for Higgs (Standard Model or MSSM)
- W, Z background the problem for DY-type pp $\to \tilde{\chi}\tilde{\chi}, \tilde{\ell}\tilde{\ell}$
- trigger difficult for (neutral) stable sleptons
- ⇒ WBF great, but really only for Higgs


Theoretical side remark

- unitarity in WW $ightarrow ilde{\chi} ilde{\chi}$ [s and t channel, like WW $ightarrow t ar{t}$]
- e.g. parameter m_Z in s-channel propagator and $\tilde{\chi}\tilde{\chi}\Phi$ Yukawa coupling [best test of SUSY–protected couplings]
- mismatch in renormalization fixed by ripping scheme
- general problem: widths and couplings for Higgs and SUSY [Sdecay]
- ⇒ all fixed in Susy-Madevent

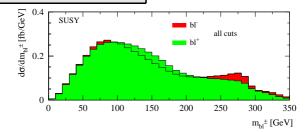
3 - GLUINO SPIN DETERMINATION

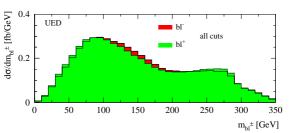
Problem: cascade spin analysis

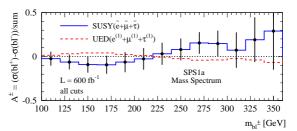
- straw-man: UED interpretation
- compare entire cascade [all correlations mandatory]
- only normalized distributions [masses from endpoints]
- ⇒ if fermionic gluino, then Majorana [like-sign dileptons]

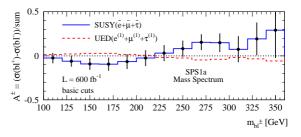
Cascade decays — SUSY + UED Madevent

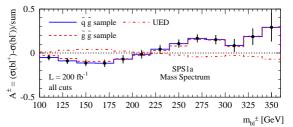
- gluino decay chain as for mass measurement
- compare with first KK g, q, Z, and ℓ
- decay asymmetry b vs. \bar{b} [instead of near/far b] $\mathcal{A} = [\sigma(b\ell^+) \sigma(b\ell^-)]/[\sigma(b\ell^+) + \sigma(b\ell^-)]$
- complication: $\tilde{\ell}_{LR}$ or $\tilde{\tau}_{LR}$ tied in with spin
- pure jet observables which work: ϕ_{bb}
- ⇒ spins sit in decay kinematics

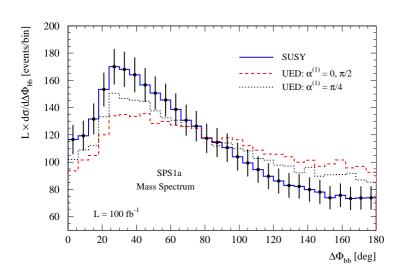

3 - GLUINO SPIN DETERMINATION


Problem: cascade spin analysis


- straw-man: UED interpretation
- compare entire cascade [all correlations mandatory]
- only normalized distributions [masses from endpoints]
- ⇒ if fermionic gluino, then Majorana [like-sign dileptons]


Cascade decays — SUSY + UED Madevent

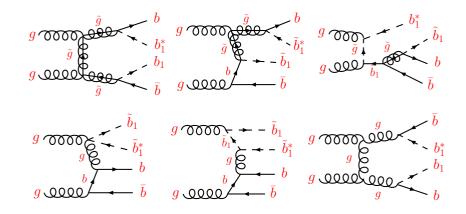

- gluino decay chain as for mass measurement
- compare with first KK g, q, Z, and ℓ
- decay asymmetry b vs. \bar{b} [instead of near/far b] $\mathcal{A} = [\sigma(b\ell^+) \sigma(b\ell^-)]/[\sigma(b\ell^+) + \sigma(b\ell^-)]$
- complication: $\tilde{\ell}_{LR}$ or $\tilde{\tau}_{LR}$ tied in with spin
- pure jet observables which work: ϕ_{bb}
- ⇒ spins sit in decay kinematics

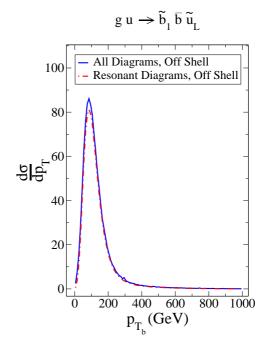

3 - GLUINO SPIN DETERMINATION

Problem: cascade spin analysis

- straw-man: UED interpretation
- compare entire cascade [all correlations mandatory]
- only normalized distributions [masses from endpoints]
- ⇒ if fermionic gluino, then Majorana [like-sign dileptons]

Cascade decays — SUSY + UED Madevent


- gluino decay chain as for mass measurement
- compare with first KK g, q, Z, and ℓ
- decay asymmetry b vs. \bar{b} [instead of near/far b] $\mathcal{A} = [\sigma(b\ell^+) \sigma(b\ell^-)]/[\sigma(b\ell^+) + \sigma(b\ell^-)]$
- complication: $\tilde{\ell}_{LR}$ or $\tilde{\tau}_{LR}$ tied in with spin
- pure jet observables which work: ϕ_{bb}
- ⇒ spins sit in decay kinematics



4 - OFF-SHELL SQUARKS AND GLUINOS AT LHC

Problem 1: $pp \to \tilde{g}\tilde{g} \to \bar{b}\tilde{b}_1b\tilde{b}_1^*$

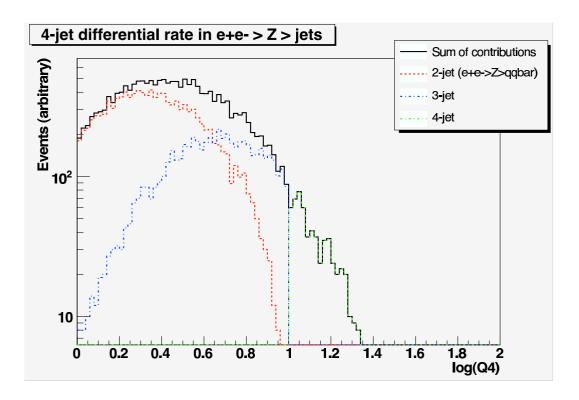
- naive expectations: corrections $\sim \Gamma_{\tilde{g}}/m_{\tilde{g}}$
- rate up 16% [σ_{pole} =108 fb; σ_{all} =125 fb]
- compare to NLO uncertainty \sim 15%
- ⇒ detailed discussion in paper...

4 - OFF-SHELL SQUARKS AND GLUINOS AT LHC

Problem 1: pp $\rightarrow \tilde{g}\tilde{g} \rightarrow \bar{b}\tilde{b}_1b\tilde{b}_1^*$

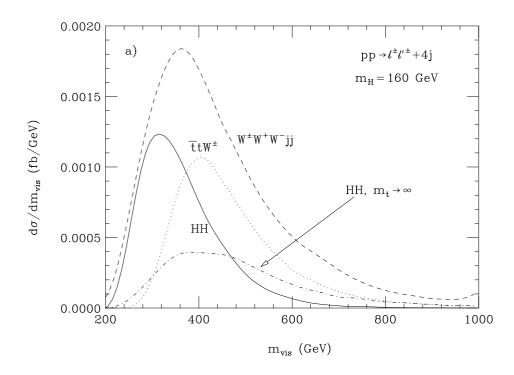
- naive expectations: corrections $~\sim \Gamma_{\widetilde{g}}/m_{\widetilde{g}}$
- rate up 16% [σ_{pole} =108 fb; σ_{all} =125 fb]
- compare to NLO uncertainty \sim 15%
- ⇒ detailed discussion in paper...

Problem 2: pp $\to \tilde{g}\tilde{\chi}^0_1 \to \bar{b}\tilde{b}_1\tilde{\chi}^0_1$


- rate up 50%!
- distributions spread...
- no interference, but new pole
- separable by jet/lepton edges?
- just a start as well...

MADEVENT AND JET MATCHING

Automatic matching of hard jets with parton shower

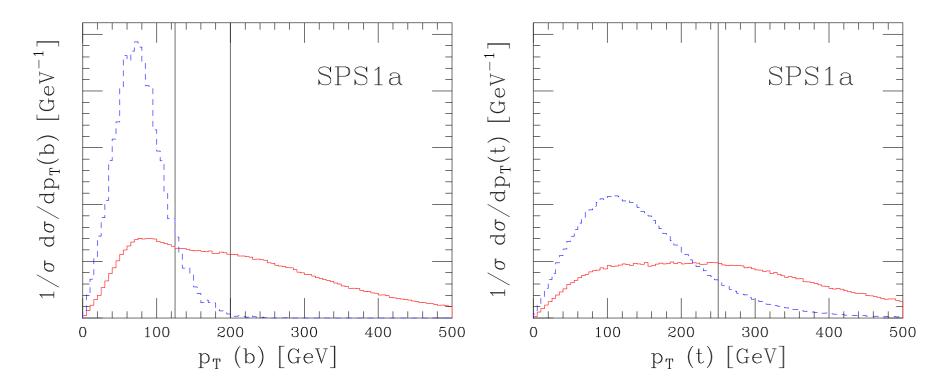

- combination of hard and collinear jets with hard process
- Madevent with new p_T—ordered Pythia shower [ask Johan Alwall for details]
- Madevent process definition pp > Wj, pp > Wjj, pp > Wjjj, ...
- e⁺e⁻ \rightarrow Z+jets testing ground

OUTLOOK

Madgraph/Madevent progress all over the place [mostly Louvain-la-Neuve]

- SUSY available [used for several papers]
- 2HDM available
- higher–dimension Higgs couplings available

OUTLOOK


Madgraph/Madevent progress all over the place [mostly Louvain-la-Neuve]

- SUSY available [used for several papers]
- 2HDM available
- higher-dimension Higgs couplings available
- PGS included
- UED on the way
- jet matching next task
- watch: http://madgraph.phys.ucl.ac.be
- be honest: have you ever thought about where MC authors get jobs?

BACKUP: MIXED-FLAVOR SQUARK PAIRS

Weak squark vertices [Berdine, Rainwater]

- consider pp $\to \tilde{t}\,\tilde{b}^*$, phenomenologically function of $m_{\tilde{t}_1,\tilde{t}_2}$, θ_t , $m_{\tilde{b}_1,\tilde{b}_2}$, θ_b , \widetilde{V}_{ij}
- $\text{ all channels } \tilde{t}_1 \tilde{b}_1^*, \tilde{t}_1 \tilde{b}_2^*, \tilde{t}_2 \tilde{b}_1^*, \tilde{t}_2 \tilde{b}_2^* \\ \Rightarrow g_{t_1 b_1}^2 + g_{t_1 b_2}^2 + g_{t_2 b_1}^2 + g_{t_2 b_2}^2 = g_{tb}^2 = \widetilde{V}_{tb}^2 g_W^2$
- backgrounds: ttW[±], b̃_ib̃_i*, g̃g, q̃g
- kinematic separation

BACKUP: MIXED-FLAVOR SQUARK PAIRS

Weak squark vertices [Berdine, Rainwater]

- consider pp \to \tilde{t} \tilde{b}^* , phenomenologically function of $m_{\tilde{t}_1,\tilde{t}_2}$, θ_t , $m_{\tilde{b}_1,\tilde{b}_2}$, θ_b , \widetilde{V}_{ij}
- $\ \ \text{all channels} \ \ \tilde{t}_1 \tilde{b}_1^*, \tilde{t}_1 \tilde{b}_2^*, \tilde{t}_2 \tilde{b}_1^*, \tilde{t}_2 \tilde{b}_2^* \ \Rightarrow g_{t_1 b_1}^2 + g_{t_1 b_2}^2 + g_{t_2 b_1}^2 + g_{t_2 b_2}^2 = g_{tb}^2 = \widetilde{V}_{tb}^2 g_W^2$
- backgrounds: ttW±, b̄_ib̄_i*, ḡg, q̄g
- kinematic separation
- observation at SLHC [including BRs & efficiencies]

SPS	forward jet tag analysis			jet veto analysis				
	N _S	N _B	S/B	S.S.	N _S	N _B	S/B	S.S.
1a	32	210	1/7	2.2σ	78	105	1/1.3	7.6σ
5	160	2350	1/15	3.3σ	320	1035	1/3.3	10σ